• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 21
  • 19
  • 4
  • 4
  • 3
  • 1
  • 1
  • Tagged with
  • 125
  • 125
  • 52
  • 29
  • 24
  • 19
  • 18
  • 17
  • 16
  • 16
  • 16
  • 14
  • 14
  • 13
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Avaliação dos efeitos da inflamação na infecção respiratória por Streptococcus pneumoniae em camundongos. / Evaluation of the effects of inflammation on the respiratory infection caused by Streptococcus pneumoniae in mice.

Rubia Isler Mancuso 21 June 2016 (has links)
A resposta inflamatória aguda é uma importante defesa contra o Streptococcus pneumoniae, mas a persistência na inflamação pode causar danos aos tecidos. Duas linhagens de camundongos geneticamente selecionadas para resposta inflamatória aguda mínima (AIRmin) e máxima (AIRmax) foram avaliadas frente a um desafio respiratório invasivo com pneumococo. O desafio induziu a morte de 100% dos camundongos AIRmin, e apenas 36,4% dos camundongos AIRmax. A caracterização da resposta imune inata mostrou que ambas as linhagens de camundongos responderam ao desafio com secreção de citocinas pro-inflamatórias. Entretanto, apenas os camundongos AIRmax controlaram a inflamação. Diferenças significativas quanto à expressão de metaloproteases de matriz sugerem o papel destas proteínas no controle da infecção. Além disso, os camundongos AIRmin apresentaram um aumento no número de macrófagos expressando o receptor de manose CD206, após o desafio. Uma menor resistência de macrófagos e neutrófilos dos camundongos AIRmin à morte celular programada, após o desafio, também foi observada. / Acute inflammatory response is an important defense against Streptococcus pneumoniae, but persistence of inflammation may result in tissue damage. The susceptibility against an invasive respiratory pneumococcal challenge was evaluated in two outbred mice strains, genetically selected for maximum (AIRmax) and minimum (AIRmin) acute inflammatory responses. The challenge induced the death of 100% of the AIRmin mice and only 36.4% of the AIRmax mice. Characterization of the innate immune responses showed that both mice strains responded to the challenge with the secretion of inflammatory cytokines. However, only the AIRmax mice controlled the inflammation. Significant differences on the expression of matrix metalloproteinases suggest a role of these proteins in the control of the infection. Moreover, the AIRmin mice presented an increase in the number of macrophages expressing the CD206 mannose receptor after the challenge. A reduced resistance of macrophages and neutrophils from AIRmin mice to programmed cell death, after the challenge, was also observed.
22

The biological basis of heterogeneity in Parkinson's disease : insights from an innate immune perspective

Wijeyekoon, Ruwani Shamila January 2018 (has links)
The biological basis of the clinical heterogeneity in Parkinson's Disease (PD) is unclear. It is likely to involve complex interactions between genetic and environmental factors and between a range of pathological processes, including protein homeostasis and immune system function. Microglial activation in the brain and peripheral innate immune changes are known to occur in PD. Recently genetic, animal and cellular studies have linked several innate immune related genes and proteins (e.g. HLADR, TREM2, TLR2, TLR4, caspase-1) to PD and provided evidence that they may have a role in PD pathogenesis. Alpha-synuclein is central to PD, with evidence from neuropathology, genetics and animal/cell models indicating that it plays a significant pathogenic role. There is developing evidence directly linking innate immune activity and alpha-synuclein pathology. For example, inflammation, particularly in response to microbial infection, is associated with increased alpha-synuclein accumulation in the periphery and activation of the innate immune inflammasome related caspase-1 leads to increased cleavage and aggregation of alpha-synuclein. Overall Hypothesis- "Parkinson's disease (PD) and its clinical heterogeneity are associated with systemic changes in innate immune and associated microbial factors and in alpha-synuclein". This was investigated from the perspective of an epidemiological study, a study of peripheral blood monocyte, innate immune/microbial markers and a cerebrospinal fluid (CSF) study in PD patients. *The epidemiological study, involved the longitudinal PICNICS cohort of 290 Idiopathic PD patients, and showed that the use of medication known to influence alpha-synuclein and immune function is associated with motor heterogeneity in PD. *The peripheral immune study involved 41 early PD patients and 41 age, gender and MAPT genotype matched paired controls, with the PD patients categorised into 2 groups based on the presence of previously identified clinical and genetic risk factors for the development of an early dementia (impaired semantic fluency, pentagon copying and MAPT H1/H1 haplotype). This study demonstrated that the phenotypic profile of peripheral monocytes and the level of serum alpha-synuclein and relevant innate immune and microbial markers do differ in early PD compared to controls and that there are differential changes in those patients at higher versus lower risk for early dementia. The systemic alpha-synuclein related changes appear to be present overall in PD patients compared to controls, while the more microbial/innate immune related changes appear to be more prominent in the dementia higher risk group. *The CSF study involved samples from 35 PD patients and has demonstrated evidence of relationships between neurodegeneration-linked CSF tau species and inflammatory cytokines, and between CSF alpha-synuclein and cognitive function, suggesting that these factors may be involved in PD heterogeneity within the central nervous system as well. Overall, these studies provide evidence that variations in alpha synuclein/ tau homeostasis and innate immune and microbial factors are related to PD and its clinical heterogeneity.
23

