• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Granular Shape Memory Ceramics

Rauch, Hunter 05 May 2021 (has links)
Shape memory ceramics (SMCs) are burgeoning functional materials based on zirconia with a reversible, stress-inducible martensitic phase transformation. Compared to metallic shape memory alloys, SMCs have broader operating temperatures, higher critical stresses, and larger mechanical hysteresis loops. These advantages make SMCs attractive for high-output actuation and sensing in extreme environments or energy dissipation applications; however, the key phase transformation generates large stresses and strains that accumulate at grain boundaries and result in fracture of monolithic SMCs. This means that material forms with decreased mechanical constraint are necessary. Transformation without fracture has been previously demonstrated with SMC micropillars and individual microparticles, but these material forms lack useful applications. By utilizing easily scalable granular packings of discrete free particles, the transformation can be triggered in bulk without fracture in much the same way. The granular packing material form introduces significant complexity as the internal stress distributions responsible for the phase transformation are highly heterogeneous on the macro-, meso-, and micro-scales. Moreover, the unconstrained phase transformation behaves differently than the constrained transformation, which is more studied in zirconia. The interactions of these various factors are explored from a fundamental perspective in this work, notably including (1) a unique 'continuous mode' of both forward and reverse transformation in granular packings, (2) the dependence of transformation behavior on macro-, meso-, and microstructure, and (3) the evolution of the granular packings' structure and energy dissipation capacity over 10,000 loading cycles. Diverse experimental techniques are employed, ranging from mechanical testing and calorimetry to in situ neutron diffraction, to support theory based on the martensitic phase transformation in zirconia, the shape memory and superelastic effects, and granular material physics. / Doctor of Philosophy / Shape memory materials are capable of remembering their original shape even when they are deformed, and can return to that shape when they are heated. This unique property stems from a phenomenon called martensitic phase transformation which bridges the gap between microscopic structural changes and macroscopic shape changes as a response to specific environmental changes. Most of the common shape memory materials are metallic, like nitinol (NiTi), which has uses in orthodontic wires and cardiological stents, but there are also ceramic materials that can display the shape memory effect. These shape memory ceramics are based on zirconia (ZrO2), and are distinct from metallic shape memory materials because of their brittle behavior and high temperature stability owing to their chemical structure. The work presented in this thesis concerns the behavior of shape memory ceramics in granular form (i.e., loose powders) over a range of external conditions. Diverse experimental techniques are employed to investigate differences between granular and non-granular shape memory ceramics. This work shows how the unique structure of a granular material, which is dominated by highly uneven force distributions and microscopic effects, interacts with the martensitic phase transformation in shape memory ceramics to produce a 'continuous' mode of transformation that differs from non-granular shape memory materials. This continuous mode is itself dependent on the granular material's macro-, meso-, and micro-structure, and on the shape memory material's composition and history. In the future, shape memory ceramics might leverage the insights gained from this work for applications including energy dissipation or on-demand shape changes (i.e., actuation).
2

Validation of a Sapphire Gas-Pressure Cell for Real-Time In Situ Neutron Diffraction Studies of Hydrogenation Reactions

Finger, Raphael, Hansen, Thomas C., Kohlmann, Holger 08 May 2023 (has links)
A gas-pressure cell, based on a leuco-sapphire single-crystal, serving as a pressure vessel and sample holder, is presented for real time in situ studies of solid-gas hydrogenation reactions. A stainless steel corpus, coated with neutron absorbing varnish, allows alignment for the single-crystal sample holder for minimizing contributions to the diffraction pattern. Openings in the corpus enable neutron scattering as well as contactless temperature surveillance and laser heating. The gas-pressure cell is validated via the deuteration of palladium powder, giving reliable neutron diffraction data at the high-intensity diffractometer D20 at the Institut Laue-Langevin (ILL), Grenoble, France. It was tested up to 15.0 MPa of hydrogen pressure at room temperature, 718 K at ambient pressure and 584 K at 9.5 MPa of hydrogen pressure.
