• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Inestabilitat cromosòmica i radiosensibilitat en cèl·lules defectives en ATM i DNA-PKcs

Martín Flix, Marta 12 December 2008 (has links)
ATM (Ataxia-Telangiectasia Mutated) i DNA-PKcs (DNA-dependent Protein Kinase, catalytic subunit) són dues proteïnes que pertanyen a la família de les PIKKs (PhosphatidylInositol 3-Kinase-related Kinase) i ambdues desenvolupen funcions importants en la via de resposta al dany en el DNA (DDR). ATM i DNA-PKcs són activades en resposta als trencaments de doble cadena del DNA (DSBs) que es produeixen a conseqüència de l'actuació de múltiples factors, entre ells les radiacions ionitzants. Un cop activades, les dues cinases realitzen funcions diferents -però significativament complementàries- en aquesta via: ATM és capaç de: (1) aturar el cicle cel·lular en qualsevol fase; (2) activar diverses proteïnes implicades en la via de reparació homòloga (HR) del DNA i (3) induir l'activació de la via de l'apoptosi cel·lular en cas que el dany sigui massiu i/o irreparable. Per la seva part DNA-PKcs és una proteïna mestra de la via de reparació no homòloga del DNA (NHEJ), on activa i regula a la resta de factors participants d'aquesta via. Finalment DNA-PKcs també pot induir la via de l'apoptosi en resposta a un dany massiu. L'absència d'alguna d'aquestes dues cinases comporta, en els individus afectes, l'aparició de síndromes d'inestabilitat cromosòmica caracteritzats per una major probabilitat de desenvolupar processos cancerígens. Les cèl·lules derivades dels individus afectes són extremadament radiosensibles i acumulen aberracions cromosòmiques. L'objectiu d'aquesta tesi doctoral és determinar quins factors contribueixen de manera específica a la radiosensibilitat i a la inestabilitat cromosòmica de les cèl·lules deficients en ATM i en DNA-PKcs. Per assolir aquest objectiu es va analitzar: (1) l'espectre d'aberracions radio-induïdes en ambdós tipus cel·lulars; (2) l'evolució i resolució d'aquestes aberracions al llarg del temps; (3) la possible implicació del metabolisme telomèric en aquestes aberracions i (4) la cinètica de reunió de DSBs de les cèl·lules deficients en ATM i la de les cèl·lules deficients en DNA-PKcs. Després de ser irradiats, ambdós tipus cel·lulars acumulen un nombre significativament elevat d'aberracions cromosòmiques. El metabolisme telomèric només contribueix de manera marginal a la inestabilitat cromosòmica en cèl·lules deficients en DNA-PKcs i no té repercussions en la línia cel·lular deficient en ATM emprada en aquest estudi. En analitzar la cinètica de reunió dels DSBs radio-induïts es va fer palès que la deficiència en DNA-PKcs indueix un alentiment de la mateixa. Una reparació més lenta de les lesions en el DNA afavoreix (1) l'acumulació de fragments cromosòmics i, alhora, (2) la reunió il·legítima dels mateixos. La cinètica alentida explica l'ampli espectre d'aberracions radio-induïdes obtingut en aquestes cèl·lules així com la seva persistència en el temps, esdevenint el principal factor responsable de la radiosensibilitat i inestabilitat cromosòmica en cèl·lules deficients en DNA-PKcs. En canvi les cèl·lules deficients en ATM reparen la majoria dels DSBs radio-induïts amb una cinètica comparable a la de les cèl·lules normals, però una fracció dels trencaments roman sense reparar inclús a llargs temps post-irradiació. Per tant, l'acumulació de trencaments pendents de ser reparats a llargs temps post-irradiació (48 i 72 h) apareix com el principal factor responsable de la radiosensibilitat i inestabilitat cromosòmica d'aquestes cèl·lules. Però com s'explica la persistència d'aquests trencaments durant vàries divisions post-irradiació? Un cop descartat un alentiment de la cinètica de reparació ens varem plantejar la possibilitat de que l'absència d'ATM impedís la correcta detecció d'aquests DSBs. Per tal d'avaluar aquesta hipòtesi es va realitzar un anàlisi de la presència de γH2AX i Mre11 en els extrems cromosòmics trencats. La majoria de les delecions cromosòmiques presents en les cèl·lules deficients en ATM presenten marcatge amb les dues proteïnes en el punt de trencament, però una fracció considerable de les mateixes (25%) no presenta cap tipus de marcatge. El resultat obtingut suggereix que els trencaments no senyalitzats no estan essent correctament detectats i que la maquinària de reparació no és activa en ells. Proposem que l'acumulació de trencaments pendents de reparar són una característica de les cèl·lules deficients en ATM, i que aquesta acumulació contribueix de manera important a la seva