• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 73
  • 38
  • 20
  • 18
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 191
  • 84
  • 45
  • 43
  • 35
  • 32
  • 31
  • 29
  • 28
  • 28
  • 27
  • 26
  • 22
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Characterization of Inconel 718: Using the Gleeble and Varestraint Testing Methods to Determine the Weldability of Inconel 718

Knock, Nathaniel Oscar 01 November 2010 (has links) (PDF)
Nickel based superalloys were developed to withstand the severe thermal and mechanical environment associated with rocket propulsion systems and jet engines. In many alloy systems the strength of a component rapidly deteriorates as the operating temperature increases. Nickel based superalloys, however, retain strength over a range of temperatures which includes the operating range for many propulsion systems. This improved performance is accomplished by a combination of solid-solution strengthening, precipitation strengthening and grain-boundary strengthening. Furthermore, super-alloy systems are designed for ease of fabrication, to include machining, welding and heat treating. Inconel 718 was developed to overcome problems with post-weld cracking that were common in precipitation hardened nickel based superalloys strengthened by γ’. Inconel 718 is strengthened by γ’’ and is less sensitive to cracking during post-weld thermal treatment. However, in some cases, compositional changes which improved the behavior of these alloys during stress relief actually led to greater difficulty during the joining process. Many approaches have been used to determine the hot-cracking sensitivity of Inconel 718. Historically, two approaches have been particularly valuable because of their repeatability, their ability to compare different alloy systems and their verisimilitude to actual fabrication. These are the Gleeble hot-ductility test and the Variable-Restraint (Varestraint) weld test. Varestraint samples were prepared as per standard preparation techniques and tested longitudinally with a GTAW. At a predetermined location a strain was applied perpendicular to weld direction. The applied strain varied from 0.25%, 0.5%, 1.0%, 2.0%, and 4.0%. The Inconel 718 yielded a maximum crack length of 0.6 mm with a saturation strain of 2.0%. Both the total crack length and the number of cracks did not have a saturation strain. Gleeble samples were prepared from rod stock and tested with standard methodology to determine the characteristic temperatures: nil ductility, nil strength, and ductility recovery temperature of Inconel 718. The samples were tested at various pull temperatures on-heating until the nil strength temperature then tested on-cooling with the nil strength temperature acting as the peak temperature. The nil strength temperature was 2273°F, nil ductility temperature was 2182°F, and the ductility recovery temperature was 1925°F. Both the Varestraint and Gleeble results were compared with relevant literature to determine the weldability of the Inconel 718. Four criteria were used to determine the weldability of Inconel 718 and in three of the four tests; the Inconel 718 had equal to or greater weldability than the compared materials. In the fourth test, the Inconel 718 demonstrated lower weldability than the compared alloy systems, however, Inconel 718 operates in different conditions specifically, the high temperature and pressure conditions mentioned above.
112

Experimental Analysis of Finish Turning of Inconel 617

Lai, Rachel January 2023 (has links)
Inconel 617 is a nickel-based superalloy whose properties include corrosion and oxidation resistance in high temperature environments. Due to their material properties, Inconel alloys are commonly used in aerospace applications where resistance to high pressure and temperature is required. These properties also cause the material to be hard to machine due to high temperatures in the cutting zone and its tendency to work harden. This paper focuses on improving the surface integrity and tool life for turning of Inconel 617 for use in next-generation nuclear applications. Various machining parameters are tested to improve the finish and tool life such as the feed rate, cutting speed, and depth of cut. While the machining of popular Inconel grades, such as Inconel 718, have been highly studied and understood, Inconel 617 lacks the knowledge base and research to define how the alloy behaves in machining and how it compares to other grades. Tests on tool coatings confirmed that commercially available coatings are durable enough to withstand the machining of this superalloy in finish turning and determined that AlTiN coatings provide the longest tool life. The investigations performed uncovered the relationship between cutting parameters and their influence on the surface integrity and tool life. MQL deposition was tested and found to be comparable and at times better than conventional flood coolant and may be considered a replacement for coolant after more improvement. This work details the knowledge and experimental procedure used to understand the machining of this superalloy. / Thesis / Master of Applied Science (MASc) / The purpose of this research is to develop an understanding of the machining of Inconel 617 for next-generation nuclear reactors. Canada’s plan to phase out coal-fired plants and deploy new nuclear reactors is contingent on being able to manufacture the necessary components. Inconel 617 is slated to be used in these high temperature, corrosive environments due to its high strength in elevated temperatures and its resistance to corrosion. However, since the material is a recent addition to the list of compatible materials, not much research has been performed on the manufacturing of this superalloy. Factors like cutting speed, coolant, and tooling were investigated and understood with the aim of improving the cost and time associated with manufacturing these nuclear grade components.
113

