Spelling suggestions: "subject:"intégrabilité"" "subject:"integrabilité""
21 |
Superintégrabilité avec séparation de variables en coordonnées polaires et intégrales du mouvement d’ordre supérieur à deuxTremblay, Frédérick 10 1900 (has links)
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture. / In this thesis, we propose new superintegrable systems separable in polar coordinates. After the introduction, in chapter 2, we present a complete classification of all separable systems in polar coordinates which admit a third order integral in addtion to the second order one responsible for the separation of variables. New potentials expressed in terms of the sixth Painlevé transcendent and of the Weierstrass elliptic function are obtained. In chapter 3 we introduce an infinite family of integrable and exactly sovable classical and quantum systems separable in polar coordinates. This family is described in term of a parameter k. The energy spectrum and the wave functions of the quantum systems are obtained. A conjecture postulating the superintegrability of these systems is formulated and is verified for the first cases k = 1,2,3,4. The order of the integrals is 2k where k ∈ ℕ. The algebraic structure of the family of quantum systems is formulated in term of a hidden algebra where the number of generators depends on the parameter k. A quasi-exactly solvable and integrable generalization of the family of potentials is proposed. Finally in chapter 4, the classical trajectories of the family of systems are calculated for all the rational cases k ∈ ℚ. Those are expressed in term of Chebyshev polynomials. We plot the curves associated with the trajectories for k=1,2,3,4,1/2, 1/3 and 3/2. The bounded curves are closed and periodic in the two dimensional phase space. Those results obtained reinforce the possible veracity of the conjecture.
|
22 |
Les systèmes super intégrables d’ordre trois séparables en coordonnées paraboliquesPopper, Iuliana Adriana 04 1900 (has links)
Ce mémoire est une poursuite de l’étude de la superintégrabilité classique et quantique
dans un espace euclidien de dimension deux avec une intégrale du mouvement
d’ordre trois. Il est constitué d’un article. Puisque les classifications de tous les Hamiltoniens
séparables en coordonnées cartésiennes et polaires sont déjà complétées, nous
apportons à ce tableau l’étude de ces systèmes séparables en coordonnées paraboliques.
Premièrement, nous dérivons les équations déterminantes d’un système en coordonnées
paraboliques et ensuite nous résolvons les équations obtenues afin de trouver les
intégrales d’ordre trois pour un potentiel qui permet la séparation en coordonnées paraboliques.
Finalement, nous démontrons que toutes les intégrales d’ordre trois pour les potentiels
séparables en coordonnées paraboliques dans l’espace euclidien de dimension deux
sont réductibles. Dans la conclusion de l’article nous analysons les différences entre les
potentiels séparables en coordonnées cartésiennes et polaires d’un côté et en coordonnées
paraboliques d’une autre côté.
Mots clés: intégrabilité, superintégrabilité, mécanique classique, mécanique quantique,
Hamiltonien, séparation de variable, commutation. / This thesis is a contribution to the study of classical and quantum superintegrability
in a two-dimensional Euclidean space involving a third order integral of motion. It consists
of an article. Because the classifications of all separable hamiltonians into Cartesian
and polar coordinates are already complete, we bring to this picture the study of those
systems in parabolic coordinates. First, we derive the determinating equations of a system
into parabolic coordinates, after which we solve the obtained equations in order
to find integrals of order three for potentials, which allow the separations of variables
into the parabolic coordinates. Finally, we prove that all the third order integrals for
separable potentials in parabolic coordinates in the Euclidean space of dimension two
are reducible. In the conclusion of this article, we analyze the differences between the
separable potentials in Cartesian and polar coordinates and the separable potentials in
parabolic coordinates.
Keywords: integrability, superintegrability, classical mechanics, quantum mechanics,
Hamiltonian, separation of variables, commutation.
