Spelling suggestions: "subject:"instrumentation."" "subject:"lnstrumentation.""
271 |
NON-TRADITIONAL FLIGHT TEST SENSING SYSTEMSKilpatrick, Stephen A., Whittington, Austin J. 10 1900 (has links)
Traditional flight test sensing applications require installation of not only the sensor but also supporting cabling and interfacing infrastructure. The cost of this supporting infrastructure increases when it must cross pressure vessel boundaries, extend long distances, or interfere with operation of the aircraft. The continuing cost and schedule pressures on flight test programs demand approaches that minimize installation complexity and reduce the need to modify the aircraft under test. Some emerging approaches have leveraged wireless techniques for data transmission but this can only be used in certain circumstances and does not address the problem of power distribution. This paper describes ongoing research into alternative sensing approaches that utilize a mix of video processing, distributed processing, and power harvesting to provide additional solutions.
|
272 |
RAPIDLY RECONFIGURABLE SYSTEM MANAGEMENTNoonan, Patrick J., Whittington, Austin J., Ibaroudene, Hakima, Moodie, Myron L. 10 1900 (has links)
The growth of network and distributed technologies in flight test instrumentation (FTI) has provided the benefits of flexibility, scalability, and compatibility with prevalent computing capabilities. However, to achieve these capabilities, the complexity of each piece of FTI and the overall system has increased dramatically. Even with systems composed of equipment from a single vendor, it is important to have management systems that provide the flexibility to adapt quickly to various system configurations and present unified information to the flight test users. The growth of network technologies and then standardized approaches such as iNET standards becoming accepted IRIG 106 standards is leading to the growth of multi-vendor systems. These multi-vendor systems further increase the need for rapidly reconfigurable management systems. This paper describes a constraints engine we have developed to enable flexible system management systems and reflects on how these techniques have been used successfully in the iNET System Manager.
|
273 |
Analytical redundancy scheme for improving reliability of automatic flight control systems for aircraftAlkhatib, K. Y. January 1985 (has links)
Any redundancy scheme in aircraft control systems is usually considered separately from the control algorithms involved. All feedback control systems are usually designed under the assumption that their sensors will not fail. When the integrity requirements demand it, then a redundancy scheme must be designed to provide any required measurements with only extremely short interruptions to normal service being caused by failures of individual sensors.
|
274 |
Design of tracking systems incorporating multivariable plantsYamane, Hideaki January 1991 (has links)
The methodology for the design of error-actuated digital set-point tracking controllers proposed by Porter and co-workers has emerged as a result of the pursuit of effective and practical solutions to the problem of designing digital control systems for unknown, dynamically complex multivariable plants with measurable outputs. In this thesis, such digital set-point tracking controllers and the resulting digital set-point tracking systems are enriched to embrace plants with unmeasurable outputs and plants with more outputs than manipulated inputs. In the study of the latter plants, the novel concepts of limit tracking (i.e. the tracking exhibited by plants with more outputs than inputs) is introduced and an associated methodology for the design of self-selecting controllers is proposed. Such controllers involve the selection of different set-point tracking controllers to control the most critical subset of plant outputs based upon the developed rigorous theoretical foundations for the limit-tracking systems. In such foundations, the classification of linear multivariable plants into Class I and Class II plants based upon their steady-state transfer function matrices facilitates the assessment of the feasibility of limit-tracking systems. Furthermore, the associated order-reduction technique simplifies the problem of deciding the minimum numbers of different subsets of plant outputs to be controlled by corresponding set-point tracking controllers. In addition, the dynamical properties of limit-tracking systems are also investigated using the phase-plane method and a methodology for the design of supervisory self-selecting controllers is proposed so as to prevent the occurrence of dynamical peculiarities such as limit-cycle oscillations which might happen in limit-tracking systems. The effectiveness of all the proposed methodologies and techniques is illustrated by examples, and the robustness properties of set-point tracking systems and limit-tracking systems in the face of plant variations and unknown disturbances are tested. Finally, self-selecting controllers are designed for a nonlinear gas-turbine engine and their practical effectiveness is clearly demonstrated.