OPTIMIZATION OF LASER POWDER BED FUSION PROCESS IN INCONEL 625 TOWARDS PRODUCTIVITY

KRMASHA, MANAR NAZAR ABD January 2022 (has links)
Laser Powder Bed Fusion (L-PBF) is a metal additive manufacturing technique that uses a laser beam as a heat source to melt metal powder selectively. Because of the process small layer thicknesses, laser beam diameter, and powder particle size, L-PBF allows the fabrication of novel geometries and complex internal structures with enhanced properties. However, the main disadvantages of the L-PBF process are high costs and a lengthy production time. As a result, shortening the manufacturing process while maintaining comparable properties is exceptionally beneficial. Inconel 625 (IN625) is a nickel-based superalloy becoming increasingly popular in marine, petroleum, nuclear, and aerospace applications. However, the properties of IN625 parts produced by casting or forging are challenging to control due to their low thermal conductivity, high strength and work hardening rate, and high chemical complexity. Furthermore, IN625 alloy is regarded as a difficult-to-machine material. As a result, it is worthwhile to seek new technologies to manufacture complex-shaped IN625 parts with high dimensional accuracy. IN625 alloy is known for its excellent weldability and high resistance to hot cracking; thus, IN625 alloy appears to be a promising candidate for additive manufacturing. This thesis presents an experimentally focused study on optimizing L-PBF processing parameters in IN625 superalloy to increase process productivity while maintaining high material density and hardness. This study had four stages: preliminary, exploratory, modelling, and optimization. The first stage was devoted to conducting a literature review and determining the initial processing parameters. The second stage concentrated on determining the process window, for which single tracks were printed with two high levels of laser power (300, 400 W), five levels of scan speed (500, 700, 900, 1100, 1300 mm/s), and five levels of powder layer thickness (30, 60, 90, 120, 150 µm). Then, the process window was defined after investigating the top views and cross-sections of the tracks. Stage 3 involved printing 48 cubes (10 × 10 × 10 mm^3) with a laser power of 400 W, scan speeds of (700, 900, 1100, 1300 m/s), layer thicknesses of (60, 90, 120, 150 µm), and overlap percentages of (10, 30, 50%). As a result, the density of cubes was measured, and a statistical multiple regression analysis was used to predict it. Stage 4 involved estimating four sets of ideal processing parameters (based on statistical modelling of relative density) and printing 24 cubes (10 × 10 × 10 mm^3), six samples for each set. Finally, the relative density, hardness, and productivity of the samples were assessed, and a trade-off was determined. Even with the thickest powder layer of 150 µm (highest process productivity), samples with a mean relative density greater than 99% (i.e., 99.31% by Archimedes principle and 99.82% by image analysis) were printed. These findings are consistent with previously published results for L-PBF IN625 samples manufactured with smaller layer thicknesses ranging from 20 to 40 µm while maintaining comparable material hardness. The findings of this study are noteworthy because IN625 parts can be printed with higher powder layer thicknesses (less production time) while retaining similar material properties to those published with typical layer thicknesses ranging from 20 to 40 µm. Reduced production time due to optimized processing parameters can lead to significant energy and cost savings. / Thesis / Master of Applied Science (MASc)
114

Digital Image Correlation in Dynamic Punch Testing and Plastic Deformation Behavior of Inconel 718

Liutkus, Timothy James 09 September 2014 (has links)
No description available.
115