radiosensibilitat i inestabilitat cromosòmica. Mentre que la fracció de trencaments correctament senyalitzats per γH2AX i Mre11 podrà ser reparada al llarg del temps, la fracció de trencaments sense senyalitzar podria romandre sense reparar durant temps indefinit, contribuint especialment a la inestabilitat cromosòmica d'aquestes cèl·lules. / ATM (Ataxia-Telangiectasia Mutated) and DNA-PKcs (DNA-dependent Protein Kinase, catalytic subunit) belong to the PIKKs (PhosphatidylInositol 3-Kinase-related Kinase) family, and both proteins develop important functions in the DNA damage response pathway (DDR). ATM and DNA-PKcs are activated by the presence of DNA double strand breaks (DSBs), which are produced by multiple factors, ionizing radiations among these. Once activated, both kinases display different -but significantly complementary- functions in the DDR: ATM is able to: (1) halt the cell cycle; (2) activate several proteins implicated in the homologous repair pathway (HR) and (3) if the cell harbours massive and/or irreparable damage, ATM can initiate the apoptosis pathway. Meanwhile, DNA-PKcs is a master protein belonging to the non homologous end joining repair pathway (NHEJ), where it activates and regulates the remaining factors implied in this repair pathway. Finally, if the cell carries extensive damage DNA-PKcs can also induce the apoptosis pathway. Individuals affected by the absence of either kinase develop chromosomal instability syndromes, which are characterized by a special cancer predisposition. Cells obtained from the affected individuals are extremely radiosensitive and accumulate chromosomal aberrations.The main goal of this doctoral thesis is to determine which factors specifically contribute to the radiosensitivity and chromosomal instability of ATM and DNA-PKcs deficient cells. In order to attain this goal we analyzed: (1) the spectrum of radio-induced aberrations in both cell types; (2) the evolution and resolution of these aberrations over time; (3) the possible implication of telomeric metabolism in these aberrations and (4) the DSBs joining kinetics of ATM and DNA-PKcs deficient cells.After irradiation both cellular types accumulate a significant number of chromosomal aberrations. While telomeric metabolism contributes -although only marginally- to the chromosomal instability in DNA-PKcs deficient cells, it has no influence on the ATM deficient cell line employed in this study. Analysis of the DSBs joining kinetics demonstrates that DNA-PKcs deficiency induces a delay in the repair kinetics of radio-induced lesions. Slower DNA repair favours the accumulation of chromosomal fragments as well as their illegitimate joining displayed by DNA-PKcs deficient cells. Thus, the slower repair kinetics explain the broad aberration spectrum obtained in these cells, as well as their persistence in time, revealed to be the main factor responsible for radiosensitivity and chromosomal instability in DNA-PKcs deficient cells. On the other hand, ATM deficient cells are able to repair the majority of the radio-induced DSBs with normal joining kinetics except for a fraction of breaks, which remain unrepaired even at long post-irradiation times. Therefore, the accumulation of unrepaired breaks at long post-irradiation times (48 and 72 hr) is revealed to be the main factor responsible for the radiosensitivity and chromosomal instability of AT cells. But how can the persistence of these breaks in an unrepaired state during several cell divisions be explained? After discarding a delayed DSBs joining kinetic, we reflected upon the possibility of the absence of ATM preventing proper detection of unrepaired DSBs. In order to evaluate this hypothesis we analysed the presence of γH2AX and Mre11 signalling in the broken chromosome ends scored in AT cells. The majority of the chromosome deletions displayed both γH2AX and Mre11 labelling at the break point, but a significant fraction (25%) was devoid of any labelling. The results obtained suggest that unlabelled breaks are not being correctly detected and that the cell repair machinery is not active on them. We propose that the accumulation of breaks waiting for efficient repair is a hallmark of ATM deficient cells, and that this accumulation makes a major contribution to their radiosensitivity and chromosomal instability. While the fraction of correctly γH2AX and Mre11-labelled breaks will eventually be repaired, the fraction of unlabelled breaks remains invisible to the DNA damage repair machinery, thus especially contributing to the chromosomal instability of these cells.