3

Mechanical Properties of Dual Phase Alloys Composed of Soft and Hard Phases / 軟質相と硬質相から成る二相組織合金の力学特性

Li, Hongxing 23 May 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第19893号 / 工博第4209号 / 新制||工||1651(附属図書館) / 32970 / 京都大学大学院工学研究科材料工学専攻 / (主査)教授 辻 伸泰, 教授 白井 泰治, 教授 松原 英一郎 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
4

Mécanismes de déformation des phases MAX : une approche expérimentale multi-échelle / Deformation mechanisms of MAX phases : a multiscale experimental approach

Guitton, Antoine 04 October 2013 (has links)
Il est couramment admis que la déformation plastique des phases MAX est dueau glissement de dislocations dans les plans de base s'organisant en empilements et murs. Cesderniers peuvent former des zones de désorientation locale appelées kink bands. Cependant, lesmécanismes élémentaires et le rôle exact des défauts microstructuraux sont encore mal connus. Cemanuscrit présente une étude expérimentale multi-échelle des mécanismes de déformation de laphase MAX Ti2AlN. A l'échelle macroscopique, deux types d'expériences ont été menés. Des essaisde compression in-situ à température et pression ambiantes couplés à la diffraction neutroniqueont permis de mieux comprendre le comportement des différentes familles de grains dans le Ti2AlNpolycristallin. Des essais de compression sous pression de confinement ont également été réalisés dela température ambiante jusqu'à 900 °C. À l'échelle mésoscopique, les microstructures des surfacesdéformées ont été observées par MEB et AFM. Ces observations complétées par des essais denanoindentation ont montré que la forme des grains et leur orientation par rapport à la directionde sollicitation gouvernent l'apparition de déformations intra- et inter-granulaires ainsi que lalocalisation de la plasticité. Finalement à l'échelle microscopique, une étude détaillée par METdes échantillons déformés sous pression de confinement a révélé la présence de configurations dedislocations inédites dans les phases MAX, telles que des réactions entre dislocations, des dipôleset des dislocations hors plan de base. À la vue de ces résultats nouveaux, les propriétés mécaniquesdes phases MAX sont rediscutées. / It is commonly believed that plastic deformation mechanisms of MAX phases consistin basal dislocation glide, thus forming pile-ups and walls. The latter can form local disorientationareas, known as kink bands. Nevertheless, the elementary mechanisms and the exact role ofmicrostructural defects are not fully understood yet. This thesis report presents a multi-scale experimentalstudy of deformation mechanisms of the Ti2AlN MAX phase. At the macroscopic scale,two kinds of experiments were performed. In-situ compression tests at room temperature coupledwith neutron diffraction brought new insight into the deformation behavior of the different grainfamilies in the polycrystalline Ti2AlN. Compression tests from the room temperature to 900 °Cunder confining pressure were also performed. At the mesoscopic scale, deformed surface microstructureswere observed by SEM and AFM. These observations associated with nanoindentationtests showed that grain shape and orientation relative to the stress direction control formationof intra- and inter- granular strains and plasticity localization. Finally, at the microscopic scale,a detailed dislocation study of samples deformed under confining pressure revealed the presenceof dislocation configurations never observed before in MAX phases, such as dislocation reactions,dislocation dipoles and out-of-basal plane dislocations. In the light of these new results, mechanicalproperties of MAX phases are discussed.