Temperature Measurements During Robotized Additive Manufacturing of Metals

Pranav Kumar, Nallam Reddy January 2022 (has links)
Additive Manufacturing has brought about substantial benefits to the manufacturing industry due to the numerous advantages it provides, at the same time there are factors that can be improved upon. Temperature control is an important parameter during the build process as it affects build quality. The main objective of this thesis project was to investigate what sensors could be used for monitoring the temperature during the additive manufacturing processand to compare and evaluate their performance. This involved implementing two 2-color pyrometers and a short-wave infrared camera to monitor the temperature of the area behind the melt pool and then visualizing the respective data. Initial issues arose during test runs in the form of noise in the pyrometer data, this was solved by implementing a smoothing filter to the signal. Multiple runs were conducted to capture the required data as images produced by the camera were overexposed and out of focus during initial runs. This was solved by changing the camera position and exposure settings. Reading the temperature values from the images involved interpreting the Average Dark Units (ADU) values of the region of interest and then comparing those values to a reference chart. The data gathered with the help of LabVIEW software and the proprietary imaging software of the camera showed that the selected sensors were in fact suitable for the intended task and could be used in conjunction with each other. This data could then be used to create a closed-loop system in the future (not in the scope of this thesis work) and thus enable the increase in the level of automation for Robotized Laser Wire Additive Manufacturing.
116

Novel Cutting-Edge In-situ Deposition of Soft Metallic Solid Lubricant Coatings for Efficient Machining of High-Strength alloys

Mofidi, Asadollah January 2024 (has links)
Inconel 718 has widespread use in critical industries like aerospace, marine, and power generation. However, its challenging machinability, characterized by tool chipping/failure, and poor surface quality, remains a significant concern. Despite numerous efforts to enhance tool performance in machining hard-to-machine materials, the issue of sudden tool failure and chipping persists. This study presents an innovative in-situ tool treatment method, complemented by an optimized recoating strategy, aimed at tackling these challenges. The approach involves the application of a lubricating soft metallic Al-Si alloy coating to the tool’s faces, which can be recoated when needed. During subsequent Inconel machining, the Al-Si layer deposited on the tool melts due to high temperatures. The molten material fills microcracks on the tool surface, preventing their propagation. Moreover, the tool can slide on the beneficial tribo-films Al-Si layer which reduces friction, sticking, seizure, and built-up edge formation, resulting in decreased tool wear and chipping. The newly developed pre-machined recoating method has yielded promising outcomes, reducing cutting force and significantly improving tool lifespan compared to the PVD benchmark and uncoated tools. Additionally, this novel method enhances surface quality and minimizes undesirable microstructural alterations induced by machining. / Thesis / Master of Applied Science (MASc) / Chipping and excessive tool wear pose significant challenges in machining high-strength alloys like Inconel 718, limiting their applicability across various industries. According to research, conventional strategies used to deal with the machining challenges posed by Inconel 718 have not produced the best results. The goal of this research is to overcome the machining issues associated with such a difficult-to-cut material innovatively by depositing soft metallic coatings as a solid lubricant to enhance the machining performance. In this study, a cost-effective novel in-situ deposition technique with recoating capability as an alternative to conventional coatings is presented to achieve this goal. This innovative approach aims to improve tool performance during Inconel 718 machining significantly. This study also provides a thorough insight into the application of solid lubricants in machining, discussing their mechanisms, effectiveness, constraints, and potential to boost productivity and environmental sustainability. Furthermore, comprehensive investigations have been conducted to gain deeper insights into the prevalent wear mechanisms and surface treatments that can lead to improved machining performance for Inconel 718.
117

Controlling the material removal and roughness of Inconel 718 in laser machining

Ahmed, N., Rafaqat, M., Pervaiz, S., Umer, U., Alkhalefa, H., Shar, Muhammad A., Mian, S.H. 16 May 2019 (has links)
No / Nickel alloys including Inconel 718 are considered as challenging materials for machining. Laser beam machining could be a promising choice to deal with such materials for simple to complex machining features. The machining accuracy is mainly dependent on the rate of material removal per laser scan. Because of the involvement of many laser parameters and complexity of the machining mechanism it is not always simple to achieve machining with desired accuracy. Actual machining depth extremely varies from very low to aggressively high values with reference to the designed depth. Thus, a research is needed to be carried out to control the process parameters to get actual material removal rate (MRRact) equals to the theoretical material removal rate (MRRth) with minimum surface roughness (SR) of the machined surfaces. In this study, five important laser parameters have been used to investigate their effects on MRR and SR. Statistical analysis are performed to identify the significant parameters with their strength of effects. Mathematical models have been developed and validated to predict the machining responses. Optimal set of laser parameters have also been proposed and confirmed to achieve the actual MRR close to the designed MRR (MRR% = 100.1%) with minimum surface roughness (Ra = 2.67 µm). / The authors extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group number RG-1440-026.
118

