• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • Tagged with
  • 7
  • 7
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigations into molecular beam epitaxial growth of InAs/GaSb superlattices

Murray, Lee Michael 01 December 2012 (has links)
InAs/GaSb superlattices are a material system well suited to growth via molecular beam epitaxy. The ability to tune the band gap over the entire mid and long wave infrared spectrum gives a large number of applications for devices made from InAs/GaSb superlattice material. The growth of high quality InAs/GaSb superlattice material requires a careful study of the parameters used during epitaxial growth. This work investigates the growth of tunnel junctions for InAs/GaSb based superlattice light emitting diodes, the presence of defects in GaSb homoepitaxial layers, and variations in the growth rate of InAs/GaSb superlattice samples. Tunnel junctions in cascaded structures must provide adequate barriers to prevent carriers from leaking from one emission region to the next without first recombining radiatively, while at the same time remain low in tunneling resistance for current recycling. A variety of tunnel junction designs are compared in otherwise identical four stage InAs/GaSb superlattice light emitting diodes, which past studies have found hole confinement to be problematic. GaSb was used on the p-side of the junction, while various materials were used on the n-side. Al0.20In0.80As0.73Sb0.27 tunnel junctions function best due to the combination of favorable band alignment and ease of growth. Pyramidal defects have been observed in layers of GaSb grown by molecular beam epitaxy on GaSb substrates. These defects are typically 3-8 nanometers high, 1-3 microns in diameter, and shaped like pyramids. Their occurrence in the growth of GaSb buffer layers can propagate into subsequent layers. Defects are nucleated during the early stages of growth after the thermal desorption of native oxide from the GaSb substrate. These defects grow into pyramids due to a repulsive Ehrlich-Schwoebel potential on atomic step edges leading to an upward adatom current. The defects reduce in density with growth of GaSb. The insertion of a thin AlAsSb layer into the early stages of the GaSb buffer increases the rate of elimination of the defects, resulting in a smooth surface within 500nm. The acceleration of defect reduction is due to the temporary interruption of step-flow growth induced by the AlAsSb layer. This leads to a reduced isolation of the pyramids from the GaSb epitaxial layer, and allows the pyramidal defects to smooth out. Investigations into varying the superlattice growth rate have not been reported widely in the literature. Due to the frequent use of soaks, growth interrupts, and other interface structuring steps the superlattice growth rate and the interface layer sequence are linked. In order to properly study the effects of growth rate variations and interface design changes it is necessary to account for the effect on growth rate due to the interfaces. To this end it is useful to think of the effective growth rate of the superlattice, which is the total layer thickness divided by the total time, per superlattice period. Varying the effective growth rate of superlattice photoluminescence samples shows a peak in output at ˜ 0.5 monolayers per second. Investigations into the structural properties of the superlattices show no decrease in structural uniformity for effective growth rates up to ˜ 1.4 monolayers per second.
2

Nouvelles sources lasers à super réseau InAs/GaSb/InSb pour l'émission moyen infrarouge / New Mid-Infrared Laser source with super-lattice InAs/GaSb/InSb for mid-infrared emission

