• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • Tagged with
  • 13
  • 13
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Development of CRISPR-based programmable transcriptional regulators and their applications in plants

Selma García, Sara 01 September 2022 (has links)
[ES] La Biología Sintética de Plantas tiene como objetivo rediseñar las plantas para que adquieran características y funcionalidades novedosas a través de circuitos reguladores ortogonales. Para lograr este objetivo, se deben desarrollar nuevas herramientas moleculares con la capacidad de interactuar con factores endógenos de manera potente y específica. CRISPR/Cas9 surgió como una herramienta prometedora que combina la capacidad personalizable de unión al DNA, a través de la versión catalíticamente inactivada de la proteína Cas9 (dCas9), con la posibilidad de anclar dominios autónomos de activación transcripcional (TADs) a su estructura para lograr una regulación específica de la expresión génica. Los activadores transcripcionales programables (PTAs) pueden actuar como procesadores específicos, ortogonales y versátiles para el desarrollo de nuevos circuitos genéticos en las plantas. En busca de dCas9-PTA optimizados, se llevó a cabo una evaluación combinatoria de diferentes arquitecturas dCas9 con un catálogo de varios TAD. La mejor herramienta resultante de esta comparación, denominada dCasEV2.1, se basa en la estrategia scRNA y la combinación de los dominios de activación EDLL y VPR con un bucle multiplexable gRNA2.1, que es una versión mutada del gRNA2.0 descrito previamente. En este trabajo, el activador programable dCasEV2.1 demostró ser una herramienta potente y específica, logrando tasas de activación más altas que otras estrategias dCas9 disponibles en plantas. Se observaron tasas de activación sin precedentes dirigidas a genes endógenos en N. benthamiana, acompañadas de una estricta especificidad en todo el genoma, lo que hace que esta herramienta sea adecuada para la regulación estricta de redes reguladoras complejas. Como prueba de concepto, se diseñaron cuatro programas de activación para distintas ramas de la ruta de los flavonoides, buscando obtener enriquecimientos metabólicos específicos en hojas de N. benthamiana. El análisis metabólico de las hojas metabólicamente reprogramadas mediante dCasEV2.1 reveló un enriquecimiento selectivo de los metabolitos diana y sus derivados glicosilados, que se correlacionaron con el programa de activación empleado. Estos resultados demuestran que dCasEV2.1 es una herramienta eficaz para la ingeniería metabólica y un componente clave en los circuitos genéticos destinados a reprogramar los flujos metabólicos. Finalmente, basándonos en dCasEV2.1, desarrollamos un sistema optimizado de regulación de genes inducidos por virus (VIGR) que utiliza un vector Potato Virus X (PVX) para el suministro de los programas de activación CRISPR codificados con gRNA. Este enfoque permite controlar el transcriptoma de la planta a través de una aplicación sistémica basada en aerosol de componentes CRISPR a plantas adultas. El nuevo sistema PVX-VIGR produjo una fuerte activación transcripcional en varios genes diana endógenos, incluidos tres factores de transcripción MYB-like seleccionados. Las activaciones específicas de MYB condujeron a perfiles metabólicos distintivos, demostrando que las aplicaciones potenciales de la herramienta dCasEV2.1 en plantas incluyen la obtención de perfiles metabólicos personalizados utilizando un suministro basado en aerosol de instrucciones de reprogramación transcripcional codificadas por gRNA. En resumen, esta tesis proporciona herramientas novedosas para la activación transcripcional fuerte, ortogonal y programable en plantas, con una caja de herramientas ampliada para el suministro de los programas de activación. / [CA] La Biologia Sintètica de Plantes té com objectiu redissenyar les plantes per que obtinguen característiques i funcionalitats innovadores mitjançant circuits reguladors ortogonals. Per arribar a aquest objectiu, s'han de desenvolupar noves ferramentes moleculars amb la capacitat d'interactuar amb factor endògens d'una manera potent i específica. CRISPR/Cas9 va sorgir com una ferramenta prometedora que combina la capacitat personalitzable d'unió al DNA, mitjançant la versió catalíticament inactivada de la proteïna Cas9 (dCas9), amb la possibilitat de fixar dominis autònoms de activació transcripcional (TADs) a la seua estructura per aconseguir una regulació específica de la expressió gènica. Els activadors transcripcionals programables (PTAs) poden actuar com a processadors específics, ortogonals i versàtils per al desenvolupament de nous circuits genètics a les plantes. Buscant dCas9-PTA optimitzats, es va realitzar una avaluació combinatòria de distintes arquitectures dCas9 amb un catàleg de diversos TAD. La millor ferramenta segons aquesta comparació, anomenada dCasEV2.1, es basa en la estratègia scRNA i la combinació del dominis d'activació EDLL i VPR amb un bucle multiplexable gRNA2.1, que es una versió mutada del gRNA2.0 descrit prèviament. En aquest treball, el activador programable dCasEV2.1 es va mostrar com una ferramenta potent i específica, aconseguint nivells d'activació majors que altes estratègies dCas9 disponibles en plantes. Es van observar taxes d'activació sense precedents dirigides a gens endògens en N. benthamiana, junt a una estricta