• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude et caractérisation d'interconnexions intermétalliques à partir de plot de cuivre et d'alliage SnAgCu pour l'empilement tridimentionnel de composants actifs / Study and characterization of intermetallics interconnections as CuSn for 3D stacking components application

Bertheau, Julien 26 March 2014 (has links)
Les objectifs technologiques de l'industrie de la microélectronique sont largement dictés par la loi de Moore qui vise une réduction permanente de la taille des transistors. Depuis peu l'intégration tridimensionnel de composant actif se présente comme une voie d'intégration alternative à la loi de Moore. Selon cette stratégie, les composants sont interconnectés selon l'axe verticale au moyen de plots de cuivre et d'un alliage à base d'étain (SnAgCu). L'assemblage est alors réalisé par un brasage eutectique de l'alliage SnAgCu qui génère une formation de composés intermétalliques (Cu6Sn6 et Cu3Sn) à l'interface entre les plots de cuivre et l'alliage. Or, ces composés intermétalliques sont parfois décrits dans la littérature comme facteur affaiblissant la fiabilité mécanique de l'interconnexion. Par ailleurs cette réactivité interfaciale s'accompagne de l'apparition microcavités de type trous Kirkendall susceptibles d'être à l'origine de ruptures d'interconnexions notée lors de tests de vieillissement. Ce mémoire est consacré à la caractérisation métallurgique du système d'interconnexion par brasage dont les dimensions sont celles des prototypes actuels c'est-à-dire 25µm. L'étude se concentrera successivement sur les aspects relatifs à la microstructure de l'alliage SnAgCu, à la réactivité interfaciale des systèmes Cu/SnAgCu et Ni/SnAgCu puis à la fiabilité mécanique du système d'interconnexion. Ces thématiques seront investiguées en fonction de la contrainte thermique et au cours des différentes étapes d'intégration jusqu'à l'assemblage de composant. Le caractère critique de la problématique réside dans le fait que les dimensions du système, déjà faibles, ont vocation à se réduire, rendant de plus en plus importante la proportion du volume de l'alliage occupée par ces formations interfaciales. / Technological roadmap of the microelectronic industry is mainly described by Moore'slaw which aims a constant reduction of transistors size. Three-dimensional integration ofactive chips appears more and more as an alternative way to Moore's law. According to thisstrategy, chips are interconnected along the vertical axis thanks to copper pillars and a tinbased alloy (SnAgCu).The joining is then performed through eutectic bonding using aSnAgCu solder alloy which is at the origin of intermetallic compounds growing at the copperalloy interface. These intermetallic compounds are sometimes described in literature asweakening factor of the interconnection mechanical reliability. Moreover this interfacialreactivity leads also to the formation of Kirkendall microvoids potentially causinginterconnections breakings, mostly noticed during ageing tests.This report is dedicated to the study and metallurgical characterization of theinterconnection system with a size close to that of the actual prototypes which is 25μm. Thestudy is successively focused on SnAgCu alloy microstructure, Cu/SnAgCu and Ni/SnAgCuinterfacial reactivity and on the mechanical reliability of interconnection system. These topicsare investigated in function of thermal constraints and during different integration steps untilchips packaging. The main critical aspect is related to the fact that system dimensions, alreadysmall, are planned to be reduced, leading to a more important proportion of the solder alloyconsumed by interfacial reaction.
2

High Performance Three-Dimensional Tree-based FPGA Architecture using 3D Technology Process / Haute performance tridimensionnelle à base de FPGA Arborescents Architecture à l'aide de la technologie 3D processus