Peptídeos antimicrobianos da hemolinfa do escorpião: Tityus serrulatus. / Antimicrobial peptides from the hemolymph of the scorpion: Tityus serrulatus.

Oliveira, Thiago de Jesus 05 October 2016 (has links)
Em artrópodes o sistema imune inato contribui para a adaptação de animais como os escorpiões à diferentes ambientes. Esse sistema é composto por mecanismos capazes de agir contra injúrias e a ação de microrganismos e entre esses mecanismos estão os peptídeos antimicrobianos (PAMs). O objetivo deste trabalho foi identificar PAMs presentes na hemolinfa de Tityus serrulatus. Para isso sua hemolinfa foi extraída e separados os hemócitos e plasma, em seguida fracionamos em 3 concentrações de acetonitrila em TFA 0,05% (05, 40 e 80%). Estas frações foram submetidas a uma cromatografia liquida de alta eficiência (CLAE) e os picos foram avaliados quanto a sua ação antimicrobiana e hemolítica. Foram identificadas 16 frações que apresentam atividade antimicrobiana. Uma das frações com atividade antimicrobiana, presente nos hemócitos apresentou similaridade com defensina descrita em carrapatos da espécie Ixodes scapularis. Essa fração possui aproximadamente 3486 Da, não apresenta atividade hemolítica e foi denominada como Serrulina. / In arthropods, its innate immune system contributes to the adaptation of animals like scorpions to different environments. This system consists of mechanisms that act avoiding injuries and against the action of microorganisms, among these mechanisms are antimicrobial peptides (AMPs). The aim of this study was to identify AMPs, present in the hemolymph of Tityus serrulatus. The hemolymph was extracted and then we separated hemocyte and plasma. The samples were fractionated in different concentrations of acetonitrile in TFA 0.05% (05, 40 and 80%). These fractions were subjected to high-performance liquid chromatography (HPLC) and the peaks obtained were evaluated for its antimicrobial and hemolytic action. We found sixteen fractions with antimicrobial activity. One of the fractions with antimicrobial activity, present in hemocytes, is similar with a defensin described in ticks, Ixodes scapularis. This fraction has about 3486 Da, has no hemolytic activity and was named as Serrulina.
24

"Study of the modulation of innate immune responses in intestinal epithelial cells by Toxoplasma gondii and its correlation with parasite virulence" / "Etude de la modulation des réponses immunitaires innées dans les cellules épithéliales intestinales par Toxoplasma gondii, et sa corrélation avec la virulence du parasite."

Morampudi, Vijay V 28 October 2010 (has links)
Early innate response of intestinal epithelial cells is the first line defense against enteric pathogens. Toxoplasma gondii infections acquired naturally via the peroral route, encounter intestinal epithelial cells early post-infection. Although the population structure of T. gondii is known to be highly clonal, clinical strains of T. gondii have been classified into three genotypes based on their virulence. In this study we investigated whether human intestinal epithelial cell immune response to T. gondii is virulence dependent. We demonstrated distinct virulence of the three T. gondii genotype strains evaluated in human intestinal epithelial cells by their capacity to replicate and induce host cell cytotoxicity. The early host innate mechanisms such as activation of signaling pathways and induction of innate effectors were likewise differentially elicited by the three T. gondii strains. Low levels of TLR dependent NF-kB activation and a failure to rapidly up-regulate innate cytokine and chemokine genes was observed after virulent Type I strain infection. In contrast, early innate response to the less virulent Type II strain was rapid, efficient and led to high levels of IL-8 and IL-6 secretion, whereas response to Type III parasites was intermediate. Early expression of b-defensin 2 gene was suppressed specifically by virulent Type I strain and its activation prior to infection in intestinal epithelial cells led to decreased parasite viability. These findings provide evidence for T. gondii strain virulence dependent down-modulation of early human intestinal epithelial cell innate responses and highlight the importance of these cells in host defense against this infection.
25

Is the epidermal club cell part of the innate immune system in fathead minnows?