especificitat en tot el genoma, indicant que aquesta ferramenta és adequada per a la regulació estricta de xarxes reguladores complexes. Como proba de concepte, se van dissenyar quatre programes d'activació per a diferent branques de la ruta dels flavonoides, cercant obtenir enriquiments metabòlics específics en fulles de N. benthamiana. L'anàlisi metabòlic de les fulles metabòlicament reprogramades mitjançant dCasEV2.1 va revelar un enriquiment selectiu del metabòlits diana i els seus derivats glicosilats que es correlacionen amb el programa d'activació emprat. Aquests resultats demostren que dCasEV2.1 és una ferramenta eficaç per a l'enginyeria metabòlica i un component clau als circuits genètics destinats a reprogramar els fluxos metabòlics. Finalment, en base a dCasEV2.1, desenvoluparem un sistema optimitzat de regulació de gens induïts per virus (VIGR) que utilitza un vector Potato Virus X (PVX) per al subministrament dels programes d'activació CRISPR codificats amb gRNA. Aquesta aproximació permet controlar el transcriptoma de la planta mitjançant l'aplicació sistèmica basada en aerosol de components CRISPR a plantes adultes. El nou sistema PVX-VIGR va produir una gran activació transcripcional en diversos gens diana endògens, inclosos tres factors de transcripció MYB-like seleccionats prèviament. Les activacions específiques de MYB conduïren a perfils metabòlics distintius, demostrant que les aplicacions potencials de la ferramenta dCasEV2.1 en plantes inclouen la obtenció de perfils metabòlics personalitzats emprant un subministrament basat en aerosol de instruccions de reprogramació transcripcional codificades per gRNA. En resum, aquesta tesis proporciona noves ferramentes per a l'activació transcripcional forta, ortogonal i programable en plantes, amb una caixa de ferramentes eixamplada per al subministraments dels programes d'activació. / [EN] Plant Synthetic Biology aims to redesign plants to acquire novel traits and functionalities through orthogonal regulatory circuits. To achieve this goal, new molecular tools with the capacity of interacting with endogenous factors in a potent and specific manner must be developed. CRISPR/Cas9 emerged as promising tools which combine a customizable DNA-binding activity through the catalytically inactivated version of Cas9 protein (dCas9) with the possibility to anchor autonomous transcriptional activation domains (TADs) to its structure to achieve a specific regulation of the gene expression. The Programmable Transcriptional Activators (PTAs) could act as specific, orthogonal and versatile processor components in the development of new genetic circuits in plants. In search for optimized dCas9-PTAs, a combinatorial evaluation of different dCas9 architectures with a catalogue of various TADs was performed. The best resulting tool of this comparison, named dCasEV2.1, is based on the scRNA strategy and the combination of EDLL and VPR activation domains with a multiplexable gRNA2.1 loop, which is a mutated version of the previously described gRNA2.0. In this work, the dCasEV2.1 programable activator was proved to be a strong and specific tool, achieving higher activation rates than other available dCas9 strategies in plants. Unprecedented activation rates were observed targeting endogenous genes in N. benthamiana, accompanied by strict genome-wide specificity that makes this tool suitable to perform a tight regulation of complex regulatory networks. As a proof of concept, a design of four activation programs to activate different branches of the flavonoid pathway and obtain specific metabolic enrichments in N. benthamiana leaves was performed. The metabolic analysis on the dCasEV2.1 metabolically reprogrammed leaves revealed a selective enrichment of the targeted metabolites and their glycosylated derivatives that correlated with the activation program employed. These results demonstrate that dCasEV2.1 is a powerful tool for metabolic engineering and a key component in genetic circuits aimed at reprogramming metabolic fluxes. Finally, based on dCasEV2.1, we developed an optimized Viral Induced Gene Regulation (VIGR) system that makes use of a Potato Virus X (PVX) vector for the delivery of the gRNA-encoded CRISPR activation programs. This approach offers a way to control the plant transcriptome through a spray-based systemic delivery of CRISPR components to adult plants. The new PVX-VIGR system led to strong transcriptional activation in several endogenous target genes, including three selected MYB-like transcription factors. Specific MYB activations lead to distinctive metabolic profiles, showing that the potential applications of the dCasEV2.1 tool in plants include the obtention of custom metabolic profiles using a spray-based delivery of gRNA-encoded transcriptional reprogramming instructions. In sum, this thesis provides novel tools for strong, orthogonal and programmable transcriptional activation in plants, with an expanded toolbox for the delivery of the activation programs. / Selma García, S. (2022). Development of CRISPR-based programmable transcriptional regulators and their applications in plants [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185046 / TESIS
12

Diversificación de la producción de estilbenos en cultivos celulares de vid mediante ingeniería metabólica

Martínez Márquez, Ascensión 02 December 2016 (has links)
No description available.
