• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 21
  • 2
  • 2
  • 1
  • Tagged with
  • 68
  • 68
  • 67
  • 17
  • 17
  • 17
  • 13
  • 10
  • 10
  • 10
  • 9
  • 8
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Modelagem Fuzzy para previsão de uma série temporal de energia elétrica. / Fuzzy modeling to forecast a time series electric power.

Cesar Machado Pereira 24 February 2015 (has links)
Esta dissertação testa e compara dois tipos de modelagem para previsão de uma mesma série temporal. Foi observada uma série temporal de distribuição de energia elétrica e, como estudo de caso, optou-se pela região metropolitana do Estado da Bahia. Foram testadas as combinações de três variáveis exógenas em cada modelo: a quantidade de clientes ligados na rede de distribuição de energia elétrica, a temperatura ambiente e a precipitação de chuvas. O modelo linear de previsão de séries temporais utilizado foi um SARIMAX. A modelagem de inteligência computacional utilizada para a previsão da série temporal foi um sistema de Inferência Fuzzy. Na busca de um melhor desempenho, foram feitos testes de quais variáveis exógenas melhor influenciam no comportamento da energia distribuída em cada modelo. Segundo a avaliação dos testes, o sistema Fuzzy de previsão foi o que obteve o menor erro. Porém dentre os menores erros, os resultados dos testes também indicaram diferentes variáveis exógenas para cada modelo de previsão. / This dissertation tests and compares two types of predicting models to the same time series. A time series of electricity distribution was observed and, as a case study, were opted for the metropolitan region of Bahia State. Three exogenous variables were tested in each model: the number of customers connected to the electricity distribution network, the temperature and the precipitation of rain. The linear model time series forecasting used was a SARIMAX. The modelling of computational intelligence used to predict the time series was a Fuzzy Inference System. For better performance, in each model was tested all the exogenous variables to fit the influence in the energy distributed. According to the evaluation of the tests, the Fuzzy forecasting system presented the lowest error. But among the smallest errors, the results of the tests also indicated different exogenous variables for each forecast model.
52

T?cnicas de intelig?ncia artificial para a gera??o din?mica de set points para uma coluna de destila??o

Ara?jo J?nior, Jos? Medeiros de 23 November 2007 (has links)
Made available in DSpace on 2014-12-17T14:54:59Z (GMT). No. of bitstreams: 1 JoseMAJ.pdf: 711051 bytes, checksum: 6bfbf1b93a8a49314295062e59672543 (MD5) Previous issue date: 2007-11-23 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico / Artificial Intelligence techniques are applied to improve performance of a simulated oil distillation system. The chosen system was a debutanizer column. At this process, the feed, which comes to the column, is segmented by heating. The lightest components become steams, by forming the LPG (Liquefied Petroleum Gas). The others components, C5+, continue liquid. In the composition of the LPG, ideally, we have only propane and butanes, but, in practice, there are contaminants, for example, pentanes. The objective of this work is to control pentane amount in LPG, by means of intelligent set points (SP s) determination for PID controllers that are present in original instrumentation (regulatory control) of the column. A fuzzy system will be responsible for adjusting the SP's, driven by the comparison between the molar fraction of the pentane present in the output of the plant (LPG) and the desired amount. However, the molar fraction of pentane is difficult to measure on-line, due to constraints such as: long intervals of measurement, high reliability and low cost. Therefore, an inference system was used, based on a multilayer neural network, to infer the pentane molar fraction through secondary variables of the column. Finally, the results shown that the proposed control system were able to control the value of pentane molar fraction under different operational situations / No presente trabalho, aplicamos t?cnicas de intelig?ncia artificial em um sistema simulado de destila??o de petr?leo, mais especificamente em uma coluna debutanizadora. Nesse processo, o produto que chega ? coluna, conhecido como LGN, ? fracionado por meio de aquecimento. Os componentes mais leves s?o transformados em vapor, que v?o constituir o GLP (G?s Liquefeito de Petr?leo), enquanto as fra??es mais pesadas continuam l?quidas, sendo, comumente, chamadas de C5+. Na composi??o do GLP, idealmente, temos apenas propanos e butanos, por?m, na pr?tica, temos a presen?a de contaminantes, como, por exemplo, pentanos (ipentanos e n-pentanos). O objetivo do trabalho ? regular ? quantidade de pentano presente no GLP, por meio da determina??o inteligente dos sets points (SP) de controladores presentes na instrumenta??o original da coluna. Para isso ? utilizado um sistema fuzzy, que ser? respons?vel por ajustar os valores desses SP s, a partir da compara??o entre a fra??o molar do pentano na sa?da da planta (GLP) e a quantidade desejada. Optou-se por controlar apenas a fra??o molar de i-pentano, por esta ser, normalmente, maior que a fra??o molar do n-pentano, e ainda, devido ao fato de que ambas apresentam din?micas extremamente semelhantes em fun??o das condi??es de opera??o da coluna. Por?m, a fra??o molar de pentano, seja do i-pentano ou n-pentano, ? de dif?cil medi??o on-line devido a limita??es, como: longos intervalos de medi??o, pouca confiabilidade e alto custo. Por essa raz?o, foi utilizado um sistema de infer?ncia, constru?do a partir de uma rede neural de m?ltiplas camadas para inferir o percentual de i-pentano a partir de vari?veis secund?rias da coluna. Os resultados obtidos mostram que o sistema fuzzy conseguiu controlar o valor da fra??o molar do i-pentano para diversas situa??es, mostrando ser um sistema de controle avan?ado vi?vel e com um n?vel satisfat?rio de confiabilidade
53