Halbgewachs, Colin 29 September 2008
Fishes in the superorder Ostariophysi, including fathead minnows (Pimephales promelas), possess specialized epidermal club cells that contain an alarm substance. Damage to these cells, as would occur during a predator attack, causes the release of the alarm substance and can indicate the presence of actively foraging predators to nearby conspecifics. For nearly 70 years, research involving epidermal club cells has focused on the alarm substance and the role it plays in predator/prey interactions. However, recent studies have indicated that there may be a connection between epidermal club cells and the fish immune system. Fish increase investment in epidermal club cells upon exposure to skin penetrating pathogens and parasites. In this study I tested for differences in epidermal club cell investment by fathead minnows exposed to the immunosuppressive effects of the glucocorticoid hormone cortisol. In experiment 1, fathead minnows were exposed to either a single intraperitoneal injection of corn oil or no injection at all. The purpose of this experiment was to determine whether corn oil, the vehicle for cortisol injections in later experiments, had an effect on epidermal club cell density. The treatments had no effect on epidermal club cell size, cell area, or epidermal thickness. In experiment 2, skin extract was prepared from the skin of corn oil injected and non injected fathead minnows as in experiment 1 to determine whether corn oil had an effect on the epidermal club cell alarm substance concentration. The treatments showed no significant differences in observed anti-predator behaviour, including change in shelter use, dashing and freezing. In experiment 3, fathead minnows were exposed to either a single intraperitoneal injection of cortisol or corn oil. The purpose of this experiment was to determine whether cortisol, a known immunosuppressant, had an effect on epidermal club cell investment. Fathead minnows exposed to a single cortisol injection had significantly reduced respiratory burst activity of kidney phagocytes indicating that there was suppression of the innate immune system. Furthermore, cortisol treated fathead minnows showed significantly lower numbers of epidermal club cells. The treatments had no effect on individual epidermal club cell area, epidermal thickness and serum cortisol levels after 12 days. The results from this experiment suggest that pharmacological cortisol injections in fathead minnows have a suppressive effect on the fish innate immune system. Furthermore, the findings that cortisol induced immunosuppression also influences epidermal club cell investment provides support for the hypothesis that epidermal club cells may function as part of the fish immune system.
26

Pentraxin 3 in the lung and neutrophils

2013 August 1900 (has links)
Respiratory diseases are a major cause of human morbidity and mortality and are a leading cause of economic loss to livestock producers. The respiratory tract is constantly in contact with dust, bacteria, fungi, viruses and other pathogenic agents that are found in the air. Normally, the body has the ability to clear these foreign particles. However, physiological and environmental stresses can impair airway defense mechanisms resulting in establishment of pulmonary infections. The microbes and their products engage various receptors in the lung to activate epithelium, endothelium, macrophages, neutrophils and other cells. The activation of inflammatory cascade in the lung results in recruitment of neutrophils, damage to air-blood barrier and development of edema. Although there have been significant advances in our understanding of mechanisms of lung inflammation, there have been a lack of any significant advances in the development of new therapeutics to manage lung disease, which may suggest that our understanding of the inflammatory mechanisms is still incomplete. Pentraxin 3 (PTX3) is an innate immune protein which has been implicated in a diverse range of inflammatory processes, such as recruitment of cells and production of cytokines. PTX3 is an acute phase protein, with low or undetectable levels in the circulation of healthy humans and animals, and rapid, dramatic increase in inflammatory diseases. The expression and function of this protein has not been characterized in the lungs of domestic animal species. Because of potential implications of PTX3 in lung inflammation, I studied the expression of PTX3 in normal and inflamed lungs of calves, pigs, horses, foals and humans. Lungs from all of these species showed expression of PTX3 in airway epithelium, alveolar septa, vascular endothelium and inflammatory cells. Western blot performed on homogenates from normal and inflamed lungs from calves and pigs show an increased expression of PTX3 in inflamed lungs (P<0.05). Because protein function is influenced by its location in the cell, I clarified the subcellular expression of PTX3 with immuno-electron microscopy on normal and inflamed calf and horse lungs. PTX3 was localized on pulmonary intravascular macrophages, monocytes, neutrophils and, unexpectedly, platelets. PTX3 was also present in the nuclei of neutrophils, monocytes and pulmonary intravascular macrophages. Neutrophils are critical regulators of acute lung inflammation. Having observed PTX3 in neutrophils, I investigated the effect of E. coli lipopolysaccharide-induced activation on PTX3 in neutrophils in vitro. Neutrophils challenged with E. coli LPS were examined at 30, 60, 90 and 120 minutes after the treatment. Normal peripheral blood neutrophils showed PTX3 expression. Neutrophils activated with LPS appeared ruffled and showed loss of PTX3 expression at 30 minutes followed by recovery of the expression. Western blots performed on normal and activated neutrophil homogenates did not show any differences (P=0.05). Collectively, the data show PTX3 in normal and inflamed lungs across multiple species. PTX3 was also detected in normal and activated neutrophils. While the function of intriguing localization of PTX3 in the nuclei as well as in platelets is not known, the similarity of expression across the species suggest a role for PTX3 in lung inflammation.
27