13

Enginyeria metabòlica d'Escherichia coli per a la producció de glicoglicerolípids

Mora Buyé, Neus 17 October 2011 (has links)
L’enginyeria metabòlica és una estratègia molt útil per produir molècules d’alt valor afegit mitjançant microorganismes. Molècules d’interès per la seva funció biològica, d’estructura complexa i amb dificultats en la seva obtenció i síntesi s’han obtingut de forma molt satisfactòria mitjançant aquesta metodologia. En el laboratori de Bioquímica de l’IQS s‘estudia la glicosiltransferasa de Micoplasma genitalium codificada pel gen mg517 i responsable de la síntesi de glicoglicerolípids (Andrés et al., 2010). S’ha vist que aquesta proteïna sobreexpressada en E.coli és funcional i acumula diferents glicoglicerolípids en la membrana plasmàtica. Aquests glicoglicerolípids mostren diferents punts d’interès. D’una banda, són tensioactius d’alt valor afegit que permeten la construcció de niosomes per l’alliberament controlat de fàrmacs i, d’altra banda, s’han relacionat com agents terapèutics amb inhibició de tumors cancerígens. Degut al creixent interès d’aquests productes,en el present treball s‘ha escollit E. coli com a microorganisme a modificar per enginyeria metabòlica per la producció de glicoglicerolípids, ja que per una banda, no presenta aquests lípids però sí sintetitza els seus precursors UDP-glucosa i diacilglicerol (DAG). S’han dissenyat diferents soques d’E.coli on se sobreexpressen la glicosiltransferasa MG517 i, a més, la uridiltransferasa GalU procedent d’E.coli JM109, que sintetitza el precursor UDP-glucosa a partir de glucosa 1-fosfat, i l’aciltransferasa PlsC involucrada en la biosíntesi del precursor DAG. En les soques on les proteïnes GalU i PlsC s’han sobreexpressat, les seves activitats han augmentat 220 i 80 vegades, respectivament. La glicosiltransferasa MG517 és activa en totes les soques però, sorprenentment, la seva activitat després de les cinc hores d‘inducció és10 vegades inferior quan es dóna la coexpressió de MG517 i PlsC. S’observa que la sobreproducció de UDP-glucosa no incrementa la quantitat total de glicoglicerolípids mentre que el DAG sí, de manera que la soca AbC amb els gens mg517 i plsC és la que sintetitza més glicoglicerolípids, arribant a nivells de 1059 nM per biomassa. Dels tres glicoglicerolípids formats, el diglucosilacilglicerol és sempre el més abundant i el seu percentatge varia entre 57 i 82% en funció de la coexpressió dels enzims. La producció d’aquests nous lípids en la membrana d’E. coli implica que el percentatge del fosfolípid fosfatidiletanolamina disminueixi un 20%, mentre els fosfolípids anionis es mantenen constants. Es conclou que la soca modificada d’E. coli AbC és una bona plataforma per la producció de nous glicolípids amb diferent estructura. / La ingeniería metabólica es una estrategia muy útil para producir moléculas de valor añadido mediante microorganismos. Moléculas de interés por su función biológica, de estructura compleja y con dificultades en su obtención y síntesis se han obtenido de forma muy satisfactoria con el uso de esta metodología. En el laboratorio de Bioquímica del IQS se estudia la glicosiltransferasa de Micoplasma genitalium codificada por el gen mg517 y responsable de la síntesis de glicoglicerolípidos (Andrés et al. 2011). Se ha observado que esta proteína sobreexpresada en E.coli es funcional y acumula estos lípidos en la membrana plasmática. Los glicoglicerolípidos muestran diferentes puntos de interés. Por una parte, son tensioactivos que permiten la construcción de niosomas para la liberación controlada de fármacos y, por otra parte, se han seleccionado como agentes terapéuticos con inhibición de tumores cancerígenos. Debido al creciente interés de estos productos, en el presente trabajo, se ha escogido E.coli como microorganismo a modificar por ingeniería metabólica para la producción de glicoglicerolípidos, ya que no presenta estos lípidos pero sí sintetiza sus precursores UDP-glucosa y diacilglicerol (DAG). Se han diseñado diferentes cepas de E.coli donde se sobreexpressa la glicosiltransferasa MG517 y, además, la