Gassenq, Alban 20 July 2010 (has links)
Ce travail de thèse porte sur le développement et l'étude de diodes laser moyen infrarouge dont la zone active est constituée d'un super réseau (SR) à très courte période InAs/GaSb/InSb élaboré par épitaxie par jets moléculaires. La gamme de longueur d'onde d'émission visée est 3 - 3,5 µm qui est très intéressante pour des applications d'analyse de gaz par spectroscopie optique mais pour laquelle il n'y a encore aucun composant performant. Nous avons tout d'abord étudié les propriétés optoélectroniques du SR InAs/GaSb/InSb. La structure de bandes a été modélisée dans une approche k-p. L'interface sans atome commun InAs/GaSb est simulée arbitrairement par une monocouche de InAsxSb1-x dont la composition varie avec les conditions de croissance et donc avec l'interface réelle. Un bon accord est obtenu entre le gap effectif calculé et l'énergie des spectres de photoluminescence. Une attention particulière a été portée à l'impact de l'insertion contrôlée d'InSb dans le SR. Le raccordement de bandes du SR avec le guide d'onde, capital pour fabriquer un laser, a aussi été étudié. Un premier dessin de zone active a été proposé pour atteindre l'objectif. Par la suite, les performances intrinsèques des diodes lasers à SR ont été calculées par l'intermédiaire de la modélisation du gain du SR. L'effet laser avec une densité de courant de seuil proche de 0,5 kA/cm² est théoriquement possible. Les lasers à SR InAs/GaSb/InSb ont alors été étudiés expérimentalement. Nous avons fait varier de nombreux paramètres : composition et épaisseur du SR, du guide d'onde et des couches de confinement, procédé technologique? Les résultats expérimentaux ont montré des comportements proches des modélisations effectuées. L'effet laser à la température ambiante a été obtenu avec une densité de courant de seuil de l'effet laser de 2 kA/cm² à 3,2 µm et de 1,8 kA/cm² à 3,1 µm. Des perspectives d'optimisation des composants sont proposées en conclusion. / This work reports the development and study of infra-red laser diodes with InAs/GaSb/InSb short-period super lattice (SL) active region grown by molecular beam epitaxy. The target wavelength range of emission is 3 - 3.5 µm which is very interesting for gas application analysis by optical spectroscopy. There is no efficient component in this range. Firstly, we have studied the optoelectronic properties of the InAs/GaSb/InSb SL. The band structure was modelled with the k-p approach. The non-common atom InAs/GaSb interface is simulated by an arbitrary InAsxSb1-x monolayer whose composition depends with the growth conditions. A good agreement is obtained between the calculated effective gap and the energy of the photoluminescence spectra. A special attention was focus on the impact of InSb insertion in the SL. The SL band offset with the waveguide, capital to obtain high laser performance, was also studied. A first design of active zone was proposed to achieve the objective. Then, the intrinsic performances of SL lasers diode were calculated via modelling of the SL gain. Laser operation with a threshold current density close to 0.5kA/cm² is theorically possible. Lasers based on InAs/GaSb/InSb SL were then experimentally investigated. We studied several parameters: composition and thickness of SL, waveguide and cladding, technology process? The experimental results showed behaviours close to modelling. Laser operation was obtained at room temperature with a threshold current density of 2kA/cm² at 3.2µm and 1.8kA/cm² at 3.1µm. Prospects for device optimization are proposed in conclusion.
3

Analyse des performances des photodiodes à superréseaux InAs/GaSb pour le moyen infrarouge / Performances analysis of InAs/GaSb superlattice photodetectors for midwave infrared domain