Is the epidermal club cell part of the innate immune system in fathead minnows?

Halbgewachs, Colin 29 September 2008 (has links)
Fishes in the superorder Ostariophysi, including fathead minnows (Pimephales promelas), possess specialized epidermal club cells that contain an alarm substance. Damage to these cells, as would occur during a predator attack, causes the release of the alarm substance and can indicate the presence of actively foraging predators to nearby conspecifics. For nearly 70 years, research involving epidermal club cells has focused on the alarm substance and the role it plays in predator/prey interactions. However, recent studies have indicated that there may be a connection between epidermal club cells and the fish immune system. Fish increase investment in epidermal club cells upon exposure to skin penetrating pathogens and parasites. In this study I tested for differences in epidermal club cell investment by fathead minnows exposed to the immunosuppressive effects of the glucocorticoid hormone cortisol. In experiment 1, fathead minnows were exposed to either a single intraperitoneal injection of corn oil or no injection at all. The purpose of this experiment was to determine whether corn oil, the vehicle for cortisol injections in later experiments, had an effect on epidermal club cell density. The treatments had no effect on epidermal club cell size, cell area, or epidermal thickness. In experiment 2, skin extract was prepared from the skin of corn oil injected and non injected fathead minnows as in experiment 1 to determine whether corn oil had an effect on the epidermal club cell alarm substance concentration. The treatments showed no significant differences in observed anti-predator behaviour, including change in shelter use, dashing and freezing. In experiment 3, fathead minnows were exposed to either a single intraperitoneal injection of cortisol or corn oil. The purpose of this experiment was to determine whether cortisol, a known immunosuppressant, had an effect on epidermal club cell investment. Fathead minnows exposed to a single cortisol injection had significantly reduced respiratory burst activity of kidney phagocytes indicating that there was suppression of the innate immune system. Furthermore, cortisol treated fathead minnows showed significantly lower numbers of epidermal club cells. The treatments had no effect on individual epidermal club cell area, epidermal thickness and serum cortisol levels after 12 days. The results from this experiment suggest that pharmacological cortisol injections in fathead minnows have a suppressive effect on the fish innate immune system. Furthermore, the findings that cortisol induced immunosuppression also influences epidermal club cell investment provides support for the hypothesis that epidermal club cells may function as part of the fish immune system.
28

Regulation of Interferon-Inducible 2’-5’-Oligoadenylate Synthetases by Adenovirus VAI RNA

Meng, Hui 10 1900 (has links)
Viral double-stranded RNA is a key pathogen invasion signal recognized by the human innate immune system. All adenoviruses synthesize at least one highly structured RNA (VAI) to suppress this antiviral response by attenuating the activity of antiviral proteins. Surprisingly, VAI RNA was previously shown to positively regulate the activity of one interferon-inducible antiviral protein, 2’-5’-oligoadenylate synthetases (OAS). The present thesis focuses on investigating the regulation of a human OAS1 isoform by VAI RNA and its derivatives. An Escherichia coli protein expression and purification system has been developed for OAS1 protein production. A combination of biochemical and biophysical approaches was employed to examine VAI RNA binding affinity, activation potential for OAS1 and OAS1:VAI RNA complex formation. Taken together, I have found that while full-length VAI does indeed activate OAS1 in vitro, a truncated version lacking the terminal stem has the opposite effect, and this is the physiologically important response.
29