|
23 |
Two-dimensional Spin Ice and the Sixteen-Vertex ModelLevis, Demian 26 October 2012 (has links) (PDF)
Cette thèse présente une étude complète des propriétés statiques et dynamiques du modèle à seize vertex en 2D, une version simplifiée de la glace de spin avec interactions dipolaires. Après une discussion générale sur le magnétisme frustré, et la glace de spin en particulier, on justifie l'introduction de notre modèle pour étudier le comportement collectif de la glace de spin. On utilise un algorithme de Monte Carlo à temps continu avec une dynamique locale qui nous permet d'analyser les phases d'équilibre et les propriétés critiques du modèle 2D. On compare nos résutats avec les resultats obtenus dans les cas où le système est intégrable. On définit ensuite le modèle sur des arbres orientés et on applique une approximation du type Bethe-Peierls. Afin de discuter le domaine de validité de cette approche, on compare les résultats ainsi obtenus avec les résultats exacts et numériques obtenus pour le modèle 2D. L'apparition récente des glaces de spin artificielles suggère un certain choix des paramètres du modèle. On montre que le modèle à seize vertex décrit de façon précise la thermodynamique de la glace de spin artificielle. On présente en détail le diagramme de phase et la nature des phases d'équilibre du modèle à seize vertex. Afin d' inclure l'effet des fluctuations thermiques responsables de apparaition de défauts ponc- tuels dans la glace de spin, on construit une extension stochastique du modèle intégrable à six vertex. On étudie, par l'intermédiaire de simulations Monte Carlo, comment le système s'ordonne dans le temps après différentes trempes. On analyse l'évolution de la densité de défauts et on iden- tifie les mécanismes dynamiques qui pilotent la relaxation vers ses différentes phases d'équilibre. On montre ainsi que la dynamique donne lieu à du "coarsening" et qu'elle vérifie l'hypothèse de "scaling" dynamique. On discute le rôle des défauts topologiques étendus et ponctuels présents dans le système au cours de l'évolution. Finalement, on étudie la présence d'un régime dynamique où le système reste gelé pendant de longues périodes de temps, ce qui à été observé dans la glace de spin dipolaire en 3D.
|
24 |
Superintégrabilité avec séparation de variables en coordonnées polaires et intégrales du mouvement d’ordre supérieur à deuxTremblay, Frédérick 10 1900 (has links)
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture. / In this thesis, we propose new superintegrable systems separable in polar coordinates. After the introduction, in chapter 2, we present a complete classification of all separable systems in polar coordinates which admit a third order integral in addtion to the second order one responsible for the separation of variables. New potentials expressed in terms of the sixth Painlevé transcendent and of the Weierstrass elliptic function are obtained. In chapter 3 we introduce an infinite family of integrable and exactly sovable classical and quantum systems separable in polar coordinates. This family is described in term of a parameter k. The energy spectrum and the wave functions of the quantum systems are obtained. A conjecture postulating the superintegrability of these systems is formulated and is verified for the first cases k = 1,2,3,4. The order of the integrals is 2k where k ∈ ℕ. The algebraic structure of the family of quantum systems is formulated in term of a hidden algebra where the number of generators depends on the parameter k. A quasi-exactly solvable and integrable generalization of the family of potentials is proposed. Finally in chapter 4, the classical trajectories of the family of systems are calculated for all the rational cases k ∈ ℚ. Those are expressed in term of Chebyshev polynomials. We plot the curves associated with the trajectories for k=1,2,3,4,1/2, 1/3 and 3/2. The bounded curves are closed and periodic in the two dimensional phase space. Those results obtained reinforce the possible veracity of the conjecture.
|
25 |
Les systèmes super intégrables d’ordre trois séparables en coordonnées paraboliquesPopper, Iuliana Adriana 04 1900 (has links)
Ce mémoire est une poursuite de l’étude de la superintégrabilité classique et quantique
dans un espace euclidien de dimension deux avec une intégrale du mouvement
d’ordre trois. Il est constitué d’un article. Puisque les classifications de tous les Hamiltoniens
séparables en coordonnées cartésiennes et polaires sont déjà complétées, nous
apportons à ce tableau l’étude de ces systèmes séparables en coordonnées paraboliques.
Premièrement, nous dérivons les équations déterminantes d’un système en coordonnées
paraboliques et ensuite nous résolvons les équations obtenues afin de trouver les
intégrales d’ordre trois pour un potentiel qui permet la séparation en coordonnées paraboliques.
Finalement, nous démontrons que toutes les intégrales d’ordre trois pour les potentiels
séparables en coordonnées paraboliques dans l’espace euclidien de dimension deux
sont réductibles. Dans la conclusion de l’article nous analysons les différences entre les
potentiels séparables en coordonnées cartésiennes et polaires d’un côté et en coordonnées
paraboliques d’une autre côté.