5

Implementation of Neutron Diffraction Characterization Techniques for Direct Energy Deposition of Ni-Based Superalloys

Ozcan, Burak 28 February 2023 (has links)
In recent years, additive manufacturing (AM) has been one of the essential production techniques in the engineering community. Rapid integration of this technique drew a bead on the reliability of the microstructural and mechanical properties of engineering components. However, due to the nature of the layer-by-layer approach of AM, complex thermal gradients can cause inhomogeneous microstructure and significant residual stresses (RS). These, expectedly, can lead to a dramatic reduction in material performance. Therefore, especially for alloys like Ni-based Inconel 718 (IN718) used in critical applications, the characterization and later optimization of the DED process on material properties become essential. Nevertheless, empirical and conventional approaches are needed to improve, or new techniques should be introduced. In this regard, this study aims to understand better the evolution of the mechanical and microstructural properties of IN718 during and post-DED processes. For this purpose, an in-situ 2D neutron diffraction strain monitoring was carried out during the DED of IN718. The strain contributions originated from microstructural, thermal, and stress-based events during deposition and cooling periods at different positions concerning melt pool were investigated. Stabilization of different positions and processing regions on the sample as a function of the temperature profile, build height, and microstructural events are examined. Laboratory-scale microstructural studies were performed on wire-DED parts to observe the process parameter dependency of precipitation, composition, and morphology of microstructural constituents. Moreover, these findings were benchmarked with neutron powder diffraction measurements to relate the crystallographic behavior with macroscopic ones. Solidification under different cooling rates and heat treatments was carried out using the neutron powder diffraction technique to comprehend the precipitation dynamics and explain the microstructural events during and after the DED process. Laboratory scale and neutron diffraction tensile characterization tests were performed to observe and relate the mechanical response of wire- DED IN718 at different temperatures and microstructural conditions.:Keywords i Abstract iii Table of Contents v List of Figures ix List of Tables xvii List of Abbreviations xix Acknowledgments xxi Chapter 1: Introduction 1 1.1 Residual Stress in Polycrystalline Materials 1 1.1.1 Residual Stress Determination 3 1.2 Neutron Scattering 5 1.2.1 Neutron-Matter Interaction 6 1.2.2 Strain Measurement by Neutron Diffraction 7 1.2.3 SALSA Neutron Strain Diffractometer 14 1.2.4 Neutron Powder Diffraction 16 1.2.5 D20 Neutron Powder Diffractometer 17 1.2.6 Peak Analysis in Diffraction Measurements 18 1.3 Nickel Superalloys 22 1.3.1 Physical Metallurgy of IN718 23 1.4 Metal Additive Manufacturing 33 1.4.1 Direct Energy Deposition (DED) 34 1.4.2 Process Monitoring in Metal AM 36 1.5 Context and Aim of the Study 40 Chapter 2: Materials and Experimental Methods 43 2.1 IN718 Feedstock Material 43 2.2 Fabrication Process by wire-DED Method 43 2.2.1 Post Processing of IN718 via Solution Treatment and Aging 47 2.2.2 Preparation of Tensile Specimens 48 2.3 Microstructural Characterization 49 2.3.1 Electron Microscopy Studies 49 2.3.2 Differential Scanning Calorimetry Analysis 50 2.3.3 Lattice Parameter Evolution of IN718 with Temperature 52 2.3.3.1 Data Reduction for Phase Analysis 54 2.4 Mechanical Characterization 57 2.