|
275 |
Study of Triple-GEM detector for the upgrade of the CMS muon spectrometer at LHCMaerschalk, Thierry 12 July 2016 (has links)
This doctoral thesis is part of the upgrade of the CMS experiment at the Large HadronCollider of CERN, the LHC. CMS, together with the ATLAS experiment, led to thediscovery of the Brout-Englert-Higgs boson in 2012. But the LHC research program isnot over yet. Indeed, the LHC is intended to operate even at least 20 more years. Duringthis period, the luminosity will grow gradually up to five times its nominal value of 10 34cm −2 s −1 initially foreseen. This increase in luminosity requires the LHC experiments,like CMS, to upgrade their detectors as well as their data acquisition system. One of thenext major CMS upgrade is the addition of a new detector layer in the forward muonspectrometer of CMS. The technology that has been chosen by the CMS collaborationfor this upgrade is the Triple Gas Electron Multiplier (Triple-GEM) technology. Thisupgrade aims to maintain the trigger performance despite the increasing rate of particles(> 1 kHz/cm 2 ) and will also improve the reconstruction of muons tracks, thanks to aexcellent spatial resolution (∼ 250 μm). It is the study and characterization of thistechnology that is the subject of this thesis.This characterization of the Triple-GEM detectors starts with a detailed study of thetime resolution. This study has been performed using different Monte Carlo simulationslike GARFIELD, and has demonstrated that the Triple-GEM detectors equipped withthe new VFAT3 electronics (developed for this upgrade) fulfill the requirements for theCMS upgrade.Then we have studied different detector prototypes. First, we have built two small 10×10cm 2 prototypes and developed a test bench at the ULB laboratory. This test bench hasallowed us to study another important parameter of the Triple-GEM detectors: the gain.Later, we also had the opportunity to take part in the data taking and analysis of a testbeam campaign at CERN. The analysis of the data of this test beam is also presentedin detail.The last part of this work concerns the study of the spatial resolution. We have estimatedthe spatial resolution of the Triple-GEM detector equipped with a binary electronics byMonte Carlo simulations as well as analytically. This study has been extended to otherdetector technologies like the Micromegas and the silicon sensors. / Cette th`ese de doctorat s’inscrit dans le cadre de la mise `a niveau de l’exp ́erience CMSaupr`es du grand collisionneur de protons du CERN, le LHC. CMS, avec l’exp ́erienceATLAS, a permis la d ́ecouverte du boson de Brout-Englert-Higgs en 2012. Mais leprogramme de recherche du LHC n’est pas pour autant termin ́e. En effet, le LHC estdestin ́e `a fonctionner encore au moins 20 ans. Pendant cette p ́eriode, la luminosit ́e vacroˆıtre progressivement jusqu’`a atteindre environ cinq fois la valeur nominale de 10 34cm −2 s −1 initialement pr ́evue et ce d’ici 2025. Cette augmentation de luminosit ́e pousseles exp ́eriences du LHC, comme CMS, `a mettre `a jour les d ́etecteurs ainsi que leurssyst`emes d’acquisition de donn ́ees. Une des prochaines mises `a niveau majeures deCMS est l’addition d’une nouvelle couche de d ́etection dans le spectrom`etre `a muonvers l’avant. La technologie de d ́etection qui a ́et ́e choisie par la collaboration CMS estla technologie des Triple Gas Electron Multiplier (Triple-GEM). Cette mise `a niveaua pour but de maintenir les performances du syst`eme de d ́eclenchement et ce malgr ́el’augmentation de taux de particules (> 1 kHz/cm 2 ) et de permettre ́egalement, grˆacea la tr`es bonne r ́esolution spatiale des Triple-GEM (∼ 250 μm), l’am ́elioration de la re-construction des traces de muons. C’est l’ ́etude des caract ́eristiques de cette technologiequi est le sujet de cette th`ese.Cette caract ́erisation des d ́etecteurs Triple-GEM commence par une ́etude d ́etaill ́ee de lar ́esolution temporelle. Cette ́etude a ́et ́e r ́ealis ́ee `a l’aide de diff ́erentes simulations MonteCarlo telles que GARFIELD et a permis de montrer que les Triple-GEMs ́equip ́es de lanouvelle ́electronique VFAT3 (sp ́ecifiquement d ́evelop ́ee pour les Triple-GEMs) remplis-sent les conditions pour la mise `a niveau de CMS.Nous avons ensuite ́etudi ́e diff ́erents prototypes. Tout d’abord nous avons construit deuxpetits (10 × 10 cm 2 ) prototypes de Triple-GEM et d ́evelop ́e un banc de test au sein dulaboratoire de l’ULB. Ce banc de test nous a permis d’ ́etudier un autre param`etre impor-tant des d ́etecteurs Triple-GEM: le gain. Au cours de cette th`ese nous avons ́egalementparticip ́e `a la prise de donn ́ees et `a l’installation de diff ́erents tests en faisceau au CERN.L’analyse des donn ́ees du test en faisceaux d’octobre 2014 est aussi pr ́esent ́ee en d ́etail.La derni`ere partie de ce travail concerne l’ ́etude de la r ́esolution spatiale. Nous avonsestim ́e la r ́esolution spatiale par simulation de Monte Carlo ainsi que de mani`ere an-alytique pour des d ́etecteurs GEM munis d’une ́electronique binaire. Cette ́etude a ́egalement ́et ́e g ́en ́eralis ́ee `a d’autres d ́etecteurs tels que les Micromegas ou encore lescapteurs au silicium. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
276 |
Fiber Bragg gratings for temperature monitoring in methanol and methane steam reformersTrudel, Elizabeth 04 October 2017 (has links)