Mots clés: intégrabilité, superintégrabilité, mécanique classique, mécanique quantique,
Hamiltonien, séparation de variable, commutation. / This thesis is a contribution to the study of classical and quantum superintegrability
in a two-dimensional Euclidean space involving a third order integral of motion. It consists
of an article. Because the classifications of all separable hamiltonians into Cartesian
and polar coordinates are already complete, we bring to this picture the study of those
systems in parabolic coordinates. First, we derive the determinating equations of a system
into parabolic coordinates, after which we solve the obtained equations in order
to find integrals of order three for potentials, which allow the separations of variables
into the parabolic coordinates. Finally, we prove that all the third order integrals for
separable potentials in parabolic coordinates in the Euclidean space of dimension two
are reducible. In the conclusion of this article, we analyze the differences between the
separable potentials in Cartesian and polar coordinates and the separable potentials in
parabolic coordinates.
Keywords: integrability, superintegrability, classical mechanics, quantum mechanics,
Hamiltonian, separation of variables, commutation.
|
26 |
Nouvelles approches en conception préliminaire basée sur les modèles des actionneurs embarqués / New preliminary design approaches based on models for embedded actuatorsFraj, Amine 26 May 2014 (has links)
L’objectif de cette thèse est de proposer des approches innovantes de conception préliminaire d’actionneurs embarqués. Cette démarche répond à un besoin fort de l’industrie,en particulier en aéronautique. Dans un premier temps, une méthode hybride de génération d’architectures solutions et de sélection vis-à-vis des exigences du cahier des charges et de l’état de l’art technologique est proposée. Dans un deuxième temps, une étude de l’effet de l’incertitude sur les modèles de conception préliminaire a été réalisée. Une troisième partie a démontré l’intérêt de lier les approches et les outils de modélisation 0D/1D et 3D afin de permettre l’accélération des phases de conception et afin de mieux remonter la connaissance liée à la géométrie. Enfin, une méthode utilisant les métamodèles basées sur les lois d’échelle visant à l’obtention de formes mathématiques simples pour le besoin de dimensionnent des composants mécatroniques a été développée / The objective of this thesis is to propose an innovative approaches for embedded actuators preliminary design. This approach responds to a strong need for the industry, particularly in aeronautics. As a first step, a hybrid method of architectures generation and selection depending on the specifications and the technological state of the art is proposed. In a second step, a study of the effect of uncertainty in preliminary design models was completed. A third part demonstrated the value of combining modeling approaches tools 0D/1D and 3D to enable the design phases acceleration and to have better knowledge related to the geometry. Finally, a method using meta-models based on scaling laws for obtaining simple mathematical forms needed for sizing mechatronic components has been developed
|
27 |
Three-point functions in N=4 Super-Yang-Mills theory from integrability / La fonction à trois points dans la théorie de Jauge supersymétrique N=4 et l'intégrabilitéJiang, Yunfeng 09 July 2015 (has links)
Cette thèse est dédiée à l'étude de la fonction à trois points dans la théorie de jauge super-symétrique (SYM) N=4, dans la limite du grand nombre de couleurs, à l'aide de l'intégrabilité. La théorie de jauge N=4 SYM est invariante conforme au niveau quantique est on pense qu'elle est résoluble exactement. Par la correspondance AdS/CFT, elle est duale à la théorie des cordes de type IIB dans l'espace courbe AdS5× S5. Les fonctions à trois points sont des quantités qui contiennent de l'information essentielle sur la dynamique de la théorie.Nous passons en revue les méthodes déjà existantes et outils de l'intégrabilité qui sont nécessaires pour le calcul de la fonction à trois points. Nous présentons le calcul de la fonction à trois points dans le secteur SU(3), de rang supérieur à un, nous avons utilisé une représentation sous forme de déterminant, qui nous permets de prendre la limite semi-classique. En exploitant la relation entre des chaines de spin à langue portée et la chaine de Heisenberg inhomogène, nous avons développé une nouvelle pur calculer la fonction à trois points dans le secteur SU(2) à l'ordre d'une boucle qui nous permets d'obtenir le résultat dans une forme très compacte. Dans la limite de Frolov-Tseytlin ce résultat est en accord avec celui qu'on obtient au couplage fort.Nous avons exploré des nouvelles formulations de la fonction à trois points. En nous inspirant de la formulation de la théorie des champs des cordes dans la jauge du cone de lumière nous avons construit un vertex de spin, qui est la version de couplage faible du vertex des cordes, pour tous les secteurs à l'ordre des arbres. Cette approche peut être reliée au programme des facteurs de forme pour les théories de champs