Diagnóstico automático de defeitos em rolamentos baseado em lógica fuzzy / Automatic diagnoses of rolling bearing failures based in fuzzy logic.

Rodrigo Yoshiaki Fujimoto 08 December 2005 (has links)
Este trabalho apresenta duas metodologias baseadas em lógica fuzzy para automatizar o diagnóstico de defeito em equipamentos mecânicos, além de fazer uma comparação de seu desempenho utilizando um caso experimental. As duas metodologias estudadas são: o sistema de inferência fuzzy e o algoritmo baseado em Fuzzy C-Means. O alarme estatístico é uma metodologia existente atualmente na indústria com este objetivo e que será utilizado neste trabalho para comparação de desempenho. Para realizar os testes, foram desenvolvidos programas que permitiram criar alarmes e sistemas fuzzy utilizando um banco de dados experimental. De modo diferente ao que são feitos normalmente, os sistemas fuzzy de diagnóstico testados neste trabalho foram construídos automaticamente utilizando informações do banco de dados experimentais composto por sinais de vibração, que representam a condição normal e diversos tipos de defeitos em mancais de rolamentos. Os parâmetros escalares característicos necessários para a entrada nos sistemas fuzzy foram obtidos através do processamento dos sinais de vibração de mancais de rolamentos. Nas análises realizadas neste trabalho, foi estudada a influência de diversos características de criação do sistema fuzzy. Como exemplo, pode-se citar como principal influência, a complexidade do banco de dados a ser analisado pelo sistema fuzzy. Por fim, além de apresentar uma comparação de performance entre as metodologias fuzzy apresentadas no trabalho, com o alarme estatístico, são discutidas as características de cada uma destas metodologias. Destacam-se como principais contribuições deste trabalho, a obtenção de uma metodologia utilizada para criar de maneira automática o sistema de inferência fuzzy e as modificações realizadas no algoritmo Fuzzy C-Means para aperfeiçoar o desempenho em classificação de defeitos. / This works describes two proposed methodologies for the automatic diagnoses in mechanical equipment: the fuzzy system inference and a Fuzzy C-Means based algorithm. Their performances are evaluated in an experimental case and, afterwards, also compared by the statistical alarm, a diagnostic methodology very used in industries at present. In order to do the tests, a developed computer algorithm allowed creating alarms and fuzzy systems by the use of an experimental database. These tested diagnostic systems were automatically built using information from the mentioned database that was composed by samples of vibration signals, representing several types of rolling bearing defects and the bearing normal condition. The fuzzy systems input scalar parameters were obtained by signal processing. The influence of some of the building fuzzy systems parameters in the system performance was also studied, which allow establishing, for example, that the database complexity is an important factor in the fuzzy system performance. Finally, this work discusses the main characteristics of each one of the described methodologies. The most important contribution of this work is the proposition of a methodology for creating fuzzy system automatically as well as the analysis of the fuzzy C-Means as a tool for system diagnoses.
54

Implementations of Fuzzy Adaptive Dynamic Programming Controls on DC to DC Converters

Chotikorn, Nattapong 05 1900 (has links)
DC to DC converters stabilize the voltage obtained from voltage sources such as solar power system, wind energy sources, wave energy sources, rectified voltage from alternators, and so forth. Hence, the need for improving its control algorithm is inevitable. Many algorithms are applied to DC to DC converters. This thesis designs fuzzy adaptive dynamic programming (Fuzzy ADP) algorithm. Also, this thesis implements both adaptive dynamic programming (ADP) and Fuzzy ADP on DC to DC converters to observe the performance of the output voltage trajectories.
55