Delmas, Marie 04 December 2015 (has links)
Dans le domaine de la photodétection infrarouge (IR) haute performance refroidie, le photodétecteur à superréseaux (SR) InAs/GaSb est une filière émergente qui peut compléter les technologies déjà établies. Grâce à des années de recherche, l'Institut d'Electronique du Sud (IES) de l'Université de Montpellier a développé une expertise sur la croissance du matériau SR InAs/GaSb par épitaxie par jets moléculaires et sur la fabrication technologique des photodiodes pin dont les performances sont à l'état de l'art mondial dans le moyen IR (3-5µm). Au cours de cette thèse, nous avons étudié deux périodes différentes de SR comme zone active de photodiodes pin ayant une longueur d'onde de coupure à 5 µm à 80K : une riche en InAs (InAs-rich) et l'autre riche en GaSb (GaSb-rich). Ces structures SR présentent des caractéristiques électriques et électro-optiques très différentes. Notamment, les densités de courant de la structure InAs-rich sont très bonnes, de l'ordre de 10-8A/cm2 à 80K, alors que celles de la structure GaSb-rich sont deux décades plus élevées. L'objectif de cette thèse était donc d'analyser les performances de ces photodiodes. Pour cela, nous avons développé une méthode de simulation avec l'outil TCAD SILVACO. Appliquée tout d'abord aux structures InAs-rich, nous avons mis en évidence que ces diodes sont limitées à basse température (typiquement < 120K) par le courant de génération-recombinaison et/ou par le courant tunnel assisté par pièges. La durée de vie extraite de la simulation suit une variation en T-1/2, démontrant que les mécanismes limitant les photodiodes est la génération-recombinaison SRH. Appliquée aux structures GaSb-rich, l'approche SILVACO ne peut expliquer les résultats en courant. Nous démontrons que ces résultats sont fortement liés à la présence du champ électrique dans la zone d'absorption du composant. Cela génère à faible polarisation, un fort courant tunnel, au travers des états Wannier-Stark localisés, qui pénalise fortement le courant d'obscurité et cela malgré des améliorations obtenues au niveau du matériau. Pour finir, nous établissons des règles de dimensionnement de structures à barrière et nous proposons une structure à SR pour le lointain infrarouge. / Among the high performance cooled infrared (IR) photodetector systems, the InAs/GaSb superlattice (SL) is an emerging material which may complement the currently technologies already established. Over the last 10 years, the Institut d'Electronique du Sud (IES) of the University of Montpellier has developed skills in both the growth of SL materials by molecular beam epitaxy and the process fabrication of pin photodiodes. The photodiode fabricated by the IES group are at the state of the art in the mid IR (3 – 5 μm). During this thesis, we studied two structures with different SL periods for the pin active zone showing the same cut-off wavelength of 5 μm at 80K: the structure called InAs-rich structure presents InAs layer thicker than the GaSb layer in each SL period while this configuration is reversed in the case of the GaSb-rich structure. These SL structures have very different electrical and electro-optical characteristics. In particular, the current densities of the InAs-rich structure are very good, about 10-8 A/cm2 at 80K - two orders of magnitude greater than that of GaSb-rich. The aim of this thesis work was therefore to analyze the performance of these photodiodes. For this purpose, we developed a simulation method with the SILVACO TCAD tool. Using this tool, we found that the InAs-rich diodes are limited at low temperatures (typically under 120K) by generation recombination and/or by assisted tunneling currents. The lifetimes extracted from the simulation follows the T-1/2 law, which demonstrates that the limiting mechanism is SRH recombination. However, we found that we could not study the current densities of the GaSb-rich structure using the same procedure. We demonstrate that these results are strongly related to the presence of the electric field in the absorption zone of the device. This electric field generates, at low biases, a strong tunneling current through localized Wannier-Stark states, which strongly limits the overall current despite material improvements. Finally, we define the design conditions to achieve an optimized SL barrier structure and propose a design for SL structures targeting the long wavelength domain.
4

Next generation mid-wave infrared cascaded light emitting diodes: growth of broadband, multispectral, and single color devices on GaAs and integrated circuits

Provence, Sydney R. 01 August 2016 (has links)
InAs/GaSb superlattices are an attractive material system for infrared light emitting diodes, due to the ability to tune the band gap throughout most of the infrared regime. A key consideration in the epitaxial growth of these heterostructures is crystalline material quality. In developing thick layers of epitaxially grown material, there are moderate amounts of elastic strain that can be incorporated into a heterostructure, beyond which deformations will form that will alleviate the lattice mismatch. This thesis investigates the optical and electronic properties of lattice-mismatched and strained materials through the study of thick dual-color light emitting diodes, broadband light emitting diodes, and InAs/GaSb superlattice devices developed on GaAs substrates and GaAs integrated circuits. A dual-color infrared light emitting diode is demonstrated emitting in the mid-wave infrared band at 3.81 μm and 4.72 μm. The design of the device stacks two independently operable InAs/GaSb superlattices structures on top of one another, so that 10 μm of material is grown with molecular beam epitaxy. Each layer is lattice-matched to a GaSb substrate. At quasi-continuous operation, radiances of 5.48 W/cm2-sr and 2.67 W/cm2-sr are obtained. A broadband light emitting diode spanning the mid-wave infrared is demonstrated with eight stages of InAs/GaSb superlattices individually tuned to a different color. The performance of the device is compared with an identical eight stage device emitting in the middle of the mid-wave infrared. The emission of the fabricated broadband device spans from 3.2 μm to 6 μm with peak radiance of 137.1 mW/cm2-sr. Growth of antimonide-based devices on GaAs is desirable to the relative transparency of semi-insulating substrates throughout the infrared, and as semi-insulating GaSb substrates are not available. The growth of bulk GaSb on GaAs is explored through different techniques in order to confine relaxation due to lattice mismatch strain to the GaSb/GaAs interface. A low temperature nucleation technique with a thin GaSb wetting layer is found to have the best overall surface morphology, although screw dislocations are a prominent feature on all samples. The dislocations and overall surface roughness are not found to destructively impact the overall device quality, as four stage InAs/GaSb superlattice devices grown on GaAs substrates are found to have superior electroluminescent emission and external quantum efficiency compared to an identical device grown on a GaSb substrate due to the higher substrate transparency and superior thermal properties. Epitaxy on electronics growth techniques on GaAs integrated circuits are developed to bypass the hybridization process in light emitting diode development. Chips obtained from Quorvo, Inc. are found to endure ultra-high vacuum molecular beam epitaxy environment at higher temperatures with silicon nitride encapsulation, and a low temperature oxide removal technique is developed using an atomic hydrogen source. Chemical-mechanical polishing techniques are developed to create an “epi-ready” substrate surface. Ultimately, no photoluminescent emission is observed from InAs/GaSb superlattices grown on GaAs integrated circuits, although electroluminescent emission is still possible.
5