bi-dimensionnelles intégrables, dont nous rappelons ici les bases. Nous étudions la dépendance dans la taille du système pour une classe spéciale de fonction à trois points qui correspond aux facteurs de forme diagonaux. / This thesis is devoted to the study of three-point functions of N=4 Super-Yang-Mills (SYM) theory in the planar limit by using integrability. N=4 SYM theory is conformal invariant at quantum level and is believed to be completely solvable. By the AdS/CFT correspondence, it is dual to the type IIB superstring theory on the curved background AdS5×S5. The three-point functions are important quantities which contain essential dynamic information of the theory.The necessary tools in integrability and the existing methods of computing three-point functions are reviewed. We compute the three-point functions in the higher rank SU(3) sector and obtain a determinant representation for one special configuration, which allows us to take the semi-classical limit. By exploring the relation between long-range interacting spin chain and inhomogeneous XXX spin chain, we develop a new approach to compute three-point functions in the SU(2) sector at one-loop and obtain a compact result. In the Frolov-Tseytlin limit, this result matches the result at strong coupling.We also explore new formulations of the three-point functions. In one formulation inspired by the light-cone string field theory, we constructed the spin vertex, which is the weak coupling counterpart of the string vertex for all sectors at tree level. Another formulation which is related to the form factor boostrap program in integrable field theory is reviewed. At weak coupling, we study the finite volume dependence of a special type of three-point functions which are related to the diagonal form factors.
|
28 |
Approches pour les corrélateurs à trois points en N = 4 super Yang-Mills / Some approaches to three-point correlators in N=4 super Yang-MillsPetrovskii, Andrei 14 September 2016 (has links)
La correspondance AdS/CFT est la première réalisation précise de la dualité jauge/gravité. Jusqu’à maintenant la correspondance AdS/CFT reste une conjecture. La dualité de N = 4 SYM et la théorie des cordes est un exemple le plus notable de correspondance AdS/CFT. Un des obstacles principaux à l’explorer est le fait que le régime de couplage faible pour la théorie de jauge est le régime de couplage fort pour la théorie des cordes et vice versa. Par conséquent, aussi longtemps que les méthodes perturbatives sont appliquées, on ne peut pas comparer les observables de deux cotés de la correspondance directement en dehors de quelques cas particuliers. A ce stade, l’énorme symétrie de N = 4 SYM joue un rôle important en permettant le calcul exact des observables de la théorie au moins dans la limite planaire. Cette thèse est consacrée au calcul des fonctions à trois, l’un des principaux observables de N = 4 SYM, et est composée de deux parties. Dans la première partie nous considérons l’approche générale pour le calcul des fonctions à trois points sur la base de soi-disant vertex de spin, qui est inspiré de la théorie de champs des cordes. Dans la deuxième partie, nous considérons un type spécifique de fonctions à trois points appelés lourd-lourd-léger, qui sont caractérisés par la propriété que la longueur de l’un des opérateurs est beaucoup plus petite des longueurs de deux autres. Il s’avère que ces fonctions de corrélations peuvent être identifiées à des facteurs de forme diagonaux et ainsi on peut appliquer les résultats concernant les facteurs de forme. / N=4 SYM theory has been drawing the attention of a lot of physicists during two last decades mainly due to the two aspects: AdS/CFT correspondence and integrability. AdS/CFT correspondence is the first precise realization of the gauge/string duality whose history starts in the 60's, when a string theory was considered as a candidate for describing the strong interactions. In 1997 Maldacena made a proposal about the duality between certain conformal field theories (CFT) and string theories defined on the product of AdS space and some compact manifold, which implies a one to one map between the observables of the gauge and string counterparts. Up to now AdS/CFT correspondence still remains a conjecture. The duality of N=4 SYM and the appropriate string counterpart is the most notable example of the AdS/CFT correspondence. One of the main obstructions to exploring it is the fact that weak coupling regime for the gauge theory is the strong coupling regime for the string theory and vice versa. Therefore as long as perturbative methods are applied, one can not compare the observables of dual counterparts directly apart from some specific cases. At this point the huge symmetry of N=4 SYM plays an important role allowing exact computation of the theory observables at least in the planar limit. This property of the theory is called integrability. The observables of the N=4 SYM are Wilson loops and correlation functions built out of gauge invariant operators. The space-time dependence of the two- and three-point correlators is fixed by the conformal symmetry up to some parameters: dimensions