Spelling suggestions: "subject:"conduced systemic resistance"" "subject:"1induced systemic resistance""
1 |
An Investigation of Two Modes of Plant Protection by the Biocontrol Agent Trichoderma virensCrutcher, Frankie 2011 December 1900 (has links)
The biocontrol fungus Trichoderma virens is an avirulent symbiont with the ability to control plant disease by the production of antibiotic compounds, induction of plant resistance to pathogens, and mycoparasitism of other fungi. In this document, the analysis of a putative terpene biosynthesis gene cluster (vir cluster) in T. virens is described. The vir cluster contains genes coding for four putative cytochrome P450s, an oxidoreductase, MFS transporter, and a terpene cyclase. To determine the function of this cluster in secondary metabolism biosynthesis, a strain of T. virens with a deletion of the putative cyclase, vir4, was constructed. Deletion mutants were deficient in the synthesis of sesquiterpene volatiles and complementation of vir4 restored this loss in transformants, albeit at a lower level of production. An analysis of phenotypic characteristics between mutant and wild-type strains did not identify any differences when the strain interacted with other fungi, bacteria, or Arabidopsis seedlings.
Paralogs of the gene encoding the elicitor SM1 were examined as genetic sources for potential elicitors to induce systemic resistance in plants. A search of the T. virens genome revealed the presence of three paralogs of sm1. One paralog, sm3, was found to be expressed when grown in association with plant roots and in still-culture. The Pichia pastoris protein expression system was used to generate sufficient quantities of SM3 to allow characterization of its function. The purified protein from the yeast system (picSM3) was shown to be glycosylated and to increase expression of a plant defense gene in maize seedlings. Mutant strains in which sm3 was either deleted or over-expressed were constructed to further explore the potential of sm3 as an elicitor of ISR. The differential production of SM1 and SM3 by these strains suggested that SM1 and SM3 may be co-regulated and native SM3 may be glycosylated.
To further understand the role of a putative glycosylation site as a mechanism to prevent dimerization and subsequent elicitor activity, a point mutation was created in a sm1 deletion strain. Analysis of the behavior of the protein demonstrates that the putative glycosylation site is not involved in protein aggregation and deletion of this site does not prevent the protein from testing positive for glycosylation. We propose that SM1is not glycosylated but instead may interact with an oligosaccharide or other small molecule. However, the mechanism of dimerization in SM1 remains unknown.
|
2 |
Implications of biochar on UK barley systems : a biological perspectiveBorlinghaus, Maria Theresia January 2015 (has links)
Biochar is the solid, carbon-rich by-product obtained from pyrolysis. It offers the prospect of long-term carbon sequestration and soil conditioning with agronomic benefits, often referred to as the ‘biochar effect‘. These multiple direct or indirect changes in the soil plant interface have also been associated with the control of plant diseases by influencing the host’s systemic induced resistance. The biological impact of biochar on the phytopathology of a major cereal grain has not yet been investigated. The most damaging foliar disease of barley in the UK is Rhynchosporium leaf blotch caused by the hemibiotrophic fungal pathogen Rhynchosporium commune. The aim of this project was to evaluate biochar performance and effectiveness as a disease control agent in the barley – R. commune – pathosystem, and attempted to identify underlying mechanisms by which biochar may function in the interaction between barley and the causal pathogen. Therefore, a unique set of nine slow pyrolysis biochars were established along a 350 to 800°C pyrolysis temperature gradient, with eight of these made from pelleted softwoods and a single one made from Miscanthus straw. A comprehensive biochar quality assessment was undertaken and established that the biochars differed in their chemical composition, which largely depended on production parameters, predominantly temperature (P < 0.05). The analysis proposed that biochar 9, made from Miscanthus at 800°C, showed added value as a soil conditioner over softwood biochars, due to higher pH, mineral ash and macronutrient recoveries, which pointed towards a possible liming potential. Regardless of the feedstock, biochars pyrolysed above 600°C indicated potential use for carbon sequestration purposes, due to higher carbon stability. Short-term controlled bioassays showed significant restricted growth of R. commune mycelium on defined medium to direct (1.0% w/w) and indirect volatile exposure from certain biochars (P < 0.001). The findings suggested a synergistic effect of the softwood biochars acidic nature and presence of fungicidal compounds, with observed inhibition of 100% attributed to re-condensation of tarry vapours onto biochar surfaces during pyrolysis. Qualitative biochar volatile organic compound analysis was conducted and identified biocide active phenolic and organic acid compounds, similar to those commonly found in smoke, bio-oils or wood vinegars. These findings proposed possible application for mitigation of inoculum pressure in field-grown barley, but the toxic nature of volatiles raised concerns over risks to human and environmental health, as also evidenced by detrimental barley growth effects. Subsequent controlled in vivo and in planta experiments revealed significant (P < 0.05) symptomatic barley leaf blotch reduction effects of up to 100%, following 5% (w/w) application of biochars 4, 5, 8 and 9. Barley plants transcriptional changes in ISR-dependent LOX2 and SAR-dependent PR1-b expression in planta verified systemic induced resistance as mechanisms behind the significant disease suppression of barley plants grown in soil amended with biochar 5 and 8. Disease reduction and biochar mediated induced resistance was attributed to either low concentrations of phytotoxic compounds, a direct toxicity effect from fungicidal compounds or indirect promotion of beneficial microbes. The results provided evidence, that in the case of the studied pathosystem, there is potential for biochar with specific characteristics to be considered as a soil amendment, offering not only carbon sequestration, but also possible improved disease resistance.