Time-resolved measurements of charge carrier dynamics and optical nonlinearities in narrow-bandgap semiconductors

Olson, Benjamin Varberg 01 May 2013 (has links)
All-optical time-resolved measurement techniques provide a powerful tool for investigating critical parameters that determine the performance of infrared photodetector and emitter semiconductor materials. Narrow-bandgap InAs/GaSb type-II superlattices (T2SLs) have shown great promise as a next generation source of these materials, due to superior intrinsic properties and versatility. Unfortunately, InAs/GaSb T2SLs are plagued by parasitic Shockley-Read-Hall recombination centers that shorten the carrier lifetime and limit device performance. Ultrafast pump-probe techniques and time-resolved differential transmission measurements are used here to demonstrate that Ga-free InAs/InAsSb T2SLs and InAsSb alloys do not have this same limitation and thus have significantly longer carrier lifetimes. Measurements at 77 K provided minority carrier lifetimes of 9 μs and 3 μs for an unintentionally doped mid-wave infrared (MWIR) InAs/InAsSb T2SL and InAsSb alloy, respectively; a two order of magnitude increase compared to the 90 ns minority carrier lifetime measured in a comparable MWIR InAs/GaSb T2SL. Through temperature-dependent lifetime measurements, the various carrier recombination processes are differentiated and the dominant mechanisms identified for each material. These results demonstrate that these Ga-free materials are viable options over InAs/GaSb T2SLs for potentially improved infrared photodetectors. In addition to carrier lifetimes, the drift and diffusion of excited charge carriers through the superlattice growth layers (i.e. vertical transport) directly affects the performance of photodetectors and emitters. Unfortunately, there is a lack of information pertaining to vertical transport, primarily due to difficulties in making measurements on thin growth layers and the need for non-standard measurement techniques. However, all-optical ultrafast techniques are successfully used here to directly measure vertical diffusion in MWIR InAs/GaSb T2SLs. By optically generating excess carriers near one end of a MWIR T2SL and measuring the transit time to a thin, 2 lower-bandgap superlattice placed at the other end, the time-of-flight of vertically diffusing carriers is determined. Through investigation of both unintentionally doped and p-type superlattices at 77 K, the vertical hole and electron diffusion coefficients are determined to be 0.04±0.03 cm2/s and 4.7±0.5 cm2/s, corresponding to vertical mobilities of 6±5 cm2/Vs and 700±80 cm2/Vs, respectively. These measurements are, to my knowledge, the first direct measurements of vertical transport properties in narrow-bandgap superlattices. Lastly, the widely tunable two-color ultrafast laser system used in this research allowed for the investigation of nonlinear optical properties in narrow-bandgap semiconductors. Time-resolved measurements taken at 77 K of the nondegenerate two-photon absorption spectrum of bulk n-type GaSb have provided new information about the nonresonant change in absorption and two-photon absorption coefficients in this material. Furthermore, as the nondegenerate spectrum was measured over a wide range of optical frequencies, a Kramers-Kronig transformation allowed the dispersion of the nondegenerate nonlinear refractive index to be calculated.
6