of the operators in the case of two-point functions and dimensions of the operators and structure constants in the case of three-point functions. It's commonly accepted to refer to the problem of finding the dimensions of the operators as the spectral problem. On the classical level the operator dimension is equal to the sum of the dimensions of the fundamental fields out of which the operator is composed. When the interaction is turned on, the conformal dimension gets quantum correction. In order to compute three-point functions, apart from the conformal dimensions of corresponding operators one needs to compute the structure constants. In CFT computation of the higher-point correlators eventually can be reduced to computation of two- and three-point functions by means of the operator product expansion. Therefore two- and three-point functions appear to be building blocks of any correlator of the theory. This thesis is devoted to computation of three-point functions and consists of two parts. In the first part we consider the general approach for computing three-point functions based on the so-called spin vertex, which is inspired from the string field theory. In the second part we consider a specific kind of three-point functions called heavy-heavy-light, which are characterized by the property that the length of one of the operators is much smaller the lengthes of other two. It happens that this kind of correlators can be considered as diagonal form factors which supposes that in this case one can apply the results obtained in the form factor theory.
|
29 |
Applications des structures algébriques associées aux systèmes intégrablesBergeron, Geoffroy 07 1900 (has links)
Cette thèse en trois parties regroupe des travaux de recherches sous la thématiques des symétries sous-jacentes aux systèmes intégrables et des structures algébriques qui les encodent. Une première partie illustre comment les fonctions spéciales que sont les polynômes orthogonaux apparaissent dans la théorie de la représentation des diverses structures algébriques associées à des symétries. La seconde partie se concentre sur une généralisation algébrique de l'opérateur de Heun classique menant à de nouvelles structures algébriques qui trouvent des applications en traitement de signal et dans l'étude des systèmes intégrables. La dernière partie concerne l'élaboration d'un cadre théorique dans le langage de la théorie de l'information algorithmique permettant de poser une définition mathématique de la notion d'émergence. / This thesis in three parts groups research work under the theme of the symmetries underlying integrable systems and the algebraic structures that encodes them. A first part illustrates how orthogonal polynomials, a type of special function, appear in the representation theory of various algebraic structures associated to symmetries. The second part focuses on an algebraic generalization of the classical Heun operator that leads to new algebraic structures with applications in signal processing and in the study of integrable systems. The last part concerns the formulation of a framework in the language of algorithmic information theory the enables a mathematical definition for the notion of emergence.
|
30 |
Superintégrabilité classique et quantique avec intégrale d'ordre troisTremblay, Frédérick 12 1900 (has links)
Mémoire numérisé par la Direction des bibliothèques de l’Université de Montréal / Ce mémoire se présente comme étant une poursuite de l'étude de la superintégrabilité classique et quantique dans un espace euclidien en deux dimensions avec une intégrale d'ordre trois. La classification de tous les Hamiltoniens séparables en coordonnées cartésiennes qui admettent une constante du mouvement d'ordre trois en les impulsions ayant déjà été complétée, nous proposons une poursuite de ces recherches dans le cas où le système se sépare en coordonnées polaires. Premièrement, nous dérivons les équations qui déterminent complètement le potentiel en ces coordonnées et tentons ensuite de les solutionner selon les différentes simplifications que nous pouvons accomplir sur l'intégrale par l'action du groupe eulidien E(2). Finalement, nous présentons les équations qui caractérisent entièrement l'intégrabilité euclidienne cubique en coordonnées paraboliques. / This thesis is a contribution to the study of classical and quantum superintegrability in a two-dimensional Euclidean space involving a third order integral of motion. A classification of Hamiltonian systems separable in cartesian coordinates that allow a third order invariant in the momenta has already been performed. We propose an extension of this work and investigate Hamiltonians that admit separation of variables in polar coordinates and allow the existence of a third order constant of motion. We determine the equations that characterize the potential in these coordinates and then attempt to solve them while simplifying the integral through the action of Euclidean group E(2). Futhermore, the equations which describe the classical and quantum cubic Euclidean integrability are established in parabolic coordinates.
|
Page generated in 0.0619 seconds