Comportement en corrosion de matériaux métalliques commerciaux et modèles dans des conditions types UVEOM / Corrosion behavior of commercial metallic materials and models under typical conditions UVEOM

Schaal, Emmanuel 23 October 2015 (has links)
La corrosion des échangeurs de chaleur est un problème économique et technique majeur des Unités de Valorisation Energétique de Ordures Ménagères (UVEOM). Elle est causée par l’action combinée (i) des gaz de combustion contenant notamment HCl et SO2 et (ii) des cendres riches en chlorures et sulfates alcalins, et sels de métaux lourds. Les travaux présentés dans ce mémoire s’inscrivent dans le projet ANR SCAPAC (n°11-RMNP-0016) et portent sur l’influence des paramètres expérimentaux (température, teneur en chlorures dans les cendres, présence de gaz corrosifs et présence de chlorures de métaux lourds dans les cendres) sur la tenue à la corrosion de deux alliages utilisés en milieu UVEOM : l’acier 16Mo3 et l’alliage base nickel Inconel 625. Ces travaux ont permis de mettre en évidence que la présence de phases fondues, l’augmentation de la teneur en chlorures, la présence de 10% en masse de ZnCl2 dans les mélanges de cendres et la présence de gaz corrosifs (HCl, SO2) dans l’atmosphère sont trois facteurs qui ont induit une corrosion plus importante sur les matériaux, de manière plus prononcée sur l’alliage base fer. Une autre partie du travail s’est focalisée sur l’influence des éléments d’alliage Fe, Cr et Mo. Des alliages « modèles » dont les compositions oscillent autour de la composition de l’alliage Inconel 625 commercial ont été synthétisés par fusion haute fréquence et leur tenue à la corrosion a été évaluée sous air et sous atmosphère corrosive. La bonne optimisation de l’alliage commercial a ainsi été démontrée sous air. Sous atmosphère gaz corrosifs, une teneur en chrome supérieure à 22% massique s’est montrée indispensable à la bonne tenue de l’alliage / Corrosion of heat exchangers is an economic and technical issue in Waste-to-energy plants. It is caused by the combined action of (i) flue gas containing HCl and SO2 and (ii) chlorides and alkali sulfates rich ash. This work is part of the ANR project SCAPAC (supported by the ANR-11-RMNP 0016) and focused on the influence of experimental parameters on the corrosion behavior of two commercial alloys used in Waste-to-Energy plants: the 16Mo3 steel and the nickel-based alloy Inconel 625. This study allowed to highlight that the presence of molten phase, the increase in the chloride content, the presence of 10% by weight of ZnCl2 in the ash mixtures and the presence of corrosive gases (HCl, SO2) in the atmosphere are three factors that have induced an higher corrosion of materials, more pronounced on the iron alloy base. Another part of the work has been focused on the influence of alloying elements Fe, Cr and Mo. Thus, model alloys with compositions oscillating around the composition of Inconel 625 commercial alloy were synthesized by high frequency induction and their corrosion resistance was evaluated in air and in corrosive atmosphere. Good optimization of the commercial alloy has been demonstrated in air. In corrosive atmosphere, a minimum chromium content was required to obtain a good corrosion resistance
119

Implementation of Neutron Diffraction Characterization Techniques for Direct Energy Deposition of Ni-Based Superalloys