Klasifikace mikrospánku analýzou EEG / Classification of microsleep by means of analysis EEG signal

Ronzhina, Marina January 2009 (has links)
This master thesis deals with detection of microsleep on the basis of the changes in power spectrum of EEG signal. The results of time-frequency analysis are input values for the classifikation. Proposed classification method uses fuzzy logic. Four classifiers were designed, which are based on a fuzzy inference systems, that are differ in rule base. The results of fuzzy clustering are used for the design of rule premises membership functions. The two classifiers microsleep detection use only alpha band of the EEG signal’s spectrogram then allows the detection of the relaxation state of a person. Unlike to first and second classifiers, the third classifier is supplemented with rules for the delta band, which makes it possible to distinguish the 3 states: vigilance, relaxation and somnolence. The fourth classifier inference system includes the rules for the whole spectrum band. The method was implemented by computer. The program with a graphical user interface was created.
56

[en] AUTOMFIS: A FUZZY SYSTEM FOR MULTIVARIATE TIME SERIES FORECAST / [pt] AUTOMFIS: UM SISTEMA FUZZY PARA PREVISÃO DE SÉRIES TEMPORAIS MULTIVARIADAS

JULIO RIBEIRO COUTINHO 08 April 2016 (has links)
[pt] A série temporal é a representação mais comum para a evoluçãao no tempo de uma variável qualquer. Em um problema de previsão de séries temporais, procura-se ajustar um modelo para obter valores futuros da série, supondo que as informações necessárias para tal se encontram no próprio histórico da série. Como os fenômenos representados pelas séries temporais nem sempre existem de maneira isolada, pode-se enriquecer o modelo com os valores históricos de outras séries temporais relacionadas. A estrutura formada por diversas séries de mesmo intervalo e dimensão ocorrendo paralelamente é denominada série temporal multivariada. Esta dissertação propõe uma metodologia de geração de um Sistema de Inferência Fuzzy (SIF) para previsão de séries temporais multivariadas a partir de dados históricos, com o objetivo de obter bom desempenho tanto em termos de acurácia de previsão como no quesito interpretabilidade da base de regras – com o intuito de extrair conhecimento sobre o relacionamento entre as séries. Para tal, são abordados diversos aspectos relativos ao funcionamento e à construção de um SIF, levando em conta a sua complexidade e claridade semântica. O modelo é avaliado por meio de sua aplicação em séries temporais multivariadas da base completa da competição M3, comparandose a sua acurácia com as dos métodos participantes. Além disso, através de dois estudos de caso com dados reais públicos, suas possibilidades de extração de conhecimento são exploradas por meio de dois estudos de caso construídos a partir de dados reais. Os resultados confirmam a capacidade do AutoMFIS de modelar de maneira satisfatória séries temporais multivariadas e de extrair conhecimento da base de dados. / [en] A time series is the most commonly used representation for the evolution of a given variable over time. In a time series forecasting problem, a model aims at predicting the series future values, assuming that all information needed to do so is contained in the series past behavior. Since the phenomena described by the time series does not always exist in isolation, it is possible to enhance the model with historical data from other related time series. The structure formed by several different time series occurring in parallel, each featuring the same interval and dimension, is called a multivariate time series. This dissertation proposes a methodology for the generation of a Fuzzy Inference System (FIS) for multivariate time series forecasting from historical data, aiming at good performance in both forecasting accuracy and rule base interpretability – in order to extract knowledge about the relationship between the modeled time series. Several aspects related to the operation and construction of such a FIS are investigated regarding complexity and semantic clarity. The model is evaluated by applying it to multivariate time series obtained from the complete M3 competition database and by comparing it to other methods in terms of accuracy. In addition knowledge extraction possibilities are explored through two case studies built from actual data. Results confirm that AutoMFIS is indeed capable of modeling time series behaviors in a satisfactory way and of extractig meaningful knowldege from the databases.
57

[en] E-AUTOMFIS: INTERPRETABLE MODEL FOR TIME SERIES FORECASTING USING ENSEMBLE LEARNING OF FUZZY INFERENCE SYSTEM / [pt] E-AUTOMFIS: MODELO INTERPRETÁVEL PARA PREVISÃO DE SÉRIES MULTIVARIADAS USANDO COMITÊS DE SISTEMAS DE INFERÊNCIA FUZZY