|
3 |
Molecular Interactions of Endophytic Actinobacteria in Wheat and ArabidopsisConn, Vanessa Michelle, vanessa.conn@acpfg.com.au January 2006 (has links)
Wheat is the most economically important crop forming one quarter of Australian farm production. The wheat industry is severely affected by diseases, with fungal pathogens causing the most important economic losses in Australia. The application of fungicides and chemicals can control crop diseases to a certain extent, however, it is expensive and public concern for the environment has led to alternative methods of disease control to be sought, including the use of microorganisms as biological control agents. Microorganisms are abundant in the soil adjacent to plant roots (rhizosphere) and within healthy plant tissue (endophytic) and a proportion possess plant growth promotion and disease resistance properties.
Actinobacteria are gram-positive, filamentous bacteria capable of secondary metabolite production such as antibiotics and antifungal compounds. A number of the biologically active endophytes belonging to the Actinobacteria phylum were isolated in our laboratory. A number of these isolates were capable of suppressing the wheat fungal pathogens Rhizoctonia solani, Pythium sp. and Gaeumannomyces graminis var. tritici, both in vitro and in planta indicating the potential for the actinobacteria to be used as biocontrol agents. The aim of this research was to investigate the molecular mechanisms underlying this plant-microbe interaction.
The indigenous microbial populations present in the rhizosphere and endophytic environment are critical to plant health and disruptions of these populations are detrimental. The culture-independent technique Terminal Restriction Fragment Length Polymorphism (T-RFLP) was used to characterise the endophytic actinobacteria population of wheat roots under different conditions. Soils which support a higher number of indigenous microorganisms result in wheat roots with higher endophytic actinobacterial diversity and level of colonisation. Sequencing of 16S rRNA gene clones, obtained using the same actinobacteria-biased PCR primers that were used in the T-RFLP analysis, confirmed the presence of the actinobacterial diversity, and identified a number of Mycobacterium and Streptomyces species. It was found that the endophytic actinobacterial population of the wheat plants contained a higher diversity of endophytic actinobacteria than reported previously, and that this diversity varied significantly among different field soils.
The endophytic actinobacteria have previously been shown to protect wheat from disease and enhance growth when coated onto the seed before sowing. As the endophytes isolated were recognised as potential biocontrol agents, the impact on the indigenous endophytic microbial population was investigated. Utilising the T-RFLP technique it was established that the use of a commercial microbial inoculant, containing a large number of soil bacterial and fungal strains applied to the soil, disrupts the indigenous endophyte population present in the wheat roots. The hypothesis is that non-indigenous microbes proliferate and dominate in the soil preventing a number of endophytic-competent actinobacterial genera from access to the seed and ultimately endophytic colonisation of the wheat roots. This dramatically reduces diversity of endophytes and level of colonisation. In contrast the use of a single endophytic actinobacteria endophyte inoculant results in a 3-fold increase in colonisation by the added inoculant, but does not significantly affect this indigenous population.
Colonisation of healthy plant tissues with fungal endophytes has been shown to improve the competitive fitness with enhanced tolerance to abiotic and biotic stress and improved resistance to pathogens and herbivores. In this study the fungal endophyte population of wheat plants grown in four different soils was analysed using partial sequencing of 18S rRNA gene sequences. Sequence anlaysis of clones revealed a diverse range of fungal endophytes. In this diverse range of fungal endophytes a number sequences were highly similar to those of previously known fungal phytopathogens. A number of sequences detected were similar to fungal species previously identified in soil or plant material but not as endophytes. The remaining sequences were similar to fungal species without a known relationship with plants.
Plants have developed an inducible mechanism of defence against pathogens. In addition to local responses plants have developed a mechanism to protect uninfected tissue through a signal that spreads systemically inducing changes in gene expression. In the model plant Arabidopsis thaliana activation of the Systemic Acquired Resistance (SAR) pathway and the Jasmonate (JA)/Ethylene (ET) pathway is characterised by the production of pathogenesis-related (PR) and antimicrobial proteins resulting in systemic pathogen resistance. Endophytic actinobacteria, isolated from healthy wheat roots in our laboratory, have been shown to enhance disease resistance to multiple pathogens in wheat when coated onto the seed before sowing. Real Time RT-PCR was used to determine if key genes in the SAR and JA/ET pathways were induced in response to inoculation with endophytic actinobacteria.