Ozcan, Burak 28 February 2023 (has links)
In recent years, additive manufacturing (AM) has been one of the essential production techniques in the engineering community. Rapid integration of this technique drew a bead on the reliability of the microstructural and mechanical properties of engineering components. However, due to the nature of the layer-by-layer approach of AM, complex thermal gradients can cause inhomogeneous microstructure and significant residual stresses (RS). These, expectedly, can lead to a dramatic reduction in material performance. Therefore, especially for alloys like Ni-based Inconel 718 (IN718) used in critical applications, the characterization and later optimization of the DED process on material properties become essential. Nevertheless, empirical and conventional approaches are needed to improve, or new techniques should be introduced. In this regard, this study aims to understand better the evolution of the mechanical and microstructural properties of IN718 during and post-DED processes. For this purpose, an in-situ 2D neutron diffraction strain monitoring was carried out during the DED of IN718. The strain contributions originated from microstructural, thermal, and stress-based events during deposition and cooling periods at different positions concerning melt pool were investigated. Stabilization of different positions and processing regions on the sample as a function of the temperature profile, build height, and microstructural events are examined. Laboratory-scale microstructural studies were performed on wire-DED parts to observe the process parameter dependency of precipitation, composition, and morphology of microstructural constituents. Moreover, these findings were benchmarked with neutron powder diffraction measurements to relate the crystallographic behavior with macroscopic ones. Solidification under different cooling rates and heat treatments was carried out using the neutron powder diffraction technique to comprehend the precipitation dynamics and explain the microstructural events during and after the DED process. Laboratory scale and neutron diffraction tensile characterization tests were performed to observe and relate the mechanical response of wire- DED IN718 at different temperatures and microstructural conditions.:Keywords i Abstract iii Table of Contents v List of Figures ix List of Tables xvii List of Abbreviations xix Acknowledgments xxi Chapter 1: Introduction 1 1.1 Residual Stress in Polycrystalline Materials 1 1.1.1 Residual Stress Determination 3 1.2 Neutron Scattering 5 1.2.1 Neutron-Matter Interaction 6 1.2.2 Strain Measurement by Neutron Diffraction 7 1.2.3 SALSA Neutron Strain Diffractometer 14 1.2.4 Neutron Powder Diffraction 16 1.2.5 D20 Neutron Powder Diffractometer 17 1.2.6 Peak Analysis in Diffraction Measurements 18 1.3 Nickel Superalloys 22 1.3.1 Physical Metallurgy of IN718 23 1.4 Metal Additive Manufacturing 33 1.4.1 Direct Energy Deposition (DED) 34 1.4.2 Process Monitoring in Metal AM 36 1.5 Context and Aim of the Study 40 Chapter 2: Materials and Experimental Methods 43 2.1 IN718 Feedstock Material 43 2.2 Fabrication Process by wire-DED Method 43 2.2.1 Post Processing of IN718 via Solution Treatment and Aging 47 2.2.2 Preparation of Tensile Specimens 48 2.3 Microstructural Characterization 49 2.3.1 Electron Microscopy Studies 49 2.3.2 Differential Scanning Calorimetry Analysis 50 2.3.3 Lattice Parameter Evolution of IN718 with Temperature 52 2.3.3.1 Data Reduction for Phase Analysis 54 2.4 Mechanical Characterization 57 2.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 57 2.4.1.1 Temperature Data Treatment and Processing Regions 61 2.4.1.2 Neutron Data Acquisition and Analysis 64 2.4.2 Residual Stress Mapping of Samples for Mechanical Characterization 69 2.4.3 Macro-scale Tensile Characterization at Room and High Temperatures 71 2.4.4 Neutron Diffraction Tensile Characterization Testing 72 2.4.4.1 Neutron Data Processing Procedure 77 Chapter 3: Results and Discussion 79 3.1 Microstructural Characterization of Feedstock Wire 79 3.1.1 Metallography of IN718 Feedstock Wire 79 3.1.2 Simulation of Phase Precipitations in IN718 80 3.1.3 Thermal Stability of IN718 Feedstock Wire 82 3.1.3.1 Differential Scanning Calorimetry 82 3.1.3.2 Lattice Parameter Evolution during Melting & Solidification 83 3.1.4 Discussion 91 3.2 Microstructure of IN718 wire-DED Parts 94 3.2.1 IN718-DED Cylindrical Walls 94 3.2.2 IN718 -DED Prisms 103 3.2.3 Discussion 108 3.3 Heat Treatments of IN718 Wire-DED Parts 112 3.3.1 Time and Temperature Impact into Laves Phase Dissolution 112 3.3.2 Lattice Parameter Evolution of IN718 during Solution and Aging Treatments 115 3.3.3 Discussion 118 3.4 Mechanical Characterization of IN718 wire-DED 122 3.