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 57 2.4.1.1 Temperature Data Treatment and Processing Regions 61 2.4.1.2 Neutron Data Acquisition and Analysis 64 2.4.2 Residual Stress Mapping of Samples for Mechanical Characterization 69 2.4.3 Macro-scale Tensile Characterization at Room and High Temperatures 71 2.4.4 Neutron Diffraction Tensile Characterization Testing 72 2.4.4.1 Neutron Data Processing Procedure 77 Chapter 3: Results and Discussion 79 3.1 Microstructural Characterization of Feedstock Wire 79 3.1.1 Metallography of IN718 Feedstock Wire 79 3.1.2 Simulation of Phase Precipitations in IN718 80 3.1.3 Thermal Stability of IN718 Feedstock Wire 82 3.1.3.1 Differential Scanning Calorimetry 82 3.1.3.2 Lattice Parameter Evolution during Melting & Solidification 83 3.1.4 Discussion 91 3.2 Microstructure of IN718 wire-DED Parts 94 3.2.1 IN718-DED Cylindrical Walls 94 3.2.2 IN718 -DED Prisms 103 3.2.3 Discussion 108 3.3 Heat Treatments of IN718 Wire-DED Parts 112 3.3.1 Time and Temperature Impact into Laves Phase Dissolution 112 3.3.2 Lattice Parameter Evolution of IN718 during Solution and Aging Treatments 115 3.3.3 Discussion 118 3.4 Mechanical Characterization of IN718 wire-DED 122 3.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 122 3.4.1.1 Bragg Angle Evolution 122 3.4.1.2 Evolution of Bragg Angle Position in MP Processing Region 123 3.4.1.3 Evolution of Bragg Angle Position in the NMP Processing Region 126 3.4.1.4 Evolution of Bragg Angle Position in FF Processing Region 129 3.4.2 Discussion 131 3.4.2.1 Comparison of Equilibrium State of IN718 through In-situ and Ex-situ Investigations 135 3.4.3 Reference (d0) Approaches for Strain Calculations 136 3.4.3.1 Stable processing regime reference 136 3.4.3.2 Neutron powder diffraction reference 137 3.4.4 Evolution of Strain Contributions during IN718 wire-DED by Using Stable Reference (d0) Approach 140 3.4.4.1 Strain Evolution in MP Processing Region 141 3.4.4.2 Strain Evolution in NMP Processing Region 143 3.4.4.3 Strain Evolution in FF Processing Region 145 3.4.5 Evolution of Strain Contributions during IN718 wire-DED by Using Neutron Powder Diffraction Reference d0 Approach 148 3.4.6 Discussion 151 3.4.7 Tensile Characterization 153 3.4.7.1 Macro-scale Tensile Behavior 153 3.4.7.2 Residual Stress State in In-situ Tensile Test Specimens 155 3.4.7.3 Lattice-scale Tensile Behavior 158 3.4.8 Discussion 169 3.4.8.1 Residual Stress State prior to Tensile Test Characterization 169 3.4.8.2 Macro-scale Tensile Behavior of IN718 at Room and High Temperatures 169 3.4.8.3 Lattice-dependent Behavior As-built and Direct-aged Condition as a function of Applied Stresses 175 Chapter 4: Summary Discussion 182 4.1 Microstructural Considerations 182 4.1.1 Comparison of Materials and Extrapolation of Properties 182 4.2 Thermal Stability of IN718 Feedstock Wire and DED Parts 183 4.2.1 Matrix, Phase Precipitation, and CTE Evolution as a Function of Temperature 183 4.2.2 Heat Treatments of IN718 DED materials 184 4.3 Fabrication and Neutron Strain Monitoring Considerations 185 4.3.1 Temperature Gradients and Regions of Interest 185 4.3.2 In-situ Neutron Monitoring of Bragg Angle Evolution of γ-matrix 185 4.3.3 2D Strain Evolution 186 4.4 Tensile Mechanical Behaviour at Room and High-Temperature Considerations 189 4.4.1 Macro-scale Characterization 189 4.4.2 Lattice-scale Neutron Diffraction Characterization 189 Chapter 5: Conclusions 191 Bibliography 196 / In den letzten Jahren hat sich die additive Fertigung (AM) zu einer der wichtigsten