THIAGO MEDEIROS CARVALHO 17 June 2021 (has links)
[pt] Por definição, a série temporal representa o comportamento de uma variável em função do tempo. Para o processo de previsão de séries, o modelo deve ser capaz de aprender a dinâmica temporal das variáveis para obter valores futuros. Contudo, prever séries temporais com exatidão é uma tarefa que vai além de escolher o modelo mais complexo, e portanto a etapa de análise é um processo fundamental para orientar o ajuste do modelo. Especificamente em problemas multivariados, o AutoMFIS é um modelo baseado na lógica fuzzy, desenvolvido para introduzir uma explicabilidade dos resultados através de regras semanticamente compreensíveis. Mesmo com características promissoras e positivas, este sistema possui limitações que tornam sua utilização impraticável em problemas com bases de dados com alta dimensionalidade. E com a presença cada vez maior de bases de dados mais volumosas, é necessário que a síntese automática de sistemas fuzzy seja adaptada para abranger essa nova classe de problemas de previsão. Por conta desta necessidade, a presente dissertação propõe a extensão do modelo AutoMFIS para a previsão de séries temporais com alta dimensionalidade, chamado de e-AutoMFIS. Apresentase uma nova metodologia, baseada em comitê de previsores, para o aprendizado distribuído de geração de regras fuzzy. Neste trabalho, são descritas as características importantes do modelo proposto, salientando as modificações realizadas para aprimorar tanto a previsão quanto a interpretabilidade do sistema. Além disso, também é avaliado o seu desempenho em problemas reais, comparando-se a acurácia dos resultados com as de outras técnicas descritas na literatura. Por fim, em cada problema selecionado também é considerado o aspecto da interpretabilidade, discutindo-se os critérios utilizados para a análise de explicabilidade. / [en] By definition, the time series represents the behavior of a variable as a time function. For the series forecasting process, the model must be able to learn the temporal dynamics of the variables in order to obtain consistent future values. However, an accurate time series prediction is a task that goes beyond choosing the most complex (or promising) model that is applicable to the type of problem, and therefore the analysis step is a fundamental procedure to guide the adaptation of a model. Specifically, in multivariate problems, AutoMFIS is a model based on fuzzy logic, developed not only to give accurate forecasts but also to introduce the explainability of results through semantically understandable rules. Even with such promising characteristics, this system has shown practical limitations in problems that involve datasets of high dimensionality. With the increasing demand formethods to deal with large datasets, it should be great that approaches for the automatic synthesis of fuzzy systems could be adapted to cover a new class of forecasting problems. This dissertation proposes an extension of the base model AutoMFIS modeling method for time series forecasting with high dimensionality data, named as e-AutoMFIS. Based on the Ensemble learning theory, this new methodology applies distributed learning to generate fuzzy rules. The main characteristics of the proposed model are described, highlighting the changes in order to improve both the accuracy and the interpretability of the system. The proposed model is also evaluated in different case studies, in which the results are compared in terms of accuracy against the results produced by other methods in the literature. In addition, in each selected problem, the aspect of interpretability is also assessed, which is essential for explainability evaluation.
58

[en] RANDOMFIS: A FUZZY CLASSIFICATION SYSTEM FOR HIGH DIMENSIONAL PROBLEMS / [pt] RANDOMFIS: UM SISTEMA DE CLASSIFICAÇÃO FUZZY PARA PROBLEMAS DE ALTA DIMENSIONALIDADE

OSCAR HERNAN SAMUDIO LEGARDA 20 December 2016 (has links)
[pt] Hoje em dia, grande parte do conhecimento acumulado está armazenada em forma de dados. Dentre as ferramentas capazes de atuar como modelos representativos de sistemas reais, os Sistemas de Inferência Fuzzy têm se destacado pela capacidade de fornecer modelos precisos e, ao mesmo tempo, interpretáveis. A interpretabilidade é obtida a partir de regras linguísticas, que podem ser extraídas de bases de dados bases históricas e que permitem ao usuário compreender a relação entre as variáveis do problema. Entretanto, tais sistemas sofrem com a maldição da dimensionalidade ao lidar com problemas complexos, isto é, com um grande número de variáveis de entrada ou padrões, gerando problemas de escalabilidade. Esta dissertação apresenta um novo algoritmo de geração automática de regras, denominado RandomFIS, especificamente para problemas de classificação, capaz de lidar com grandes bases de dados tanto em termos de número de variáveis de entrada (atributos) quanto em termos de padrões (instâncias). O modelo RandomFIS utiliza os conceitos de seleção de variáveis (Random Subspace) e Bag of Little Bootstrap (BLB), que é uma versão escalável do Bootstrapping, criando uma estrutura de comitê de classificadores. O RandomFIS é avaliado em várias bases benchmark, demostrando ser um modelo robusto que mantém a interpretabilidade e apresenta boa acurácia mesmo em problemas envolvendo grandes bases de dados. / [en] Nowadays, much of the accumulated knowledge is stored as data. Among the tools capable of acting as representative models of real systems, Fuzzy Inference Systems are recognized by their ability to provide accurate and at the same time interpretable models. Interpretability is obtained from linguistic rules, which can be extracted from historical databases. These rules allow the end user to understand the relationship between variables in a specific problem. However, such systems experience the curse of dimensionality when handling complex problems, i.e. with a large number of input variables or patterns in the dataset, giving origin to scalability issues. This dissertation presents a new algorithm for automatic generation of fuzzy rules, called RandomFIS, specifically for classification problems, which is able to handle large databases both in terms of number of input variables (attributes) and in terms of patterns (instances). The RandomFIS model makes use of feature selection concepts (Random Subspace) and Bag of Little Bootstrap (BLB), which is a scalable version of Bootstrapping, creating a classifier committee structure. RandomFIS is tested in several benchmark datasets and shows to be a robust model that maintains interpretability and good accuracy even in problems involving large databases.
59