Inoculation of wild-type Arabidopsis thaliana with selected strains of endophytic actinobacteria was able to �prime� the defence pathways by inducing low level expression of SAR and JA/ET genes. Upon pathogen infection the defence-genes are strongly up-regulated and the endophyte coated plants had significantly higher expression of these genes compared to un-inoculated plants. Resistance to the bacterial pathogen Erwinia carotovora subsp. carotovora was mediated by the JA/ET pathway whereas the fungal pathogen Fusarium oxysporum triggered primarily the SAR pathway.
Further analysis of the endophytic actinobacteria-mediated resistance was performed using the Streptomyces sp. EN27 and Arabidopsis defence-compromised mutants. It was found that resistance to E. carotovora subsp. carotovora mediated by Streptomyces sp. EN27 occurred via a NPR1-independent pathway and required salicylic acid whereas the jasmonic acid and ethylene signalling molecules were not essential. In contrast resistance to F. oxysporum mediated by Streptomyces sp. EN27 occurred via a NPR1-dependent pathway but also required salicylic acid and was JA- and ET-independent.
This research demonstrated that inoculating wheat with endophytic actinobacteria does not disrupt the indigenous endophytic population and may be inducing systemic resistance by activating defence pathways which lead to the expression of antimicrobial genes and resistance to a broad range of pathogens.
|
4 |
Molecular dialogue between rhizobacteria and vegetal host: two novel elicitors involved in pathogen resistance induction/Dialogue moléculaire entre les rhizobactéries et leur hôte végétal : deux nouveaux éliciteurs impliqués dans linduction de résistance aux pathogènesJourdan, Emmanuel 13 May 2008 (has links)
In the so-called induced systemic resistance phenomenon (ISR), some non pathogenic rhizobacteria are able to stimulate defence mechanisms in the host plant thereby rendering it less susceptible to subsequent phytopathogen attack. This immunization process is initiated into the plant following the perception of elicitors (or determinants) produced by the beneficial microorganism. Previous studies performed in our laboratory have demonstrated the ability of Pseudomonas putida strain BTP1 and Bacillus subtilis strain S499 (or M4) at triggering ISR. By using these two rhizobacteria, the global objective of this thesis is to contribute to a better understanding of this molecular dialogue between ISR-inducing bacteria and plant cells.
Our first researches with BTP1 led to the isolation, as an elicitor, of a new compound produced by Pseudomonas. It was purified from bacterial culture supernatant and identified as a benzylamine core alkylated with two methyl and one tetradecyl groups, conferring its hydrophobic properties. On the basis of this structure, the BTP1 determinant was called NABD, for N-Alkylated Benzylamine Derivative. By testing the pure molecule or mutant strains altered in its production, we have shown that NABD was mainly responsible for ISR-activity of the BTP1 strain on bean and cucumber while in tomato, another unidentified compound could also be involved. In the case of Bacillus subtilis S499, we used similar approaches to demonstrate for the first time that the lipopeptides surfactin and fengycin may act as elicitors to stimulate systemic resistance, thereby attributing them a new role in the biocontrol of plant diseases. Structure/activity studies have revealed the implication of the benzylamine aromatic core in the biological activity of NABD. In the case of surfactin, reduced activity of some homologues indicates that its perception is dictated by structural clues such as the length of the acyl moiety and the presence of charges in the cyclic peptide part.
Also in support to their involvement in ISR triggering, significant quantities of NABD and lipopeptides were recovered from the rhizosphere of bacterized plants. The influence of some physiological and physico-chemical factors on NABD production by BTP1 was further investigated in in vitro experiments. Our results show that the molecule is more efficiently produced at low cell growth rate and in the presence of amino acids in the medium but is negatively iron-regulated. Other abiotic factors, such as low oxygen concentration or low pH do not have drastic effects on NABD biosynthesis by the strain. Globally, with regard to specific conditions that the strain undergoes in the rhizosphere environment, it supposes that the nutritional/physiological state of BTP1 cells growing on plant roots is compatible with an effective production of the elicitor.
Plant responses induced following root treatment with Bacillus subtilis S499 have also been investigated. Working on whole plants, it first revealed an increase in enzyme activities of the oxylipin pathway (lipoxygenase (LOX) and lipid-hydroperoxydase) after infection. Further investigations were conducted on cultured tobacco cells and we have shown the induction of some early events, such as extracellular pH alkalinization, reactive oxygen species production, defence enzyme stimulation (LOX and phenylalanine ammonia lyase (PAL), and accumulation of some phenolics from the phenylpropanoid pathway. These experimentations performed with Bacillus lipopeptides are the first conducted with ISR-specific elicitors and led to the characterization of early events that can also be triggered by pathogen associated molecules. It is still not clear whether bacterial LPs are recognized by plant cells via specific receptors but the amphiphilic and detergent properties of surfactin strongly suggest that these LPs can interact via a less specific mechanism based on some limited destabilization of the membrane structure.