Produktionstechniken in der Ingenieurwelt entwickelt. Die schnelle Integration dieser Technik hat die Zuverlässigkeit der mikrostrukturellen und mechanischen Eigenschaften von technischen Komponenten deutlich verbessert. Aufgrund des schichtweisen Ansatzes der AM können jedoch komplexe thermische Gradienten eine inhomogene Mikrostruktur und erhebliche Eigenspannungen (RS) verursachen. Diese können erwartungsgemäß zu einer dramatischen Verringerung der Materialleistung führen. Daher sind insbesondere bei Legierungen wie Inconel 718 (IN718) auf Ni-Basis, die in kritischen Anwendungen eingesetzt werden, die Charakterisierung und spätere Optimierung des DED-Prozesses auf die Materialeigenschaften von entscheidender Bedeutung. Dennoch müssen empirische und konventionelle Ansätze verbessert werden, oder es sollten neue Techniken eingeführt werden. In diesem Zusammenhang zielt diese Studie darauf ab, die Entwicklung der mechanischen und mikrostrukturellen Eigenschaften von IN718 während und nach dem DED-Prozess besser zu verstehen. Zu diesem Zweck wurde während des DED-Prozesses von IN718 eine in-situ 2D-Neutronenbeugungsmessung der Dehnung durchgeführt. Die Dehnungsbeiträge, die von mikrostrukturellen, thermischen und spannungsbasierten Ereignissen während der Abscheidungs- und Abkühlungsperioden an verschiedenen Positionen des Schmelzbades herrühren, wurden untersucht. Die Stabilisierung verschiedener Positionen und Verarbeitungsbereiche auf der Probe als Funktion des Temperaturprofils, der Aufschmelzhöhe und der mikrostrukturellen Ereignisse wurde untersucht. Im Labormaßstab wurden mikrostrukturelle Studien an Draht-DED-Teilen durchgeführt, um die Abhängigkeit der Prozessparameter von der Ausscheidung, Zusammensetzung und Morphologie der mikrostrukturellen Bestandteile zu beobachten. Darüber hinaus wurden diese Ergebnisse mit Neutronenpulverbeugungsmessungen verglichen, um das kristallographische Verhalten mit dem makroskopischen Verhalten in Beziehung zu setzen. Die Erstarrung unter verschiedenen Abkühlungsraten und Wärmebehandlungen wurde mit Hilfe der Neutronenpulverbeugungstechnik durchgeführt, um die Ausscheidungsdynamik zu verstehen und die mikrostrukturellen Ereignisse während und nach dem DED-Prozess zu erklären. Es wurden Zugversuche im Labormaßstab und mit Neutronenbeugung durchgeführt, um die mechanische Reaktion von IN718 bei verschiedenen Temperaturen und Mikrostrukturbedingungen zu beobachten und in Beziehung zu setzen.:Keywords i Abstract iii Table of Contents v List of Figures ix List of Tables xvii List of Abbreviations xix Acknowledgments xxi Chapter 1: Introduction 1 1.1 Residual Stress in Polycrystalline Materials 1 1.1.1 Residual Stress Determination 3 1.2 Neutron Scattering 5 1.2.1 Neutron-Matter Interaction 6 1.2.2 Strain Measurement by Neutron Diffraction 7 1.2.3 SALSA Neutron Strain Diffractometer 14 1.2.4 Neutron Powder Diffraction 16 1.2.5 D20 Neutron Powder Diffractometer 17 1.2.6 Peak Analysis in Diffraction Measurements 18 1.3 Nickel Superalloys 22 1.3.1 Physical Metallurgy of IN718 23 1.4 Metal Additive Manufacturing 33 1.4.1 Direct Energy Deposition (DED) 34 1.4.2 Process Monitoring in Metal AM 36 1.5 Context and Aim of the Study 40 Chapter 2: Materials and Experimental Methods 43 2.1 IN718 Feedstock Material 43 2.2 Fabrication Process by wire-DED Method 43 2.2.1 Post Processing of IN718 via Solution Treatment and Aging 47 2.2.2 Preparation of Tensile Specimens 48 2.3 Microstructural Characterization 49 2.3.1 Electron Microscopy Studies 49 2.3.2 Differential Scanning Calorimetry Analysis 50 2.3.3 Lattice Parameter Evolution of IN718 with Temperature 52 2.3.3.1 Data Reduction for Phase Analysis 54 2.4 Mechanical Characterization 57 2.