• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Implicación de las modificaciones de tRNA y del metabolismo de los folatos en la respuesta inmune de Arabidopsis

González García, Beatriz 01 September 2017 (has links)
Throughout evolution, plants have developed a sophisticated network of signaling pathways allowing the activation and regulation of immune responses. The identification of metabolic pathways which are involved in modulating the intensity of that immune responses is an important challenge in the field of plant-pathogen interaction. With this aim, we performed two genetic approaches in Arabidopsis thaliana against the disease caused by the hemibiotroph bacterial pathogen Pseudomonas syringae DC3000. We demonstrate that the regulation of two pathways, related between them, is crucial to activate an effective immune response. By means of a genetic screening of regulators components of plant immunity, we identified the mutant scs9 (suppressor of csb3) which shows an affected resistance that triggers a enhanced susceptibility to P.s. DC3000 through an independent pathway of salicylic acid (SA)-mediated immune response. The cloning and characterization of SCS9 reveals that it codes for 2'-O-ribose tRNA methyltransferase. Our results indicate that the SCS9-mediated methylation of nucleosides N32 and N34, located in the tRNAs anticodon loop, is crucial for the plant immunity effectiveness. On the other hand, with a chemical genetic screening of agonist molecules of the immune response, we identified the sulfonamides as priming inducer molecules that exhibit a faster and/or stronger activation of SA-related defense responses and enhanced resistance to P.s. DC3000. Analysis of the mechanism of action of these molecules reveals that synthesis and accumulation of folates exert a SA-independent negative control on the immune response to P.s. DC3000. Through comparative proteomic analysis we identified the 5-methyltetrahydropteroyltriglutamate homocysteine methyltransferase 1 (methione synthase, here named as METS1), enzyme responsible of the methionine synthesis in the folate-dependent 1C metabolism and overaccumulated in scs9 mutants, as modulator component in the immune response to P.s. DC3000. We observed that the overexpression of METS1 in transgenic plants of Arabidopsis suppresses plant immune responses and promotes enhanced susceptibility to P.s. DC3000. This repressor effect is due to a genome-wide increase in DNA methylation level, which is mediated by the overaccumulation of METS1 and the consequent increase of folate-dependent methionine synthesis. Therefore, the findings of this work provide a deeper knowledge about the mechanisms by which the DNA methylation and epigenetic regulation exert an influence on plant immunity through folate metabolism, particularly by METS1, whose synthesis is regulated through specific tRNA modifications mediated by SCS9. / Las plantas, a lo largo de la evolución, han desarrollado un sofisticado entramado de rutas de señalización que permiten la activación y el control de la respuesta inmune. Identificar qué procesos metabólicos participan en modular la amplitud de dicha respuesta inmune es un reto en el campo de la interacción planta-patógeno. Con este propósito, se han utilizado dos aproximaciones genéticas llevadas a cabo en Arabidopsis thaliana contra la infección por la bacteria hemibiotrofa Pseudomonas syringae DC3000. Los resultados ponen de manifiesto la importancia de la regulación de dos mecanismos, a su vez relacionados, para la activación de una respuesta inmune efectiva. Mediante un rastreo genético en busca de componentes reguladores de la inmunidad, identificamos el mutante que denominamos scs9 (supresor de csb3). scs9 muestra una resistencia afectada que conlleva un incremento en la susceptibilidad a P.s. DC3000 a través de un mecanismo independiente a la respuesta inmune mediada por ácido salicílico (SA). La clonación y caracterización de SCS9 revela que codifica una 2'-O-ribosa metiltransferasa de tRNA. Nuestros resultados indican que la modificación por metilación mediada por SCS9 de los nucleósidos N32 y N34 de la región anticodón de los tRNAs, es clave para la inmunidad de la planta. Por otro lado, mediante un rastreo de genética química en busca de moléculas agonistas de la respuesta inmune, identificamos un grupo de sulfonamidas como moléculas activadoras de un mecanismo de priming. Este conlleva una más rápida y/o más intensa activación de la respuesta defensiva dependiente de SA y de un incremento de la resistencia frente a P.s. DC3000. El análisis del mecanismo de acción de dichas moléculas revela que la síntesis y acumulación de folatos ejerce un control negativo sobre la respuesta inmune frente a P.s. DC3000; y ese control es ejercido de manera independiente a la ruta de señalización mediada por SA. A través de un análisis proteómico