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 122 3.4.1.1 Bragg Angle Evolution 122 3.4.1.2 Evolution of Bragg Angle Position in MP Processing Region 123 3.4.1.3 Evolution of Bragg Angle Position in the NMP Processing Region 126 3.4.1.4 Evolution of Bragg Angle Position in FF Processing Region 129 3.4.2 Discussion 131 3.4.2.1 Comparison of Equilibrium State of IN718 through In-situ and Ex-situ Investigations 135 3.4.3 Reference (d0) Approaches for Strain Calculations 136 3.4.3.1 Stable processing regime reference 136 3.4.3.2 Neutron powder diffraction reference 137 3.4.4 Evolution of Strain Contributions during IN718 wire-DED by Using Stable Reference (d0) Approach 140 3.4.4.1 Strain Evolution in MP Processing Region 141 3.4.4.2 Strain Evolution in NMP Processing Region 143 3.4.4.3 Strain Evolution in FF Processing Region 145 3.4.5 Evolution of Strain Contributions during IN718 wire-DED by Using Neutron Powder Diffraction Reference d0 Approach 148 3.4.6 Discussion 151 3.4.7 Tensile Characterization 153 3.4.7.1 Macro-scale Tensile Behavior 153 3.4.7.2 Residual Stress State in In-situ Tensile Test Specimens 155 3.4.7.3 Lattice-scale Tensile Behavior 158 3.4.8 Discussion 169 3.4.8.1 Residual Stress State prior to Tensile Test Characterization 169 3.4.8.2 Macro-scale Tensile Behavior of IN718 at Room and High Temperatures 169 3.4.8.3 Lattice-dependent Behavior As-built and Direct-aged Condition as a function of Applied Stresses 175 Chapter 4: Summary Discussion 182 4.1 Microstructural Considerations 182 4.1.1 Comparison of Materials and Extrapolation of Properties 182 4.2 Thermal Stability of IN718 Feedstock Wire and DED Parts 183 4.2.1 Matrix, Phase Precipitation, and CTE Evolution as a Function of Temperature 183 4.2.2 Heat Treatments of IN718 DED materials 184 4.3 Fabrication and Neutron Strain Monitoring Considerations 185 4.3.1 Temperature Gradients and Regions of Interest 185 4.3.2 In-situ Neutron Monitoring of Bragg Angle Evolution of γ-matrix 185 4.3.3 2D Strain Evolution 186 4.4 Tensile Mechanical Behaviour at Room and High-Temperature Considerations 189 4.4.1 Macro-scale Characterization 189 4.4.2 Lattice-scale Neutron Diffraction Characterization 189 Chapter 5: Conclusions 191 Bibliography 196 / In den letzten Jahren hat sich die additive Fertigung (AM) zu einer der wichtigsten Produktionstechniken in der Ingenieurwelt entwickelt. Die schnelle Integration dieser Technik hat die Zuverlässigkeit der mikrostrukturellen und mechanischen Eigenschaften von technischen Komponenten deutlich verbessert. Aufgrund des schichtweisen Ansatzes der AM können jedoch komplexe thermische Gradienten eine inhomogene Mikrostruktur und erhebliche Eigenspannungen (RS) verursachen. Diese können erwartungsgemäß zu einer dramatischen Verringerung der Materialleistung führen. Daher sind insbesondere bei Legierungen wie Inconel 718 (IN718) auf Ni-Basis, die in kritischen Anwendungen eingesetzt werden, die Charakterisierung und spätere Optimierung des DED-Prozesses auf die Materialeigenschaften von entscheidender Bedeutung. Dennoch müssen empirische und konventionelle Ansätze verbessert werden, oder es sollten neue Techniken eingeführt werden. In diesem Zusammenhang zielt diese Studie darauf ab, die Entwicklung der mechanischen und mikrostrukturellen Eigenschaften von IN718 während und nach dem DED-Prozess besser zu verstehen. Zu diesem Zweck wurde während des DED-Prozesses von IN718 eine in-situ 2D-Neutronenbeugungsmessung der Dehnung durchgeführt. Die Dehnungsbeiträge, die von mikrostrukturellen, thermischen und spannungsbasierten Ereignissen während der Abscheidungs- und Abkühlungsperioden an verschiedenen Positionen des Schmelzbades herrühren, wurden untersucht. Die Stabilisierung verschiedener Positionen und Verarbeitungsbereiche auf der Probe als Funktion des Temperaturprofils, der Aufschmelzhöhe und der mikrostrukturellen Ereignisse wurde untersucht. Im Labormaßstab wurden mikrostrukturelle Studien an Draht-DED-Teilen durchgeführt, um die Abhängigkeit der Prozessparameter von der Ausscheidung, Zusammensetzung und Morphologie der mikrostrukturellen Bestandteile zu beobachten. Darüber hinaus wurden diese Ergebnisse mit Neutronenpulverbeugungsmessungen verglichen, um das kristallographische Verhalten mit dem makroskopischen Verhalten in Beziehung zu setzen. Die Erstarrung unter verschiedenen Abkühlungsraten und Wärmebehandlungen wurde mit Hilfe der Neutronenpulverbeugungstechnik durchgeführt, um die Ausscheidungsdynamik zu verstehen und die mikrostrukturellen Ereignisse während und nach dem DED-Prozess zu erklären. Es wurden Zugversuche im Labormaßstab und mit Neutronenbeugung durchgeführt, um die mechanische Reaktion von IN718 bei verschiedenen Temperaturen und Mikrostrukturbedingungen zu