THE ANALYSIS OF HIGH FREQUENCY OSCILLATIONS AND SUPPRESSION IN EPILEPTIC SEIZURE DATA

Kuo, Chia-Hung 11 June 2014 (has links)
No description available.
60

Evaluation of seasonal impacts on nitrifiers and nitrification performance of a full-scale activated sludge system

Awolusi, Oluyemi Olatunji January 2016 (has links)
Submitted in complete fulfillment for the degree of Doctor of Philosophy (Biotechnology), Durban University of Technology, Durban, South Africa, 2016. / Seasonal nitrification breakdown is a major problem in wastewater treatment plants which makes it difficult for the plant operators to meet discharge limits. The present study focused on understanding the seasonal impact of environmental and operational parameters on nitrifiers and nitrification, in a biological nutrient removal wastewater treatment works situated in the midlands of KwaZulu Natal. Composite sludge samples (from the aeration tank), influent and effluent water samples were collected twice a month for 237 days. A combination of fluorescent in-situ hybridization, polymerase chain reaction (PCR)-clone library, quantitative polymerase chain reaction (qPCR) were employed for characterizing and quantifying the dominant nitrifiers in the plant. In order to have more insight into the activated sludge community structure, pyrosequencing was used in profiling the amoA locus of ammonia oxidizing bacteria (AOB) community whilst Illumina sequencing was used in characterising the plant’s total bacterial community. The nonlinear effect of operating parameters and environmental conditions on nitrification was also investigated using an adaptive neuro-fuzzy inference system (ANFIS), Pearson’s correlation coefficient and quadratic models. The plant operated with higher MLSS of 6157±783 mg/L during the first phase (winter) whilst it was 4728±1282 mg/L in summer. The temperature recorded in the aeration tanks ranged from 14.2oC to 25.1oC during the period. The average ammonia removal during winter was 60.0±18% whereas it was 83±13% during summer and this was found to correlate with temperature (r = 0.7671; P = 0.0008). A significant correlation was also found between the AOB (amoA gene) copy numbers and temperature in the reactors (α= 0.05; P=0.05), with the lowest AOB abundance recorded during winter. Sanger sequencing analysis indicated that the dominant nitrifiers were Nitrosomonas spp. Nitrobacter spp. and Nitrospira spp. Pyrosequencing revealed significant differences in the AOB population which was 6 times higher during summer compared to winter. The AOB sequences related to uncultured bacterium and uncultured AOB also showed an increase of 133% and 360% respectively when the season changed from winter to summer. This study suggests that vast population of novel, ecologically significant AOB species, which remain unexploited, still inhabit the complex activated sludge communities. Based on ANFIS model, AOB increased during summer season, when temperature was 1.4-fold higher than winter (r 0.517, p 0.048), and HRT decreased by 31% as a result of rainfall (r - 0.741, p 0.002). Food: microorganism ratio (F/M) and HRT formed the optimal combination of two inputs affecting the plant’s specific nitrification (qN), and their quadratic equation showed r2-value of 0.50. This study has significantly contributed towards understanding the complex relationship between the microbial population dynamics, wastewater composition and nitrification performance in a full-scale treatment plant situated in the subtropical region. This is the first study applying ANFIS technique to describe the nitrification performance at a full-scale WWTP, subjected to dynamic operational parameters. The study also demonstrated the successful application of ANFIS for determining and ranking the impact of various operating parameters on plant’s nitrification performance, which could not be achieved by the conventional spearman correlation due to the non-linearity of the interactions during wastewater treatment. Moreover, this study also represents the first-time amoA gene targeted pyrosequencing of AOB in a full-scale activated sludge is being done. / D

Page generated in 0.0616 seconds