In conclusion, NABD and lipopeptides studied in this thesis enlarge the range of elicitors from non pathogenic bacteria isolated to date, and may be considered as members of a new class of ISR-inducing compounds of amphiphilic nature./
Lors du phénomène appelé « résistance systémique induite » (ISR), des rhizobactéries non pathogènes peuvent conférer à la plante un certain degré de protection à des attaques ultérieures par un phytopathogène via la stimulation de mécanismes de défense systémiques. Cette « immunité » sinitie suite à la perception par la plante de molécules dites élicitrices produites par le microorganisme bénéfique. Lobjectif de cette thèse est de contribuer à la caractérisation de ce dialogue moléculaire en se basant sur des études antérieures poursuivies au laboratoire qui ont mis en évidence la capacité des souches Pseudomonas putida BTP1 et Bacillus subtilis S499 (aussi dénommée M4) à induire lISR chez leur hôte végétal.
La première partie des recherches sur BTP1 a permis disoler en tant quéliciteur un nouveau type de composé produit par les Pseudomonas. Cet éliciteur a été isolé à partir de surnageant de culture de la bactérie et est constitué dun noyau benzylamine dont lazote est alkylé par deux groupements méthyle et un groupement tétradécyle, responsables de lhydrophobicité relative de la molécule. Sur cette base, ce métabolite a été dénommé NABD (N-alkylated benzylamine derivative). Grâce au traitement des plantes avec le composé purifié ou via lutilisation de mutants altérés dans sa production, nous avons démontré que le NABD était responsable de lessentiel de lactivité ISR de BTP1 sur le haricot et le concombre. Dans le cas de la tomate par contre, il semble quil ne soit pas le seul éliciteur impliqué. En ce qui concerne Bacillus subtilis S499, en utilisant des approches similaires, nous avons pour la première fois montré limplication de deux lipopeptides, la surfactine et la fengycine, comme agents stimulateurs de lISR, permettant ainsi de leur attribuer un nouveau rôle dans le contrôle biologique des maladies des plantes par Bacillus. Une étude de la relation structure/activité a été entamée et a révélé un rôle du noyau aromatique dans létablissement de la résistance systémique par le NABD. Pour la surfactine, limportance de la longueur de la chaîne alkylée ainsi que la présence des charges sur les acides aminés suggèrent que son activité élicitrice soit liée à ses propriétés amphiphiles.
La détection en quantités significatives des deux types déliciteurs dans la rhizosphère des plants traités par les bactéries est également en faveur de leur rôle biologique. Dans le cas de BTP1, nous avons étudié linfluence de certains paramètres physiologiques, nutritionnels et physico-chimiques sur la production du NABD. Les résultats montrent que la production du NABD est dépendante de la présence dacides aminés dans le milieu, quelle est effective à un taux de croissance faible du microorganisme, quelle est négativement influencée par le fer mais quelle nest pas inhibée par une restriction en oxygène dissous disponible ou par une acidification du milieu. Globalement, ces données suggèrent que les conditions physico-chimiques dictant létat physiologique des cellules bactériennes in situ peuvent être propices à une synthèse effective de léliciteur au niveau des racines.
Des recherches sur les réponses induites chez lhôte lors de son interaction avec S499 ont été initiées et montrent une nette augmentation dactivités enzymatiques de la voie des oxylipines (activités lipoxygénase (LOX) et lipide hydroperoxydase) dans les feuilles après infection. Une exploration plus approfondie sur suspensions de cellules de tabac en culture avec la surfactine a montré linduction de plusieurs autres mécanismes précoces de défenses, comme une alcalinisation du milieu extracellulaire, la production despèces oxydantes, lactivation denzymes de défense telles que LOX et phenylalanine ammonia lyase (PAL), et une possible réorientation de la voie des phénylpropanoïdes. Ces expérimentations menées avec les lipopeptides de Bacillus sont parmi les premières à être réalisées avec des éliciteurs spécifiques de lISR. Elles ont abouti à la caractérisation de plusieurs réponses précoces dont certaines sont aussi induites par des molécules isolées dagents pathogènes. Les lipopeptides pourraient ainsi agir en stressant les cellules de lhôte via une perturbation temporaire de la membrane externe facilitée par leur propriété amphiphile. Limplication de récepteurs dans la reconnaissance des éliciteurs de BTP1 et S499 ne peut cependant pas être exclue.