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 57 2.4.1.1 Temperature Data Treatment and Processing Regions 61 2.4.1.2 Neutron Data Acquisition and Analysis 64 2.4.2 Residual Stress Mapping of Samples for Mechanical Characterization 69 2.4.3 Macro-scale Tensile Characterization at Room and High Temperatures 71 2.4.4 Neutron Diffraction Tensile Characterization Testing 72 2.4.4.1 Neutron Data Processing Procedure 77 Chapter 3: Results and Discussion 79 3.1 Microstructural Characterization of Feedstock Wire 79 3.1.1 Metallography of IN718 Feedstock Wire 79 3.1.2 Simulation of Phase Precipitations in IN718 80 3.1.3 Thermal Stability of IN718 Feedstock Wire 82 3.1.3.1 Differential Scanning Calorimetry 82 3.1.3.2 Lattice Parameter Evolution during Melting & Solidification 83 3.1.4 Discussion 91 3.2 Microstructure of IN718 wire-DED Parts 94 3.2.1 IN718-DED Cylindrical Walls 94 3.2.2 IN718 -DED Prisms 103 3.2.3 Discussion 108 3.3 Heat Treatments of IN718 Wire-DED Parts 112 3.3.1 Time and Temperature Impact into Laves Phase Dissolution 112 3.3.2 Lattice Parameter Evolution of IN718 during Solution and Aging Treatments 115 3.3.3 Discussion 118 3.4 Mechanical Characterization of IN718 wire-DED 122 3.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 122 3.4.1.1 Bragg Angle Evolution 122 3.4.1.2 Evolution of Bragg Angle Position in MP Processing Region 123 3.4.1.3 Evolution of Bragg Angle Position in the NMP Processing Region 126 3.4.1.4 Evolution of Bragg Angle Position in FF Processing Region 129 3.4.2 Discussion 131 3.4.2.1 Comparison of Equilibrium State of IN718 through In-situ and Ex-situ Investigations 135 3.4.3 Reference (d0) Approaches for Strain Calculations 136 3.4.3.1 Stable processing regime reference 136 3.4.3.2 Neutron powder diffraction reference 137 3.4.4 Evolution of Strain Contributions during IN718 wire-DED by Using Stable Reference (d0) Approach 140 3.4.4.1 Strain Evolution in MP Processing Region 141 3.4.4.2 Strain Evolution in NMP Processing Region 143 3.4.4.3 Strain Evolution in FF Processing Region 145 3.4.5 Evolution of Strain Contributions during IN718 wire-DED by Using Neutron Powder Diffraction Reference d0 Approach 148 3.4.6 Discussion 151 3.4.7 Tensile Characterization 153 3.4.7.1 Macro-scale Tensile Behavior 153 3.4.7.2 Residual Stress State in In-situ Tensile Test Specimens 155 3.4.7.3 Lattice-scale Tensile Behavior 158 3.4.8 Discussion 169 3.4.8.1 Residual Stress State prior to Tensile Test Characterization 169 3.4.8.2 Macro-scale Tensile Behavior of IN718 at Room and High Temperatures 169 3.4.8.3 Lattice-dependent Behavior As-built and Direct-aged Condition as a function of Applied Stresses 175 Chapter 4: Summary Discussion 182 4.1 Microstructural Considerations 182 4.1.1 Comparison of Materials and Extrapolation of Properties 182 4.2 Thermal Stability of IN718 Feedstock Wire and DED Parts 183 4.2.1 Matrix, Phase Precipitation, and CTE Evolution as a Function of Temperature 183 4.2.2 Heat Treatments of IN718 DED materials 184 4.3 Fabrication and Neutron Strain Monitoring Considerations 185 4.3.1 Temperature Gradients and Regions of Interest 185 4.3.2 In-situ Neutron Monitoring of Bragg Angle Evolution of γ-matrix 185 4.3.3 2D Strain Evolution 186 4.4 Tensile Mechanical Behaviour at Room and High-Temperature Considerations 189 4.4.1 Macro-scale Characterization 189 4.4.2 Lattice-scale Neutron Diffraction Characterization 189 Chapter 5: Conclusions 191 Bibliography 196

Page generated in 0.1204 seconds