beobachten und in Beziehung zu setzen.:Keywords i Abstract iii Table of Contents v List of Figures ix List of Tables xvii List of Abbreviations xix Acknowledgments xxi Chapter 1: Introduction 1 1.1 Residual Stress in Polycrystalline Materials 1 1.1.1 Residual Stress Determination 3 1.2 Neutron Scattering 5 1.2.1 Neutron-Matter Interaction 6 1.2.2 Strain Measurement by Neutron Diffraction 7 1.2.3 SALSA Neutron Strain Diffractometer 14 1.2.4 Neutron Powder Diffraction 16 1.2.5 D20 Neutron Powder Diffractometer 17 1.2.6 Peak Analysis in Diffraction Measurements 18 1.3 Nickel Superalloys 22 1.3.1 Physical Metallurgy of IN718 23 1.4 Metal Additive Manufacturing 33 1.4.1 Direct Energy Deposition (DED) 34 1.4.2 Process Monitoring in Metal AM 36 1.5 Context and Aim of the Study 40 Chapter 2: Materials and Experimental Methods 43 2.1 IN718 Feedstock Material 43 2.2 Fabrication Process by wire-DED Method 43 2.2.1 Post Processing of IN718 via Solution Treatment and Aging 47 2.2.2 Preparation of Tensile Specimens 48 2.3 Microstructural Characterization 49 2.3.1 Electron Microscopy Studies 49 2.3.2 Differential Scanning Calorimetry Analysis 50 2.3.3 Lattice Parameter Evolution of IN718 with Temperature 52 2.3.3.1 Data Reduction for Phase Analysis 54 2.4 Mechanical Characterization 57 2.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 57 2.4.1.1 Temperature Data Treatment and Processing Regions 61 2.4.1.2 Neutron Data Acquisition and Analysis 64 2.4.2 Residual Stress Mapping of Samples for Mechanical Characterization 69 2.4.3 Macro-scale Tensile Characterization at Room and High Temperatures 71 2.4.4 Neutron Diffraction Tensile Characterization Testing 72 2.4.4.1 Neutron Data Processing Procedure 77 Chapter 3: Results and Discussion 79 3.1 Microstructural Characterization of Feedstock Wire 79 3.1.1 Metallography of IN718 Feedstock Wire 79 3.1.2 Simulation of Phase Precipitations in IN718 80 3.1.3 Thermal Stability of IN718 Feedstock Wire 82 3.1.3.1 Differential Scanning Calorimetry 82 3.1.3.2 Lattice Parameter Evolution during Melting & Solidification 83 3.1.4 Discussion 91 3.2 Microstructure of IN718 wire-DED Parts 94 3.2.1 IN718-DED Cylindrical Walls 94 3.2.2 IN718 -DED Prisms 103 3.2.3 Discussion 108 3.3 Heat Treatments of IN718 Wire-DED Parts 112 3.3.1 Time and Temperature Impact into Laves Phase Dissolution 112 3.3.2 Lattice Parameter Evolution of IN718 during Solution and Aging Treatments 115 3.3.3 Discussion 118 3.4 Mechanical Characterization of IN718 wire-DED 122 3.4.1 Neutron Diffraction 2D Strain Monitoring during IN718 wire-DED 122 3.4.1.1 Bragg Angle Evolution 122 3.4.1.2 Evolution of Bragg Angle Position in MP Processing Region 123 3.4.1.3 Evolution of Bragg Angle Position in the NMP Processing Region 126 3.4.1.4 Evolution of Bragg Angle Position in FF Processing Region 129 3.4.2 Discussion 131 3.4.2.1 Comparison of Equilibrium State of IN718 through In-situ and Ex-situ Investigations 135 3.4.3 Reference (d0) Approaches for Strain Calculations 136 3.4.3.1 Stable processing regime reference 136 3.4.3.2 Neutron powder diffraction reference 137 3.4.4 Evolution of Strain Contributions during IN718 wire-DED by Using Stable Reference (d0) Approach 140 3.4.4.1 Strain Evolution in MP Processing Region 141 3.4.4.2 Strain Evolution in NMP Processing Region 143 3.4.4.3 Strain Evolution in FF Processing Region 145 3.4.5 Evolution of Strain Contributions during IN718 wire-DED by Using Neutron Powder Diffraction Reference d0 Approach 148 3.4.6 Discussion 151 3.4.7 Tensile Characterization 153 3.4.7.1 Macro-scale Tensile Behavior 153 3.4.7.2 Residual Stress State in In-situ Tensile Test Specimens 155 3.4.7.3 Lattice-scale Tensile Behavior 158 3.4.8 Discussion 169 3.4.8.1 Residual Stress State prior to Tensile Test Characterization 169 3.4.8.2 Macro-scale Tensile Behavior of IN718 at Room and High Temperatures 169 3.4.8.3 Lattice-dependent Behavior As-built and Direct-aged Condition as a function of Applied Stresses 175 Chapter 4: Summary Discussion 182 4.1 Microstructural Considerations 182 4.1.1 Comparison of Materials and Extrapolation of Properties 182 4.2 Thermal Stability of IN718 Feedstock Wire and DED Parts 183 4.2.1 Matrix, Phase Precipitation, and CTE Evolution as a Function of Temperature 183 4.2.2 Heat Treatments of IN718 DED materials 184 4.3 Fabrication and Neutron Strain Monitoring Considerations 185 4.3.1 Temperature Gradients and Regions of Interest 185 4.3.2 In-situ Neutron Monitoring of Bragg Angle Evolution of γ-matrix 185 4.3.3 2D Strain Evolution 186 4.4 Tensile Mechanical Behaviour at Room and High-Temperature Considerations 189 4.4.1 Macro-scale Characterization 189 4.4.2 Lattice-scale Neutron Diffraction Characterization 189 Chapter 5: Conclusions 191 Bibliography 196
120