En conclusion, les lipopeptides et le NABD élargissent la gamme des éliciteurs bactériens de lISR isolés jusquà présent et peuvent être considérés comme appartenant à une nouvelle classe dimmuno-stimulateurs des plantes comprenant des molécules amphiphiles.
|
5 |
Defense remodelling by ectomycorrhizal fungi in non-hostsVishwanathan, Kishore 11 September 2019 (has links)
No description available.
|
6 |
Relations entre l’omycète, Pythium oligandrum, et la vigne : étude de l’induction de résistance contre un agent pathogène du bois et impact sur les communautés microbiennes colonisant la plante / Relationships between the oomycete, Pythium oligandrum, and grapevines : induced resistance against a trunk wood pathogen and impact on plant microbial communitiesYacoub, Amira 14 December 2015 (has links)
Il est actuellement estimé qu’environ 13% du vignoble français est improductif suite aux pathologies affectant le bois des ceps, la principale d’entre elles étant l’esca. Parmi les moyens de lutte mis en œuvre, le biocontrôle, via l’utilisation d’un oomycète, Pythium oligandrum, est actuellement développé pour protéger les plants de vigne contre un agent pathogène pionnier de l’esca, Phaeomoniella chlamydospora. La sélection de souches de P. oligandrum, isolées du vignoble, et produisant in vitro des quantités importantes d’une protéine élicitrice, l’oligandrine, des systèmes de défense des végétaux a d’abord été réalisée. Trois essais en serre ont montré qu’une réduction significative (40 à 50%) des nécroses dues P. chlamydospora était observée après application d’inocula de l’oomycète sur les racines des plants de vigne pied-francs Au niveau de la tige, le niveau d’expression de 22 gènes impliqués dans les mécanismes de défenses de Vitis vinifera a été mesuré par PCR quantitative et des réponses spécifiques du végétal ont été observées selon les traitements. Six gènes (protéines PR, voie des phenylpropanoïdes, oxylipines et le système d’oxydo-réduction) ont été fortement induits lorsque les plants ont été pré-inoculés par P. oligandrum puis infectés par P. chlamydospora. Afin de mettre en évidence les mécanismes spécifiques mis en place lors de cette interaction tripartite, l'analyse de la réponse transcriptomique globale de la vigne (par microarray et RNAseq), au niveau de la tige, a été réalisée chez ces plants qui manifestent une résistance induite systémique (ISR). Plusieurs gènes impliqués dans la synthèse de l’éthylène et des jasmonates sont fortement induits, chez les plants pré-traités par l’oomycète puis infectés par l’agent pathogène. Plusieurs facteurs de transcription régulant ces voies de signalisation sont également fortement induits. Suite à l’analyse des populations de messagers (mRNA) de P. chlamydospora, il a été observé que les niveaux d’expression de gènes impliqués dans la synthèse des métabolites secondaires, des facteurs de transcription impliquées dans la régulation de différentes voies chez les champignons et certaines Carbohydrates Actives enZymes étaient modulés en présence de P. oligandrum au niveau racinaire. Ces résultats montrent que la colonisation du végétal par l’oomycète, même à distance de P. chlamydospora, induit un stress indirect important chez celui-ci. Afin d’optimiser l’implantation de cet agent de biocontrôle en pépinière et au vignoble, l’aptitude de P. oligandrum à coloniser les racines de plants de vignes greffés et à les protéger contre P. chlamydospora a été étudiée. Trois portes-greffes (SO4, 3309 et 101-14) greffés sur des cépages (Cabernet Sauvignon et Sauvignon Blanc) ont été inoculés ou non par P. oligandrum. L’oomycète s’implantait sur les différents systèmes racinaires, mais en proportion variable selon les associations cépage/porte-greffe utilisées. Les analyses par empreintes moléculaires (Single Strand Conformation Polymorphism) ont montré que des microflores fongiques et bactériennes complexes et diversifiées colonisaient les feuilles et les racines, mais que l’introduction de P. oligandrum sur la plante n’induisait pas de bouleversements directs ou indirects notables au niveau de ces microflores indigènes. Une protection des jeunes plants de vigne greffés (SO4 + Cabernet Sauvignon) semble être induite par P. oligandrum contre l’agent pathogène, P. chlamydospora. / Approximately 13% of French vineyards are currently considered unproductive due to trunk diseases, mainly Esca, a particularly destructive disease that affects grapevines worldwide. Accordingly, biological control of a pathogen implicated in Esca, Phaeomoniella chlamydospora, was developed using the oomycete, Pythium oligandrum. The selection of P. oligandrum strains, isolated from vineyards, which produced in vitro large quantities of oligandrin, an elicitin-like protein inducing plant defences, was carried out. Three greenhouse assays showed that the necroses caused by P. chlamydospora were significantly reduced (40 to 50%) when P. oligandrum colonized the root system of vine cuttings. At stem level, the expression of a set of 22 genes involved in Vitis vinifera defence mechanisms was measured by quantitative PCR. Depending on the treatments employed, significant differences in grapevine responses were observed. Six of the genes (PR proteins, phenyl-propanoid pathway, oxylipins and the oxydo-reduction system) were strongly induced in plants pre-treated with P. oligandrum, and subsequently infected by P. chlamydospora. In order to characterize the mechanisms occurring during this tri-partite interaction, the global transcriptomic grapevine responses at stem level were analysed, using microarray and RNAseq, in plants in which induced systemic resistance (ISR) had taken place. Several genes involved in ethylene and jasmonate biosynthesis were strongly induced in plants that were pre-treated with P. oligandrum, and subsequently infected by P. chlamydospora. The transcription factors involved in the regulation of these signalisation pathways were also induced. Analysis of the P. chlamydospora RNA messenger (mRNA), showed that certain genes involved in secondary metabolite synthesis, transcription factors implicated in pathway regulations, and certain Carbohydrate Active enZymes, were modulated, when P. oligandrum colonised the roots. These results demonstrated that root inoculation with P. oligandrum induced indirect stress on P. chlamydospora responses. In order to promote P. oligandrum implantation in nurseries and vineyards, the capacity of this biocontrol agent to colonize the roots of grafted-plants, and to protect them against P. chlamydospora attacks, was studied. Three rootstocks (SO4, 3309 and 101-14), grafted on two scion varieties (Cabernet Sauvignon and Sauvignon Blanc), were inoculated or not with P. oligandrum. Depending on the particular scion/rootstock associations, the oomycete colonized the various root systems differently. Single Strand Conformation Polymorphism (SSCP) analyses revealed complex and diverse fungal and bacterial communities in both the rhizosphere and the phyllosphere. These microflora, which were organ-dependent, were not direcly or indirectly affected by the root inoculation of P. oligandrum. Protection of grafted vines (SO4 + Cabernet Sauvignon) was probably induced by P. oligandrum against the pathogen, P. chlamydospora.
