• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Effective and efficient similarity search in databases

Lange, Dustin January 2013 (has links)
Given a large set of records in a database and a query record, similarity search aims to find all records sufficiently similar to the query record. To solve this problem, two main aspects need to be considered: First, to perform effective search, the set of relevant records is defined using a similarity measure. Second, an efficient access method is to be found that performs only few database accesses and comparisons using the similarity measure. This thesis solves both aspects with an emphasis on the latter. In the first part of this thesis, a frequency-aware similarity measure is introduced. Compared record pairs are partitioned according to frequencies of attribute values. For each partition, a different similarity measure is created: machine learning techniques combine a set of base similarity measures into an overall similarity measure. After that, a similarity index for string attributes is proposed, the State Set Index (SSI), which is based on a trie (prefix tree) that is interpreted as a nondeterministic finite automaton. For processing range queries, the notion of query plans is introduced in this thesis to describe which similarity indexes to access and which thresholds to apply. The query result should be as complete as possible under some cost threshold. Two query planning variants are introduced: (1) Static planning selects a plan at compile time that is used for all queries. (2) Query-specific planning selects a different plan for each query. For answering top-k queries, the Bulk Sorted Access Algorithm (BSA) is introduced, which retrieves large chunks of records from the similarity indexes using fixed thresholds, and which focuses its efforts on records that are ranked high in more than one attribute and thus promising candidates. The described components form a complete similarity search system. Based on prototypical implementations, this thesis shows comparative evaluation results for all proposed approaches on different real-world data sets, one of which is a large person data set from a German credit rating agency. / Ziel von Ähnlichkeitssuche ist es, in einer Menge von Tupeln in einer Datenbank zu einem gegebenen Anfragetupel all diejenigen Tupel zu finden, die ausreichend ähnlich zum Anfragetupel sind. Um dieses Problem zu lösen, müssen zwei zentrale Aspekte betrachtet werden: Erstens, um eine effektive Suche durchzuführen, muss die Menge der relevanten Tupel mithilfe eines Ähnlichkeitsmaßes definiert werden. Zweitens muss eine effiziente Zugriffsmethode gefunden werden, die nur wenige Datenbankzugriffe und Vergleiche mithilfe des Ähnlichkeitsmaßes durchführt. Diese Arbeit beschäftigt sich mit beiden Aspekten und legt den Fokus auf Effizienz. Im ersten Teil dieser Arbeit wird ein häufigkeitsbasiertes Ähnlichkeitsmaß eingeführt. Verglichene Tupelpaare werden entsprechend der Häufigkeiten ihrer Attributwerte partitioniert. Für jede Partition wird ein unterschiedliches Ähnlichkeitsmaß erstellt: Mithilfe von Verfahren des Maschinellen Lernens werden Basisähnlichkeitsmaßes zu einem Gesamtähnlichkeitsmaß verbunden. Danach wird ein Ähnlichkeitsindex für String-Attribute vorgeschlagen, der State Set Index (SSI), welcher auf einem Trie (Präfixbaum) basiert, der als nichtdeterministischer endlicher Automat interpretiert wird. Zur Verarbeitung von Bereichsanfragen wird in dieser Arbeit die Notation der Anfragepläne eingeführt, um zu beschreiben welche Ähnlichkeitsindexe angefragt und welche Schwellwerte dabei verwendet werden sollen. Das Anfrageergebnis sollte dabei so vollständig wie möglich sein und die Kosten sollten einen gegebenen Schwellwert nicht überschreiten. Es werden zwei Verfahren zur Anfrageplanung vorgeschlagen: (1) Beim statischen Planen wird zur Übersetzungszeit ein Plan ausgewählt, der dann für alle Anfragen verwendet wird. (2) Beim anfragespezifischen Planen wird für jede Anfrage ein unterschiedlicher Plan ausgewählt. Zur Beantwortung von Top-k-Anfragen stellt diese Arbeit den Bulk Sorted Access-Algorithmus (BSA) vor, der große Mengen von Tupeln mithilfe fixer Schwellwerte von den Ähnlichkeitsindexen abfragt und der Tupel bevorzugt, die hohe Ähnlichkeitswerte in mehr als einem Attribut haben und damit vielversprechende Kandidaten sind. Die vorgestellten Komponenten bilden ein vollständiges Ähnlichkeitssuchsystem. Basierend auf einer prototypischen Implementierung zeigt diese Arbeit vergleichende Evaluierungsergebnisse für alle vorgestellten Ansätze auf verschiedenen Realwelt-Datensätzen; einer davon ist ein großer Personendatensatz einer deutschen Wirtschaftsauskunftei.
2

Hybride Indexstrukturen

Kropf, Carsten 10 October 2014 (has links) (PDF)
Im Folgenden wird ein Promotionsprojekt zur Implementierung und Optimierung von hybriden Indexstrukturen beschrieben. Die erhöhte Suchperformance wird bei hybriden Indexstrukturen durch einen höheren Aufwand an Vorberechnungen bei Einfügeoperationen erreicht. Dadurch ergibt sich, im Gegensatz zu Ansätzen, welche mehrere Indexstrukturen miteinander verbinden oder getrennte Suchanfragen ausführen eine Effizienz der Reorganisation hybrider Indexstrukturen, die prohibitiv für den Einsatz in den meisten Anwendungen ist. Diese sollen innerhalb des Promotionsprojekts optimiert werden, um eine Einsatzfähigkeit in realistischen Szenarien gewährleisten zu können.
3

Efficient Reorganisation of Hybrid Index Structures Supporting Multimedia Search Criteria