Estudo do comportamento em fluência da superliga Inconel 718

Tarcila Sugahara 04 November 2011 (has links)
Esta proposta de trabalho de mestrado tem como objetivo estudar o comportamento em fluência da superliga Inconel 718. A liga foi submetida a ensaios de fluência na modalidade de carga constante, nas temperaturas de 650, 675 e 700C. A faixa de tensão utilizada foi determinada por ensaio de tração a quente e variou de 625 a 814 MPa. Deve ser ressaltado que estudos completos de ensaio de fluência da superliga Inconel 718 são escassos na literatura. O presente projeto é inovador, permitindo o conhecimento mais detalhado da superliga Inconel 718. Foram obtidos conjuntos de curvas e parâmetros experimentais relativos às regiões primária, secundária e terciária, em função das tensões e temperaturas aplicadas. Foram avaliados a ductilidade, a taxa de fluência estacionária e o tempo de vida. A caracterização microestrutural, com o emprego da técnica de microscopia eletrônica de varredura, foi uma ferramenta valiosa para a compreensão dos mecanismos de fluência. Foram realizados ensaios de tração a quente, a fim de se determinar as propriedades mecânicas da superliga nas temperaturas de ensaio de fluência e ensaios de oxidação, a fim de se analisar a influência da formação de óxidos nos resultados dos ensaios de fluência. As técnicas de caracterização utilizadas nesse trabalho foram: microscopia eletrônica de varredura (MEV), para análise fractográfica e microestrutural; microscopia eletrônica de transmissão (MET), para análise de precipitados; difração de raios X rasante, para análise de formação de óxidos; indentaçãop Vickers. A liga apresenta comportamento típico em fluência com a presença dos três estágios de fluência. O estágio secundário foi predominante durante o ensaio; a taxa mínima de fluência apresentou aumento significativo com o aumento da tensão aplicada. A análise do valor do expoente de tensão (n=36,48527) e da energia de ativação (Qc= 512,97), sugere que o mecanismo de fluência a 650 C é o mecanismo de escalagem de discordâncias. Dependendo da temperatura de trabalho do Inconel 718, podem ocorrer dois tipos de fratura: fratura dúctil a 650 e 700C e fratura do tipo intergranular a 675C.

Page generated in 0.0394 seconds