comparativo identificamos la proteína 5-metiltetrahidropteroiltriglutamato homocisteína metiltransferasa 1 (metionina sintasa, denominada aquí METS1), responsable de la síntesis de metionina en el metabolismo C1 dependiente de folatos y sobreacumulada en los mutantes scs9. Esta proteína participa entonces como componente modulador de la respuesta inmune a P.s. DC3000. La sobreexpresión de METS1 en plantas transgénicas observamos que suprime la respuesta inmune y conlleva a un incremento en la susceptibilidad frente a P.s. DC3000. Dicho efecto represor de la resistencia acontece a raíz de un incremento del nivel de metilación de DNA en todo el genoma mediado por la sobreacumulación de METS1 y del consiguiente posible aumento en la síntesis de metionina dependiente de folatos. Por tanto, estos resultados ahondan en el conocimiento de cómo la metilación de DNA y el control epigenético ejercen una influencia sobre la respuesta inmune. Esta influencia puede ser controlada a través del metabolismo de folatos, y en particular a través de METS1, enzima cuya síntesis está a su vez controlada por determinadas modificaciones de tRNA mediadas por SCS9. / Les plantes, al llarg de l'evolució, han desenvolupat un sofisticat entramat de rutes de senyalització que permeten l'activació i el control de la resposta immune. Identificar quins procesos metabòlics participen en la modulació de l'amplitud d'aquesta resposta immune és un repte en el camp de la interacció planta-patogen. Amb aquest propòsit, s'han utilitzat dues aproximacions genètiques en Arabidopsis thaliana en resposta a la infecció pel bacteri hemibiotrofo Pseudomonas syringae DC3000. Els resultats posen de manifest la importància de la regulació de dos mecanismes, al seu torn relacionats, per a l'activació d'una resposta immune efectiva. Mitjançant un rastreig genètic per a la recerca de components reguladors de la immunitat, es va identificar el mutant que denominem scs9 (supresor de csb3). scs9 mostra una resistència afectada que comporta un increment en la susceptibilitat a P.s. DC3000 fent ús d'un mecanisme independent a la resposta immune mediada per l'àcid salicílic (SA). La clonació i caracterització de SCS9 revela que codifica una 2'-O-ribosa metiltransferasa de tRNA. Els nostres resultats indiquen que la modificació per metilació mediada per SCS9 dels nucleòsids N32 i N34 de la regió anticodó dels tRNAs, és clau per a la immunitat de la planta. D'altra banda, per mitjà d'un rastreig de genètica química per a la recerca de molècules agonistes de la resposta immune, es va identificar un grup de sulfonamidas com a molècules activadores d'un mecanisme de priming. Aquest, comporta una més rápida i/o més intensa activació de la resposta defensiva dependent de SA i d'un increment de la resistència enfront de P.s. DC3000. L'anàlisi del mecanisme d'acció d'aquestes molècules revela que la síntesis i acumulació de folats exerceix un control negatiu sobre la resposta immune davant el bacteri P.s. DC3000; i eixe control és exercit de manera independent a la ruta de senyalització mediada per SA. Amb un anàlisi proteòmic comparatiu es va identificar la proteïna 5-metiltetrahidropteroiltriglutamato homocisteína metiltransferasa 1 (metionina sintasa, denominada ací METS1), responsable de la síntesi de metionina al metabolisme C1 dependent de folats i sobreacumulada en els mutants scs9. Aquesta, així doncs, es troba participant com a component modulador de la resposta immune a P.s. DC3000. La sobreexpressió de METS1 en plantes transgèniques suprimeix la resposta immune i comporta a un increment en la susceptibilitat per P.s. DC3000. L'efecte repressor de la resistència succeïx arran d'un increment del nivell de metilació de DNA en tot el genoma, mediat per la sobreacumulació de METS1 i del consegüent posible augment en la síntesi de metionina dependent de folats. Per tant, aquests resultats aprofundixen en el coneixement de com la metilació de DNA i el control epigenètic exerceixen una influència sobre la resposta immune. Aquesta influència pot ser controlada mitjançant el metabolisme de folats, i en particular a través de l'enzim METS1, la síntesi de la qual està al seu torn controlada per determinades modificacions de tRNA mediades per SCS9. / González García, B. (2017). Implicación de las modificaciones de tRNA y del metabolismo de los folatos en la respuesta inmune de Arabidopsis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/86162 / TESIS
2

Análisis de la interacción del virus del arabesco del Pelargonium con la ruta de silenciamiento por RNA del huésped

Pérez Cañamás, Miryam 08 November 2019 (has links)