|
7 |
The effectiveness of induced plant disease resistance: genotypic variation and quantification by chlorophyll fluorescenceTung, Jonathan 16 September 2011 (has links)
Cultivars of Agrostis stolonifera showed weak and strong responsiveness to the systemic acquired resistance (SAR) activator, benzothiadiazole (BTH), or the induced systemic resistance (ISR) activator, 2R, 3R-butanediol (BD). Next Generation RNA sequencing was used to identify 2163 putative transcripts with increased expression in BTH versus water-treated A. stolonifera. Among three BTH-induced genes, AsASP-2 and AsHIR-1 were induced faster, while AsLOX-1 had stronger transient induction, in one out of two strongly BTH-responsive cultivars. Three ISR-responsive genes, AsGNS-5, AsOPR-4 and AsAOS-1, showed no greater induction or priming in the strongly versus weakly BD-responsive cultivars. Cultivars of A. stolonifera vary significantly in their response to defense activators, however this is not consistently related to defense gene expression. To quantify disease severity, chlorophyll fluorescence imaging of the maximum quantum efficiency of photosystem II (Fv/Fm) was tested on Nicotiana benthamiana infected with Colletotrichum orbiculare. Leaf areas of healthy, non-necrotic affected and necrotic tissue could be individually quantified, which demonstrated that BD delayed symptom development by approx. 24-hour and reduced non-necrotic affected tissue compared to controls. Chlorophyll fluorescence imaging can quantify and reveal novel features about induced disease resistance.
|
8 |
Indução de resistência à antracnose em feijoeiro por Trichoderma harzianum E Bacillus subtilis / Induced resistance to anthracnose in bean by the Trichoderma harzianum AND Bacillus subtilisJunges, Emanuele 22 February 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / The massive use of chemicals to control plant diseases cause numerous negative impacts on agricultural production system on non-target organisms, consumers and farmers. Therefore, the use of biological control organisms such as Trichoderma harzianum and Bacillus subtilis, able to act on the control of plant pathogens and / or induce resistance in plants is characterized as an important and with great potential yet to be explored tool. The objective of this study was to identify metabolites produced by these organisms grown in liquid medium and test the use of filtered culture and of living organisms, applied via seed or leaf in the control of anthracnose in beans. Biological control organisms T. harzianum and B. subtilis were grown in liquid culture medium for 96 h and 12 h photoperiod. After incubation, the media were filtered through Millipore membrane extraction of the bacterial cells and spores. Metabolites were extracted with four organic solvents, ethanol, methanol, ethyl acetate and hexane and subjected to gas chromatography and mass spectrometry and the chromatograms generated for each organism and solvent used. The evaluation of the induction of defense responses in plants was held in cultivating Minuano with susceptibility reaction to the pathogen Colletotrichm lindemuthianum. The bean plants were evaluated for disease index, area under the disease progress curve and changes in peroxidase activity, β-1,3-glucanase and IAA - oxidase, as well as certain fresh and dry weight of plants in two stages, before and after inoculation of the challenging pathogen. The chromatographic identification of compounds from culture filtrates showed that both test organisms produce fatty acids and oxylipins in liquid medium with antifungal action and inducing defense responses, respectively. In the assessments performed in bean plants, both T. harzianum as B. subtilis reduced the severity and progress of the disease, and produced significant increases in the activities of peroxidase isozymes and β-1,3-glucanase after inoculation of the pathogen, indicating the activation of induced resistance. The induction of responses did not affect the dry mass of the plants, which shows no energy expenditure that could affect plant growth. The best answers to T. harzianum are observed in foliar applications, either spore suspension or culture filtrate, as for B. subtilis, the best answers are observed in the foliar application of culture filtrate. For ease of production, culture filtrates of Trichoderma harzianum and Bacillus subtilis can give bioproducts for agricultural use. / O uso massivo de produtos químicos para controle de doenças em plantas causa inúmeros impactos negativos no sistema de produção agrícola, sobre organismos não alvo, consumidores, agricultores e o ambiente. Diante disso, a utilização de organismos de controle biológico, como Trichoderma harzianum e Bacillus subtilis, capazes de agir no controle de fitopatógenos e/ou induzir resistência em plantas, se caracteriza como uma ferramenta importante e com muito potencial ainda a ser explorado. O objetivo deste trabalho foi identificar metabólitos produzidos por estes organismos cultivados em meio líquido e testar a utilização destes filtrados de cultura, bem como dos organismos vivos, aplicados via semente ou foliar, no controle da antracnose em feijoeiro. Os