Steam reforming of methanol and hydrocarbon are currently the processes of choice to produce hydrogen. Due to the endothermic nature of these reactions, zones of low temperature are commonly found in reformers. These zones can potentially damage the reformer through thermal stresses. Moreover, the response time and size of a reformer are controlled by the heat available to the reaction. The objective of this thesis is to demonstrate the feasibility of using fiber Bragg gratings as an alternative solution for temperature monitoring in methanol and methane steam reformers. To meet this objective, a sensor array containing seven gratings is placed in a metal-plate test reformer. First, temperature monitoring during methanol steam reforming is conducted in 12 different sets of conditions. The resulting profile of the temperature change along the length of the catalyst captures the zones of low temperature caused by the endothermic nature of the reaction. Several small changes in the temperature profile caused by increasing temperature and/or flow rates were captured, demonstrating the ability to use these gratings in methanol steam reforming. Similar experimental work was conducted to validate the possibility of using fiber Bragg gratings as temperature sensors in methane reforming. Using a regenerated grating array, data was collected for 13 operating conditions. The conclusions arising from this work are similar to those drawn from the methanol steam reforming work. The regenerated FBGs exhibited a behaviour that has not been reported in the literature which is referred to in this thesis as secondary erasure. This behaviour caused some instability in the grating signal and erroneous readings for some operating conditions. Despite this, the grating measurements captured the zones of low temperatures in the reformer and the small changes brought about by increasing the reforming temperature and lowering the steam to carbon ratio. / Graduate
|
277 |
A Physical Model-based Correction for Charge Traps in the Hubble Space Telescope’s Wide Field Camera 3 Near-IR Detector and Its Applications to Transiting Exoplanets and Brown DwarfsZhou, Yifan, Apai, Dániel, Lew, Ben W. P., Schneider, Glenn 04 May 2017 (has links)
The Hubble Space Telescope Wide Field Camera 3 (WFC3) near-IR channel is extensively used in time-resolved observations, especially for transiting exoplanet spectroscopy as well as. brown dwarf and directly imaged exoplanet rotational phase mapping. The ramp effect is the dominant source of systematics in the WFC3 for time-resolved observations, which limits its photometric precision. Current mitigation strategies are based on empirical fits and require additional orbits to help the telescope reach a thermal equilibrium. We show that the ramp-effect profiles can be explained and corrected with high fidelity using charge trapping theories. We also present a model for this process that can be used to predict and to correct charge trap systematics. Our model is based on a very small number of parameters that are intrinsic to the detector. We find that these parameters are very stable between the different data sets, and we provide best-fit values. Our model is tested with more than 120 orbits (similar to 40 visits) of WFC3 observations. and is proved to be able to provide near photon noise limited corrections for observations made with both staring and scanning modes of transiting exoplanets as well as for starting-mode observations of brown dwarfs. After our model correction, the light curve of the first orbit in each visit has the same photometric precision as subsequent orbits, so data from the first orbit no longer need. to. be discarded. Near-IR arrays with the same physical characteristics (e.g., JWST/NIRCam) may also benefit from the extension of this model if similar systematic profiles are observed.
|
278 |
The application of nonlinear control theory to robust helicopter flight controlMaharaj, Davendra Yukteshwar January 1994 (has links)
No description available.
|
279 |
Design of a microprocessor-controlled shear warning device for general aviation aircraftSamaka, Muhammad B. January 1984 (has links)
Wind-shear is a spatial or temporal gradient in wind speed and/or direction, and is generally associated with the presence of cold and warm fronts and thunderstorm cells. It is a serious hazard in the terminal stages of flight for all aircraft but for light aircraft in particular. The research work presented in this dissertation concerns the design of a wind-shear detection system which involved the application of estimation theory and digital simulation techniques. The wind-shear detection system was designed after a careful study of the results obtained from a digital simulation of an aircraft landing phase, including the effects of wind-shear.
|
280 |
SIMPLIFYING FLIGHT TEST CONFIGURATION WITH CONSTRAINTSNoonan, Patrick J., Ibaroudene, Hakima, Whittington, Austin J., Moodie, Myron L. 11 1900 (has links)
Configuring flight test systems can be a complex process due to the large number of choices that
must be made. Making these choices requires system knowledge to build a working
configuration in an efficient and timely manner. Historically, flight test systems have embedded
this system knowledge in code. The limitation with these approaches is that any change or
addition to the system knowledge is costly due to the significant work required to update and
maintain the software. We see the philosophy of constraints as a promising path toward
addressing these issues. In the context of flight test configuration, a set of constraints defines the
limits of how a system may be configured to perform specific tasks. This paper describes an
approach for simplifying configuration by moving the system knowledge out of hardcoded
business rules and into a flexible architecture that leverages constraints for validation of system
configurations.
|
Page generated in 0.1243 seconds