2

Poliposi adenomatosa familiar i càncer colorectal. Estudi genòmic i anàlisi d'alteracions de la via Wnt.

Obrador Hevia, Antònia 21 September 2007 (has links)
Les mutacions germinals en el gen APC són les responsables de la majoria de casos de poliposi adenomatosa familiar. APC participa en diferents processos cel·lulars que inclouen la regulació del cicle cel·lular, l'apoptosi, l'adhesió cel·lular, la migració cel·lular, la transducció de senyals, l'acoblament de microtúbuls i la segregació dels cromosomes. Encara que tots aquests processos estan potencialment lligats amb el càncer, sembla que la funció supressora tumoral del gen resideix en la seva capacitat per regular de manera acurada els nivells intracel·lulars de la β-catenina, component central de la via de Wnt. Aquesta via és important en el desenvolupament embrionari per determinar llinatges cel·lulars específics i en l'homeòstasi cel·lular de determinats teixits com la mucosa intestinal. A part del seu paper clau en la via de Wnt, APC participa en la inestabilitat cromosòmica del càncer colorectal, encara que els mecanismes concrets a través dels quals actua són encara desconeguts en bona part. Els resultats descrits en els tres capítols d'aquesta tesi donen lloc al concepte global que és en les lesions benignes del còlon, els adenomes, ja siguin de pacients de FAP com de càncer colorectal esporàdic, on s'acumulen gran nombre d'alteracions genètiques que afecten a mecanismes molt diversos del funcionament cel·lular, essent especialment importants aquelles alteracions que afecten a la via de Wnt. Totes les alteracions detectades permeten la progressió tumoral ja que afecten a la proliferació, mitosi i moltes altres funcions importants per la cèl·lula. El coneixement de les alteracions moleculars que afecten als adenomes és important per proporcionar més evidències dels mecanismes moleculars i cel·lulars implicats en els primers estadis de la progressió tumoral i donar lloc a noves estratègies de diagnòstic precoç i teràpies preventives, tan importants en la lluita contra el càncer. / Classical Familial Adenomatous Polyposis (FAP) syndrome is caused by APC germline mutations. APC plays important roles in different cellular processes such as cell cycle regulation, apoptosis, cellular adhesion, cellular migration, signal transduction, microtubule binding and chromosome segregation. Although all these processes are potentially related to cancer, it seems that the main tumoral suppressor activity is mediated by its capacity to accurately regulate the β-catenin intracellular levels, which is a central member of the Wnt signalling pathway. This pathway is important in the embryonic development and in cellular homeostasis in certain tissues such as intestinal mucosa. In colorectal cancer, APC is not only believed to be playing a key role in Wnt signalling, but also it is important in chromosomal instability (CIN), although the mechanisms in which APC is participating are still largely unknown.The results presented in this thesis and divided in 3 chapters give us the general idea that in the benign lesions of the colon, called adenomas, in FAP and in sporadic colorectal cancer patients, is where a great number of genetic alterations are accumulated affecting different functional mechanisms in the cell. Those aberrations that alter the Wnt signalling pathway are especially important in the process of tumorigenesis. All the reported alterations enable the tumoral progression because they target proliferation, mitosis and other important functions of the cell. A better understanding of the molecular defects in adenomas is crucial to discover all the molecular and cellular mechanisms operating in the early stages of colorectal cancer and give clues for early diagnosis and prevention.

Page generated in 0.0706 seconds