organismos de controle biológico T. harzianum e B. subtilis foram cultivados em meio de cultura líquido por 96h e fotoperíodo de 12h. Após a incubação, os meios foram filtrados em membrana milipore para extração dos esporos e das células bacterianas. Os metabólitos foram extraídos com quatro solventes orgânicos, etanol, metanol, acetato de etila e hexano e submetidos à cromatografia gasosa e espectrofotometria de massa e gerados cromatogramas para cada organismo e solvente utilizado. A avaliação da indução de respostas de defesa em plantas foi realizada na cultivar Minuano, com reação de suscetibilidade ao patógeno Colletotrichum lindemuthianum. As plantas de feijão foram avaliadas quanto ao índice de doença, área abaixo da curva de progresso da doença e às alterações nas atividades de peroxidase, β-1,3-glucanase e AIA oxidase, assim como determinada a massa fresca e seca das plantas em dois momentos, antes e após a inoculação do patógeno desafiante. A identificação cromatográfica dos compostos presentes nos filtrados de cultura demonstrou que ambos os organismos testados produzem ácidos graxos e oxilipinas em meio líquido, com ação antifúngica e indutoras de respostas de defesa, respectivamente. Nas avaliações realizadas em plantas de feijão, tanto T. harzianum quanto B. subtilis, reduziram a severidade e o progresso da doença, assim como produziram acréscimos significativos nas atividades das isoenzimas peroxidase e β-1,3-glucanase após a inoculação do patógeno, indicando a ativação da resistência induzida. As respostas de indução não comprometeram o acúmulo de massa seca das plantas, o que demonstra não haver gasto energético capaz de comprometer o crescimento das plantas. As melhores respostas para T. harzianum são observadas nas aplicações foliares, seja de suspensão de esporos ou filtrado de cultura, já para B. subtilis, as melhores respostas são observadas na aplicação foliar do filtrado de cultura. Pela facilidade de produção, filtrados de cultura de Trichoderma harzianum e Bacillus subtilis podem originar bioprodutos para uso agrícola.
|
9 |
Caractérisation de la perception racinaire et de la résistance systémique induite par les rhamnolipides et leurs précurseurs chez Arabidopsis thaliana / Characterization of root perception and induced systemic resistance by rhamnolipids and their precursors in Arabidopsis thalianaTouchard, Matthieu 13 December 2019 (has links)
Dans leur environnement, les plantes sont fréquemment soumises à des attaques de microorganismes pathogènes. Pour leur faire face, elles mettent en place des mécanismes de défense activés suite à la détection du microorganisme via des motifs moléculaires ou IPs (Invasion Patterns). Les rhamnolipides (RLs) sont des molécules glycolipidiques amphiphiles produites par des bactéries des genres Pseudomonas et Burkholderia. Ces molécules sont capables d’induire, au niveau foliaire chez différentes plantes, une résistance locale contre des microorganismes phytopathogènes. L’acide 3-hydroxydécanoïque (3-OH-C10:0), le constituant de base de la partie lipidique des RLs, active aussi une réponse immune dans la partie aérienne de la plante Arabidopsis thaliana. Cette réponse immune est déclenchée suite à sa perception par le récepteur kinase S-lectine LORE. Les travaux menés au cours ce projet de thèse ont permis de mettre en évidence que le 3-OH-C10:0 est perçu au niveau racinaire par LORE, conduisant à l’activation d’une réponse immune innée et à la mise en place d’une résistance systémique (ISR) efficace contre le champignon nécrotrophe Botrytis cinerea. D’autre part, ces travaux ont révélés que les RLs sont aussi perçus au niveau racinaire et activent une ISR contre B. cinerea n’impliquant pas le récepteur LORE. L’ensemble de ces résultats montrent que les RLs ainsi que le 3-OH-C10:0, sont deux IPs reconnus par A. thaliana au niveau racinaire via des mécanismes indépendants et tous deux conduisant à l’activation d’une résistance systémique. / In their environment, plants are frequently challenged by pathogenic microorganisms. Plants are able to trigger an innate immune response to fight against the infection. This immune response is activated after perception of the microorganisms through Invasion Patterns (IPs). Rhamnolipids (RLs) are amphiphilic glycolipidics molecules produced by some bacterial species including Pseudomonas and Burkholderia. RLs are able to induce an immune response in the aerial part of several plant which is effective against phytopathogens. 3-hydroxydecanoic acid (3-OH-C10:0), a lipid building block from RLs, is known to trigger Arabidopsis thaliana immune responses in leaves after its perception by the bulb-type lectin receptor kinase LORE. In the present work, we showed that the 3-OH-C10:0 is also sensed by roots through LORE, triggering local immune responses and a systemic induced resistance (ISR) effective against the necrotrophic fungus Botrytis cinerea. In addition, this work revealed that RLs are also recognized by root cells, activating a LORE-independent ISR against B. cinerea. This work shows that RLs and 3-OH-C10:0 are different IPs independently recognized by A. thaliana roots but both inducing a systemic resistance in plants.