Pangracious, Vinod 24 November 2014 (has links)
Les FPGAs (Field Programmable Gate Arrays) sont aujourd'hui des acteurs fondamen-taux dans le domaine des calculateurs qui etait auparavant domin par les microprocesseurs et les ASICs. Le principal enjeu de la conception de FPGA est de trouver le bon compromis entre les performances et la exibilite. Les caractristiques d'un FPGA dependent de trois facteurs : la qualite de l'architecture, la qualite des outils permettant d'implantes l'application sur le FPGA et la technologie utilisee. Le but de cette thse est de proposer une methodologie de conception pour la realisation physique de FPGA en technologie 3 dimensions (3D) ainsi que les outils d'exploration architecturale pour l'empilement en 3D du FPGA arborescent an d'ameliorer lses performances en terme de surface, densite, consommation et vitesse.La premiere partie du manuscrit etudie les dierentes variantes des architectures 2D du FPGA arborescent et l'impact de la migration vers la technologie 3D sur leur topologie. Nous presentons de nombreuses etudes montrant les caracteristiques des reseaux d'interconnexion arborescents, comment ils se comportent en terme de surface et per- formances et comment ils tiennent compte des particularites de l'applicationablee. Mal- heureusement, nous n'avons jamais vu d'avancees en ce qui concerne l'optimisation de telles topologies an d'exploiter leur avantage en terme de surface et consommation, ou encore de resoudre le probleme de longueur des ls qui entrave leurs performances. Tout au long de ce travail, nous avons compris qu'il ne serait pas possible d'optimiser la vitesse sans s'attaquer a la structure m^eme du reseau d'interconnexion arborescent pour l'exploiter a nouveau gr^ace a la technologie 3D. Ce type de technologie peut reduire les problemes de delai du reseau d'interconnexion en orant davantage de exibilite a la conception, au placement et au routage. Un ensemble d'outil d'exploration d'architectures 3D de FPGA a ete developpe pour valider les avancees en terme de performances et surface.La seconde contribution de cette these est le developpement d'une methodologie de conception de circuits FPGA 3D ainsi que l'utilisation des outils de conception classiques (en 2D) pour la realisation physique d'un FPGA arborescent 3D. Tout au long du processus de conception, nous avons ete confrontes aux nombreux problemes que rencontrent les concepteurs 3D en utilisant des outils qui ne sont pas connus pour leurs besoins. De plus, l'utilisation de la technologie 3D risque d'aggraver les performances thermiques. Nous examinons alors precisement l'evolution du comportement thermique lie a l'integration 3D et nous avons montrons comment le contrler en utilisant des techniques de conception tenant compte de la temprature. / Today, FPGAs (Field Programmable Gate Arrays) has become important actors in the computational devices domain that was originally dominated by microprocessors and ASICs. FPGA design big challenge is to nd a good trade-o between exibility and performances. Three factors combine to determine the characteristics of an FPGA: quality of its architecture, quality of the CAD tools used to map circuits into the FPGA, and its electrical technology design. This dissertation aims at exploring a development of Three- dimensional (3D) physical design methodology and exploration tools for 3D Tree-based stacked FPGA architecture to improve area, density, power and performances. The first part of the dissertation is to study the existing variants of 2D Tree-based FPGA architecture and the impact of 3D migration on its topology. We have seen numerous studies showing the characteristics of Tree-based interconnect networks, how they scale in terms of area and performance, and empirically how they relate to particular designs. Nevertheless we never had any breakthrough in optimizing these network topologies to exploit the advantages in area and power consumption and how to deal with the larger wire-length issues that impede performance of Tree-based FPGA architecture. Through the course of the work, we understand that, we would not be able to optimize the speed, unless we break the very backbone of the Tree-based interconnect network and resurrect again by using 3D technology. The 3D-ICs can alleviate interconnect delay issues by ofering exibility in system design, placement and routing. A new set of 3D FPGA architecture exploration tools and technologies developed to validate the advance in performance and area.The second contribution of this thesis is the development 3D physical design methodology and tools using existing 2D CAD tools for the implementation of 3D Tree-based FPGA demonstrator. During the course of design process, we addressed many specic issues that 3D designers will encounter dealing with tools that are not specically designed to meet their needs. In contrast, the thermal performance is expected to worsen with the use of 3D integration. We examined precisely how thermal behavior scales in 3D integration and determine how the temperature can be controlled using thermal design techniques.
3

Optimisation des jonctions de dispositifs (FDSOI, TriGate) fabriqués à faible température pour l’intégration 3D séquentielle / Low temperature devices (FDSOI, TriGate) junction optimization for 3D sequential integration