[ES] En plantas, el silenciamiento por RNA constituye un potente mecanismo de defensa frente a virus. Los RNA virales de doble cadena activan este tipo de procesos y son digeridos por las enzimas DCL (Dicer-like), cuya acción genera pequeños RNA (sRNA) de entre 20 y 24 nt. Estos sRNA promueven la degradación de RNA de secuencia complementaria a través de un complejo multiproteico conocido como RISC (RNA-induced silencing complex), cuya molécula efectora es una proteína Argonauta (AGO). Con el fin de evadir esta barrera defensiva del huésped, la mayoría de los virus de plantas codifican supresores del silenciamiento por RNA (VSR), cuyos mecanismos de acción son diversos y en muchos casos no se comprenden del todo. Aunque todas las etapas de la ruta de silenciamiento pueden ser inhibidas por los VSR, los sRNA y las proteínas AGO parecen ser las dianas más frecuentes. Se ha postulado que motivos GW/WG podrían ser fundamentales para la actividad de algunos VSR, al intervenir en la interacción con proteínas AGO. En este trabajo se ha pretendido seguir profundizando en el estudio de la respuesta antiviral en plantas y de los mecanismos de acción de los supresores de silenciamiento. El primer objetivo abordado ha sido identificar el VSR codificado por el virus del arabesco del Pelargonium (Pelargonium line pattern virus, PLPV), un miembro del género Pelarspovirus dentro de la amplia familia Tombusviridae. Los resultados han mostrado que la proteína de cubierta del virus (p37) es capaz de inhibir de manera eficiente el silenciamiento inducido por RNA. La generación de un batería de variantes capaces e incapaces de actuar como VSR y/o de empaquetar el RNA viral mediante mutagénesis dirigida de distintos motivos de la proteína, incluido un motivo GW que está conservado en ortólogos, nos han permitido conocer que: (i) tanto la función de supresión del silenciamiento como la función de encapsidación son esenciales para que el PLPV alcance una infección sistémica y (ii) p37, a pesar de contener un motivo GW funcional e interaccionar con distintas AGO, emplea el secuestro de sRNA como estrategia principal para inhibir el silenciamiento. A pesar de que ambas funciones conocidas de p37 deben ser llevadas a cabo esencialmente en el citoplasma, esta proteína se localiza en citoplasma y núcleo, con gran acumulación en nucleolo, por lo que nos planteamos como segundo objetivo en este trabajo profundizar acerca de la localización nucleolar de p37. Además de mapear la región de la proteína que contiene la señal de localización nucleolar (NoLS) en los primeros 45 aminoácidos de la molécula, también hemos observado que p37 interacciona con diferentes miembros de la familia de las importinas ¿, adaptadores moleculares del transporte nucleocitoplasmático, y que esta interacción es esencial para la localización nucleolar de la proteína. Adicionalmente, la anulación de la localización nucleolar de p37 mediante el silenciamiento de importinas ¿ ha correlacionado con una disminución de acumulación del virus, lo que sugiere que dicha localización es ventajosa para la infección viral. Por último, para intentar conocer más datos acerca de las actividades de la ruta de silenciamiento que están implicados en la defensa frente al PLPV, analizamos la infección viral en líneas transgénicas de N. benthamiana con la expresión o actividad distintos componentes de la ruta comprometida. Los resultados han mostrado que DCL4 y, en menor medida, DCL2 afectan a la infección viral y que ambas tienen un efecto aditivo, tal y como se ha descrito en diversas interacciones virus-planta. Adicionalmente, AGO2 se ha revelado como un factor clave en la respuesta frente al PLPV, ampliando el número de virus que están afectados por esta endonucleasa particular. En conjunto, los resultados obtenidos muestran que tanto el procesamiento de dsRNA mediado por enzimas DCL como el corte de RNA mediado AGO, contribuyen a la defen / [CAT] En plantes, el silenciament per RNA constitueixen un potent mecanisme de defensa davant virus. Els RNA virals de doble cadena activen aquest tipus de processos, i són digerits per els enzims DCL (Dicer-like), donant lloc a xicotets RNA (sRNA) d'entre 20 i 24 nt. Estos sRNA promouen la degradació de RNA de seqüència complementària a través d'un complex multiproteic conegut com RISC (RNA-induced silencing complex), la molècula efectora del qual és una proteïna Argonauta (AGO). Per tal d'evadir aquesta barrera defensiva de l'hoste, la majoria dels virus de plantes codifiquen supressors del silenciament per RNA (VSR), els mecanismes d'acció dels quals són diversos i en molts casos no es comprenen del tot. Encara que totes les etapes de la ruta poden ser inhibides, els sRNA i les proteïnes AGO semblen ser les dianes més freqüents. S'ha postulat que els motius GW/WG podrien ser fonamentals per a l'activitat d'alguns VSR, en intervindre en la interacció amb proteïnes AGO. En aquest treball s'ha pretés continuar aprofundint en l'estudi de la resposta antiviral en plantes i dels mecanismes d'acció dels supressors de silenciament. El primer objectiu abordat ha sigut identificar l'VSR codificat pel virus de l'arabesc del