|
10 |
Understanding the metabolic changes activated by volatile organic compounds in grapevine leaves against downy mildewAvesani, Sara 01 October 2024 (has links)
Plants can produce a wide variety of volatile organic compounds (VOCs), which are mediators of plant responses against stresses. Abiotic and biotic factors can modulate VOC emission dynamics from plants, suggesting a key role of these compounds in plant defense processes. Although grapevine VOCs responsible for wine aroma and plant-insect communications are well characterized, the functional properties of VOCs produced in response to phytopathogens were less studied. The aims of this work were i) to summarize the information available in the literature on emission patterns and possible biological functions of VOCs produced by grapevine plants in response to abiotic and biotic factors, ii) to investigate the defense mechanisms activated by volatile linalool in grapevine leaves against downy mildew caused by Plasmopara viticola, and iii) to identify metabolic changes associated with VOC-induced resistance activated by 2-phenylethanol and β-cyclocitral against downy mildew. The first chapter includes an introduction to VOCs in plant communication and analytical methods for metabolic detections, while the second chapter defines the aims of the project. In the third chapter, the literature on grapevine VOCs was reviewed and volatile molecules emitted in response to the exogenous stimuli were discussed. The key findings of this chapter are that specific VOC emission patterns can be stimulated by phytopathogens, resistance inducers, beneficial microorganisms, and abiotic factors, suggesting the precise involvement of airborne signals in grapevine responses to abiotic and biotic stresses. In particular, VOCs with inhibitory activities against grapevine pathogens are known to be emitted mainly by resistant grapevine genotypes upon pathogen inoculation, and some of these VOCs were proposed as biomarkers of grapevine resistance traits. In the fourth chapter, defense responses activated by volatile linalool in grapevine leaves were analyzed. Linalool treatment reduced downy mildew severity on leaf disks of susceptible grapevines (cultivar Pinot noir) and stimulated callose deposition at the sites of P. viticola infection. Moreover, the upregulation of defense-related genes was found in linalool-treated leaf disks, indicating the activation of grapevine defense mechanisms related to salicylic acid and jasmonic acid pathways. By ultra-high pressure liquid chromatography-electrospray ionization-high-resolution quadrupole time of flight-mass spectrometry it was demonstrated that linalool treatment caused changes in the leaf metabolome of mock-inoculated and P. viticola-inoculated samples at one and six days post inoculation (dpi).
In the fifth chapter, a deep metabolomic analysis of VOC-induced grapevine resistance was carried out by ultra-high pressure liquid chromatography-heated electrospray ionization-high-resolution Orbitrap-mass spectrometry, which allowed accurate mass detection, fragment and isotope pattern matching, and metabolite annotation. In this study, 2-phenylethanol and β-cyclocitral treatment reduced downy mildew severity on leaf disks of susceptible grapevines (cultivar Pinot noir) causing complex changes in the leaf metabolome of mock-inoculated and P. viticola-inoculated samples at 1 dpi and 6 dpi. Metabolic features with significant increases in abundance in 2-phenylethanol- and β-cyclocitral-treated samples mainly belonged to putative carbohydrates and conjugates, carboxylic acids and derivates, carbonyl compounds, phenylpropanoids, and terpenoids, including molecules possibly associated with plant defense against pathogens. Thus, the chemical classification of annotated compounds revealed that VOCs treatments can activate specific metabolic responses in grapevine leaves that include the accumulation of defense-related compounds.
These results demonstrated that linalool, 2-phenylethanol, and β-cyclocitral induce grapevine resistance against downy mildew, acting as volatile signaling molecules for plant resistance induction. Although further studies on formulation and efficacy under controlled and field conditions are required, these VOCs have great potential for the further development of sustainable products for downy mildew control.
|
Page generated in 0.1205 seconds