Electrical, Optical, And Noise Characterizations Of Mwir Type-ii Inas/gasb Superlattice Single Pixel Detectors

Kutluer, Kutlu 01 September 2012 (has links) (PDF)
Detection of mid-wavelength infrared radiation is crucial for many industrial, military and biomedical applications. Photon detectors in the market can operate at only low temperature which increases weight, power consumption and total cost. Type-II InAs/GaSb superlattice infrared detectors are expected to have a major role in the infrared detector market with providing high quality detection characteristics at higher temperatures. Therefore, in the past decade, there has been an increasing interest in infrared detectors based on type-II InAs/GaSb superlattice technology due to their long range adjustable bandgap, low tunneling current and Auger recombination rates which bring potential of high temperature operation. Characterization of this photodiodes requires detailed investigations on different aspects. This study focuses on various optical and electrical characterization techniques for single pixel infrared detectors: responsivity characterization using FTIR and blackbody source, dark I-V and R-V characterizations, response time measurement. Characterizations of detector noise with respect to frequency and bias voltage are studied in detail. These characterization techniques are carried out in order to observe the effects of design with three different &ldquo / standard&rdquo / and a new &ldquo / N&rdquo / structure designs and also to understand the effects of surface passivation with atomic layer deposited Al2O3 layer and ordinary PECVD deposited Si3N4 and SiO2 layers. When standard photodiodes are compared, we observed that the one with the thickest active absorber region has the highest response and dark current density values. &ldquo / N&rdquo / structure design photodiode has very low dark current density while its optical performance is not as high as the standard designs. Si3N4 passivation degrades both optical and electrical performances. SiO2 and Al2O3 passivation layers improve optical and electrical characteristics of photodiodes. Theoretical and experimental dark current noise values of SiO2 passivated sample in agreement up to 0.18V reverse bias while those values of unpassivated and Si3N4 passivated samples agree only at zero bias. Temperature dependent R-V characteristics of photodiodes are analyzed and the surface limited activation energy is calculated in order to investigate the additional noise. At the end, surface recombination noise is proposed to cover the deficit on the noise calculation.
7

Superréseaux InAs/GaSb réalisés par épitaxie par jets moléculaires pour photodétection à 300 K dans le moyen-infrarouge

Rodriguez, Jean-Baptiste 08 July 2005 (has links) (PDF)
Ce travail de thèse porte sur l'élaboration, la croissance par épitaxie par jets moléculaires, et la caractérisation de superréseaux InAs/GaSb (SR) pour la réalisation de photodétecteurs infrarouges opérant dans la gamme de longueur d'onde 3-5 μm à température ambiante (RT). La première partie de ce mémoire présente les particularités de la détection infrarouge, ainsi qu'un état de l'art des différentes filières de détecteurs. Nous mettons également en exergue les propriétés des photodétecteurs infrarouges à SR (SLIPs) faisant de ce système de matériaux, un candidat très prometteur pour s'imposer dans la prochaine génération de caméras infrarouges. La seconde partie expose la croissance par EJM des SR sur substrat GaSb. La compensation de la contrainte par insertion d'une couche d'InSb à l'interface GaSb sur InAs a été étudiée, ainsi que l'influence de divers paramètres de croissance (température de croissance, pression équivalente des éléments V, ...). Les échantillons ont été caractérisés , et les mesures ont confirmé une grande qualité cristalline, et des SR épais (jusqu'à 2.5 μm) ont été réalisés. Enfin, nous avons élaboré des SLIPs p-i-n avec une longueur d'onde de coupure de 5.6 μm dont les caractérisations sont présentées dans la dernière partie. Ces composants à géométrie mesa ont fonctionné à RT avec un R0A~2-4.10-3 Ω.cm² , une sensibilité de 80 mA/W à 0 V donnant une détectivité spécifique calculée à 4 μm de 4.107 cmHz0.5/W. Une légère amélioration a été obtenue en insérant une couche d' Al0.4GaSb entre la couche buffer et le SR: un R0A~6.10-3 Ω.cm² , une sensibilité de 300 mA/W à -0.4 V donnant une détectivité spécifique calculée à 4 μm de 7.107 cmHz0.5/W.

Page generated in 0.0455 seconds