uridiltransferasa GalU de E.coli JM109, que sintetiza el precursor UDP-glucosa, y la aciltransferasa PlsC involucrada en la biosíntesis del precursor DAG. En las cepas donde las proteínas GalU y PlsC se han sobreexpressado, sus actividades han aumentado 220 y 80 veces, respectivamente. La glicosiltransferasa MG517 es activa en todas las cepas pero, sorprendentemente, su actividad después de inducir es 10 veces inferior cuando se da la coexpresión de MG517 y PlsC. Se observa que la sobreproducción de UDP-glucosa no incrementa la cantidad total de glicoglicerolípidos mientras que el DAG sí, de forma que la cepa AbC con los genes mg517 y plsC es la que sintetiza más glicoglicerolípidos, llegando a niveles de 1059 nM por biomasa. De los tres glicoglicerolípidos formados, el diglucosildiacilglicerol es siempre el más abundante y su porcentaje varía entre 57 y 82% en función de la coexpressión de las enzimas. La producción de los nuevos lípidos en la membrana de E.coli implica que el porcentaje del fosfolípido fosfatidiletanolamina disminuya un 20%, mientras los fosfolípidos aniónicos se mantienen contantes. Se concluye que la cepa modificada de E.coli AbC es una buena plataforma para la producción de nuevos glicolípidos con distinta estructura. / Metabolic engineering is a useful strategy to achieve target molecules using microorganisms. Molecules of high biological value, with complex estructure and difficulties to be obtained and synthesised, as for example, glycoconjugates, have been successfully obtained by this methodology (Ruffing i Chen, 2010). Our group studies the Mycoplasma genitalium glycosyltransferase encoded by mg517 gene and responsible of glycoglycerolipid synthesis. (Andrés et al., 2010). This protein overexpressed in E. coli is functional and accumulates the glycolipids in its plasma membrane. These glycoglycerolipids have different points of interest. On one hand, they are biosurfactants and evencan form niosomes for drug delivery systems. On the other hand, they have been related to inhibition of cancer tumors. Due to growing interest of these products, and in order to improve production of glycoglycerolipids, different metabolic engineered E. coli strains have been designed in this work. This microorganism has been chosen since on the one hand, it does not produce these lipids but its metabolism produces the glicoglicerolipids precursors, UDP-glucose and diacylglycerol (DAG). In these strains, the glycosyltransferase is coexpressed with genes related to biosynthesis of both precursors. Therefore coexpression of the glycosyltransferase MG517, the uridyl transferase GalU from E. coli JM109, which synthesizes the precursor Glc-UDP from glucose-1-phosphate, and the acyl transferase PlsC involved in the biosynthesis of the precursor DAG have been studied. Once modified strains were constructed, their phenotype have been analysed. On one hand, the three enzymatic activities have been determined in vitro from the cell extracts. When GalU and PlsC were overexpressed, their activities increased 220 and 80-fold, respectively, compared to the controls. The glycosyltransferase MG517 was active in these modified strains but, surprisingly, its activity decreases 10-fold when MG517 and PlsC were coexpressed. It is observed that overproduction of UDP-glucose does not increase total glycolipids amount while DAG have a positive impact on this production, being strain with mg517 and plsC genes which produces more glycolipids achieving 1059 nM per biomass. . Furthermore, the modified strains showed different glycoglycerolipids profiles. In all strains the disaccharide glycoglycerolipid is the most abundant but its percentage varies from 57% to 82% depending on enzyme coexpression. Production of these new lipids in E. coli membrane implies less synthesis of phosphatidylethanolamine phospholipid, which is characteristic of this microorganism. Our results show the modified E. coli strain with mg517 and plsC genes is a good platform microorganism for the production of new glicolipids with different structure.

Page generated in 0.0977 seconds