Pelargonium (Pelargonium line pattern virus, PLPV), un membre del gènere Pelarspovirus dins de l'amplia família Tombusviridae. Els resultats han mostrat que la proteïna de coberta del virus (p37) és capaç d'inhibir de manera eficient el silenciament induït per RNA. La generació d'una bateria de variants capaces i incapaces d'actuar com VSR i/o d'empaquetar l'RNA viral mitjançant la mutagènesi dirigida de diferents motius de la proteïna, inclòs un motiu GW que està conservat en ortòlegs, ens ha permés conèixer que: (i) tant la funció de supressió del silenciament com la funció d'encapsidació són essencials per a que el PLPV aconseguisca una infecció sistèmica i (ii) p37, malgrat contindre un motiu GW funcional i interaccionar amb diferents AGO, empra el segrest de sRNA com a estratègia principal per a inhibir el silenciament. Malgrat que ambdues funcions conegudes de p37 han de ser dutes a terme essencialment en el citoplasma, esta proteïna localitza en citoplasma i nucli, amb gran acumulació en nuclèol, per la qual cosa ens hem plantejat com a segon objectiu en este treball aprofundir sobre la localització nucleolar de p37. Ademés de mapejar la senyal de localització nucleolar (NoLS) en els primers 45 aminoàcids de la molècula, també hem observat que p37 interacciona amb diferents membres de la família de les importines ¿, i que aquesta interacció és essencial per a la localització nucleolar de la proteïna. A més, l'anul¿lació de la localització nucleolar de p37 mitjançant el silenciament d'importines ¿ s'ha correlacionat amb una disminució d'acumulació del virus, la qual cosa suggereix que aquesta localització és avantatjosa per a la infecció viral. Finalment, per a intentar conéixer més dades sobre les activitats de la ruta de silenciament que estan implicats en la defensa front al PLPV, hem analitzat la infecció viral en línies transgèniques de N. benthamiana amb l'expressió o activitat diferents components de la ruta compromesa. Els resultats han mostrat que DCL4 i, en menor mesura, DCL2 afecten la infecció viral i que ambdues tenen un efecte additiu, tal com s'ha descrit en diverses interacciones virus-planta. Addicionalment, AGO2 s'ha revelat com un factor clau en la resposta front al PLPV, ampliant el nombre de virus que estan afectats per aquesta endonucleasa particular. En conjunt, els resultats obtinguts mostren que tant el processament de dsRNA mediat per enzims DCL com el tall d'RNA mediat AGO, contribueixen a la defensa de N. benthamiana front al PLPV. / [EN] n plants, RNA silencing functions as a potent antiviral mechanism. Viral-derived double-stranded RNAs trigger this type of processes, being digested by DCL (Dicer-like) enzymes into virus-derived small RNAs (vsRNAs) of 20-24 nt. These vsRNAs guide sequence-specific RNA degradation upon their incorporation into an RNA-induced silencing complex (RISC) that contains a slicer of the Argonaute (AGO) family. To counteract this host defence response, most plant viruses encode suppressors of RNA silencing (VSRs), whose mechanisms of action are diverse and often not well understood. Though virtually all stages of the antiviral silencing pathway can be blocked by VSRs, sRNAs and AGO proteins seem to be the most common targets. It has been postulated that GW/WG motifs could be fundamental for the activity of some VSRs by directing interaction with AGOs. In this work, we have pursued to get further insights into the antiviral silencing in plants and the mechanisms of action of silencing suppressors. The first objective has been to identify the VSR encoded by Pelargonium line pattern virus (PLPV), a member of the genus Pelarspovirus within family Tombusviridae. The results have shown that the viral coat protein (p37) is able to efficiently inhibit RNA silencing. Generation of suppressor-competent and incompetent molecules and uncoupling of the RSS and particle assembly capacities through site-directed mutagenesis of some p37 sequence traits, including a conserved GW motif, allowed us to know that: (i) the silencing suppression and encapsidation functions of p37 are both required for systemic PLPV infection and, (ii) p37, even though it has a functional GW motif and interacts with different AGOs, inhibits silencing most likely through vsRNA sequestration. Despite both p37 functions have to be executed essentially in the cytoplasm, this protein localizes in cytoplasm and nucleus, with high accumulation at the nucleolus, so the second objective of this work has been to gain further insights into the nucleolar localization of p37. Besides mapping the protein region containing the nucleolar localization signal (NoLS) in the first 45 amino acids of the molecule, we have found that p37 interacts with distinct members of the importin ¿ family, main cellular transporters for nucleo-cytoplasmic traffic of proteins, and that these interactions are crucial for nucleolar