Pasini, Luca 15 March 2016 (has links)
L’intégration 3D séquentielle représente une alternative potentielle à la réduction des dimensions afin de gagner encore en densité d’une génération à la suivante. Le principal défi concerne la fabrication du transistor de l’étage supérieur avec un faible budget thermique; ceci afin d’éviter la dégradation du niveau inférieur. L’étape de fabrication la plus critique pour la réalisation du niveau supérieur est l’activation des dopants. Celle-ci est généralement effectuée par recuit à une température supérieure à 1000 °C. Dans ce contexte, cette thèse propose des solutions pour activer les dopants à des températures inférieures à 600 °C par la technique dite de recristallisation en phase solide. Les conditions de dopage ont été optimisées pour améliorer le niveau d’activation et le temps de recuit tout en réduisant la température d’activation jusqu’à 450°C. Les avancées obtenues ont été implémentées sur des dispositifs avancés FDSOI et TriGate générant des dispositifs avec des performances inférieures aux références fabriquées à hautes températures (supérieures à 1000 °C). En utilisant des simulations TCAD et en les comparant aux mesures électriques, nous avons montré que la région la plus critique en termes d’activation se trouve sous les espaceurs de la grille. Nous montrons alors qu’une intégration dite « extension first » est le meilleur compromis pour obtenir de bonnes performances sur des dispositifs fabriqués à faible température. En effet, l’implantation des dopants avant l’épitaxie qui vise à surélever les sources et drains compense l’absence de diffusion à basse température. Ces résultats ont par la suite été étendus pour des dispositifs TriGate et FinFETs sur isolants. Pour la première fois, l’intégration « extension first » a été démontrée pour des N et PFETs d’une technologie 14 nm FDSOI avec des résultats prometteurs en termes de performances. Les résultats obtenus montrent notamment qu’il est possible d’amorphiser partiellement un film très mince avant d’effectuer une recroissance épitaxiale sur une couche dopée. Finalement, une implantation ionique à relativement haute température (jusqu’à 500 °C) a été étudiée afin de doper les accès sans amorphiser totalement le film mince, ce qui est critique dans le cas des dispositifs FDSOI et FinFET. Nous montrons que les niveaux d’activation après implantation sont trop faibles pour obtenir des bonnes performances et que l’implantation ionique « chaude » est prometteuse à condition d’être utilisée avec un autre mécanisme d’activation comme le recuit laser. / 3D sequential integration is a promising candidate for the scaling sustainability for technological nodes beyond 14 nm. The main challenge is the development of a low temperature process for the top transistor level that enables to avoid the degradation of the bottom transistor level. The most critical process step for the top transistor level fabrication is the dopant activation that is usually performed at temperature higher than 1000 °C. In the frame of this Ph.D. work, different solutions for the dopant activation optimization at low temperature (below 600 °C) are proposed and integrated in FDSOI and TriGate devices. The technique chosen for the dopant activation at low temperature is the solid phase epitaxial regrowth. First, doping conditions have been optimized in terms of activation level and process time for low temperatures (down to 450 °C) anneals. The obtained conditions have been implemented in FDSOI and TriGate devices leading to degraded electrical results compared to the high temperature process of reference (above 1000 °C). By means of TCAD simulation and electrical measurements comparison, the critical region of the transistor in terms of activation appears to be below the offset spacer. The extension first integration scheme is then shown to be the best candidate to obtain high performance low temperature devices. Indeed, by performing the doping implantation before the raised source and drain epitaxial growth, the absence of diffusion at low temperature can be compensated. This conclusion can be extrapolated for TriGate and FinFET on insulator devices. Extension first integration scheme has been demonstrated for the first time on N and PFETs in 14 nm FDSOI technology showing promising results in terms of performance. This demonstration evidences that the two challenges of this integration i.e. the partial amorphization of very thin films and the epitaxy regrowth on implanted access are feasible. Finally, heated implantation has been investigated as a solution to dope thin access regions without full amorphization, which is particularly critical for FDSOI and FinFET devices. The as-implanted activation levels are shown to be too low to obtain high performance devices and the heated implantation appears a promising candidate for low temperature devices if used in combination with an alternative activation mechanism.

Page generated in 0.0904 seconds