Regulation of Interferon-Inducible 2’-5’-Oligoadenylate Synthetases by Adenovirus VAI RNA

Meng, Hui 10 1900 (has links)
Viral double-stranded RNA is a key pathogen invasion signal recognized by the human innate immune system. All adenoviruses synthesize at least one highly structured RNA (VAI) to suppress this antiviral response by attenuating the activity of antiviral proteins. Surprisingly, VAI RNA was previously shown to positively regulate the activity of one interferon-inducible antiviral protein, 2’-5’-oligoadenylate synthetases (OAS). The present thesis focuses on investigating the regulation of a human OAS1 isoform by VAI RNA and its derivatives. An Escherichia coli protein expression and purification system has been developed for OAS1 protein production. A combination of biochemical and biophysical approaches was employed to examine VAI RNA binding affinity, activation potential for OAS1 and OAS1:VAI RNA complex formation. Taken together, I have found that while full-length VAI does indeed activate OAS1 in vitro, a truncated version lacking the terminal stem has the opposite effect, and this is the physiologically important response.
30

Exploring the Interface Between Macroorganisms and Microorganisms: Biochemical, Ecological, and Evolutionary Contexts

Essock-Burns, Tara January 2015 (has links)
<p>The focus of this dissertation is the extension of the innate immune response in wound healing and non-wound healing contexts. I am interested in interactions at the interface between macroorganisms and microorganisms from marine/aqueous environments. This dissertation explored two aspects of the interactions: 1) the presence and function of macroorganism secretions and 2) the role of secretions in managing microfouling on macroorganism surfaces. Particularly of interest are how barriers are biochemically reinforced to mitigate microfouling and the potential consequences of a breach in those barriers. The innate immune response, an evolutionary conserved system in vertebrates and invertebrates, provides an evolutionary context for developing the hypotheses. </p><p>In this dissertation the biochemical composition and uses of crustacean secretions are explored for barnacles, fiddler crabs and blue crabs. Fluids of interest were secretions released during barnacle settlement and metamorphosis and those collected from living adult barnacles, fluids on fiddler crab sensory appendages including dactyl washings and buccal secretions, and fluids from blue crab egg masses. The biochemical composition was determined using a combination of fluorescent probes and confocal microscopy, proteomics, and enzyme-specific substrates with a spectrophotometer. </p><p>I demonstrated that self-wounding is inherent to the critical period of settlement and metamorphosis, in barnacles. Wounding occurs during cuticle expansion and organization and generates proteinaceous secretions, which function as a secondary mode of attachment that facilitates the transition to a sessile juvenile. I showed extensive proteomic evidence for components of all categories of the innate immune response, especially coagulation and pathogen defense during attachment and metamorphosis. This work provides insight into wound healing mechanisms that facilitate coagulation of proteinaceous material and expands the knowledge of potential glue curing mechanisms in barnacles. </p><p>In order to test macroorganism secretions in a non-wound healing context, I examined fluids sampled from body parts that macroorganisms must keep free of microorganisms. I showed that two types of decapod crustaceans can physically manage microorganisms on most parts of their body, but certain parts are particularly sensitive or difficult to clean mechanically. I examined sensory regions on the fiddler crab, including dactyls that are important for chemoreception and the buccal cavity that is used to remove microorganisms from sand particles, and blue crab egg mass fluids that protect egg masses from fouling through embryo development. </p><p>This dissertation explores organismal interactions across scales in size, space, and time. The findings from the barnacle work inform mechanisms of attachment and glue curing, both central to understanding bioadhesion. The work on fiddler crabs and blue crabs contributes to our understanding of chemoreception of feeding and reproductive behaviors.</p><p>The work presented here highlights how biological secretions from macroorganisms serve multifaceted roles. In cases of physical breaches of barriers, or wounding, secretions coagulate to obstruct loss of hemolymph and have antimicrobial capabilities to prevent infection by microorganisms. In non-wounding cases, secretions remove microorganisms from surfaces, whether that is on the body of the macroorganism or in the immediate environment.</p> / Dissertation

Page generated in 0.0517 seconds