Kropf, Carsten 11 February 2017 (has links) (PDF)
This thesis describes the development and setup of hybrid index structures. They are access methods for retrieval techniques in hybrid data spaces which are formed by one or more relational or normalised columns in conjunction with one non-relational or non-normalised column. Examples for these hybrid data spaces are, among others, textual data combined with geographical ones or data from enterprise content management systems. However, all non-relational data types may be stored as well as image feature vectors or comparable types. Hybrid index structures are known to function efficiently regarding retrieval operations. Unfortunately, little information is available about reorganisation operations which insert or update the row tuples. The fundamental research is mainly executed in simulation based environments. This work is written ensuing from a previous thesis that implements hybrid access structures in realistic database surroundings. During this implementation it has become obvious that retrieval works efficiently. Yet, the restructuring approaches require too much effort to be set up, e.g., in web search engine environments where several thousands of documents are inserted or modified every day. These search engines rely on relational database systems as storage backends. Hence, the setup of these access methods for hybrid data spaces is required in real world database management systems. This thesis tries to apply a systematic approach for the optimisation of the rearrangement algorithms inside realistic scenarios. Thus, a measurement and evaluation scheme is created which is repeatedly deployed to an evolving state and a model of hybrid index structures in order to optimise the regrouping algorithms to make a setup of hybrid index structures in real world information systems possible. Thus, a set of input corpora is selected which is applied to the test suite as well as an evaluation scheme. To sum up, it can be said that this thesis describes input sets, a test suite including an evaluation scheme as well as optimisation iterations on reorganisation algorithms reflecting a theoretical model framework to provide efficient reorganisations of hybrid index structures supporting multimedia search criteria.
4

Hybride Indexstrukturen

Kropf, Carsten 10 October 2014 (has links)
Im Folgenden wird ein Promotionsprojekt zur Implementierung und Optimierung von hybriden Indexstrukturen beschrieben. Die erhöhte Suchperformance wird bei hybriden Indexstrukturen durch einen höheren Aufwand an Vorberechnungen bei Einfügeoperationen erreicht. Dadurch ergibt sich, im Gegensatz zu Ansätzen, welche mehrere Indexstrukturen miteinander verbinden oder getrennte Suchanfragen ausführen eine Effizienz der Reorganisation hybrider Indexstrukturen, die prohibitiv für den Einsatz in den meisten Anwendungen ist. Diese sollen innerhalb des Promotionsprojekts optimiert werden, um eine Einsatzfähigkeit in realistischen Szenarien gewährleisten zu können.
5

KISS-Tree: Smart Latch-Free In-Memory Indexing on Modern Architectures

Kissinger, Thomas, Schlegel, Benjamin, Habich, Dirk, Lehner, Wolfgang 30 May 2022 (has links)
Growing main memory capacities and an increasing number of hardware threads in modern server systems led to fundamental changes in database architectures. Most importantly, query processing is nowadays performed on data that is often completely stored in main memory. Despite of a high main memory scan performance, index structures are still important components, but they have to be designed from scratch to cope with the specific characteristics of main memory and to exploit the high degree of parallelism. Current research mainly focused on adapting block-optimized B+-Trees, but these data structures were designed for secondary memory and involve comprehensive structural maintenance for updates. In this paper, we present the KISS-Tree, a latch-free in-memory index that is optimized for a minimum number of memory accesses and a high number of concurrent updates. More specifically, we aim for the same performance as modern hash-based algorithms but keeping the order-preserving nature of trees. We achieve this by using a prefix tree that incorporates virtual memory management functionality and compression schemes. In our experiments, we evaluate the KISS-Tree on different workloads and hardware platforms and compare the results to existing in-memory indexes. The KISS-Tree offers the highest reported read performance on current architectures, a balanced read/write performance, and has a low memory footprint.
6

Efficient Reorganisation of Hybrid Index Structures Supporting Multimedia Search Criteria

Kropf, Carsten 21 November 2016 (has links)
This thesis describes the development and setup of hybrid index structures. They are access methods for retrieval techniques in hybrid data spaces which are formed by one or more relational or normalised columns in conjunction with one non-relational or non-normalised column. Examples for these hybrid data spaces are, among others, textual data combined with geographical ones or data from enterprise content management systems. However, all non-relational data types may be stored as well as image feature vectors or comparable types. Hybrid index structures are known to function efficiently regarding retrieval operations. Unfortunately, little information is available about reorganisation operations which insert or update the row tuples. The fundamental research is mainly executed in simulation based environments. This work is written ensuing from a previous thesis that implements hybrid access structures in realistic database surroundings. During this implementation it has become obvious that retrieval works efficiently. Yet, the restructuring approaches require too much effort to be set up, e.g., in web search engine environments where several thousands of documents are inserted or modified every day. These search engines rely on relational database systems as storage backends. Hence, the setup of these access methods for hybrid data spaces is required in real world database management systems. This thesis tries to apply a systematic approach for the optimisation of the rearrangement algorithms inside realistic scenarios. Thus, a measurement and evaluation scheme is created which is repeatedly deployed to an evolving state and a model of hybrid index structures in order to optimise the regrouping algorithms to make a setup of hybrid index structures in real world information systems possible. Thus, a set of input corpora is selected which is applied to the test suite as well as an evaluation scheme. To sum up, it can be said that this thesis describes input sets, a test suite including an evaluation scheme as well as optimisation iterations on reorganisation algorithms reflecting a theoretical model framework to provide efficient reorganisations of hybrid index structures supporting multimedia search criteria.

Page generated in 0.0657 seconds