targeting of p37. In addition, impairment of p37 nucleolar localization through down-regulation of importin ¿ expression has been correlated with a reduction of viral accumulation, suggesting that sorting of the protein to the major subnuclear compartment is advantageous for the infection process. Finally, in order to obtain information on which activities of RNA silencing pathway are involved in the defense against PLPV, we analyzed the viral infection in N. benthamiana transgenic lines with the functions of distinct components of the pathway impaired. Results have shown that DCL4 and, to lesser extent, DCL2 contribute to restrict viral infection and that they have additive effects, in agreement with that observed in other plant-virus interactions. Additionally, AGO2 was found to be a key factor in the defense against PLPV, extending the number of viruses that are affected by this particular slicer. Altogether, the results supported that both dicing and slicing activities participate in the defense of N. benthamiana against PLPV. / Pérez Cañamás, M. (2019). Análisis de la interacción del virus del arabesco del Pelargonium con la ruta de silenciamiento por RNA del huésped [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/122297 / TESIS
3

Functional characterization of AWR affector proteins from the phytopathogen "R. solanacearum" (Caracterització funcional de les proteïnes efectores AWR del fitopatogen "R. solanacearum")

Solé Castellví, Montserrat 25 November 2011 (has links)
"R. solanacearum" is a devastating bacterial pathogen that infects "Solanaceae" spp. such as tomato, eggplant or banana. A functional T3SS is required for virulence and more than 70 putative effectors have been described, although only few have been studied. This thesis focuses on a five-member gene family of effectors named "awr". We demonstrated that awr gene family is extremely conserved among R. solanacearum strains but also present in other plant pathogens such as Acidovorax or Burkholderia spp. and even present in the human pathogen B. pseudomallei. Virulence of a Ralstonia mutant strain devoid of all awr genes was tested on tomato, eggplant and Aradidopsis. Plant growth of quintuple mutant strain was considerably reduced in natural hosts, indicating a role in virulence, but remained unchanged in Arabidopsis. Col-0 infection with Pseudomonas syringae DC3000 heterologously expressing each AWR was also performed. While presence of some AWRs in Pseudomonas did not have an effect on plant growth, others (like AWR5) dramatically reduced the pathogen multiplication, pointing out a possible plant detection. In order to unravel the functions of AWR proteins, they were transiently expressed by means of Agrobacterium in non-host Nicotiana spp. Upon AWR expression, necroses took place to different extents on the plant leaves. AWR5 induced the strongest necrosis, resembling an HR phenotype which was later confirmed by TB/DAB staining and by RT-PCR of specific HR marker genes. Furthermore, a strong reduction in yeast cells was experimented upon several AWR protein expressions which indicate that the mechanisms that might be altered by these effector proteins is conserved among eukaryotes and hence reinforces their role in virulence. AWR4 appeared not to be toxic in this model organism and for that reason we sought to decipher some of the plant targets of this AWR protein as a start point. Out of more than 60 interacting clones were sequenced after a yeast-two hybrid screening with Arabidopsis root cDNA from R. solanacearum challenged plants. Among them, several defense-related proteins were found: phenylalanine ammonia-lyase, MPK6, DMR6 or KIN10. In order to find other key genes for AWR activity, the AWRs that displayed a strong yeast toxicity were heterologously produced in both E. coli and R. solanacearum to be ready to be employed as a bait for plant protein complexes that will be analysed by mass spectrometry. In summary, AWR are highly conserved effectors that play an important role in both pathogenesis and plant recognition as they reduce P. syringae virulence and trigger an HR-like phenotype in non-host plants. Deciphering effector function will open promising avenues towards the design of new strategies to control R. solanacearum. / R. solanacearum és un patogen bacterià capaç d’infectar diferents solanàcies com ara la tomaquera, la patatera, l’alberginiera o el plataner. Aquest fitopatogen injecta més de 70 proteïnes efectores en la cèl•lula vegetal hoste, tot i que només algunes han sigut ja estudiades. Aquesta tesi es centra en una família multigènica d’efectors: els AWRs. Els estudis científics duts a terme durant aquesta tesi van demostrar que la família de AWR no només estava altament conservada en el llinatge de R. solanacearum sinó que també es trobava present en altres fitopatògens o inclús en el patogen humà Burkholderia pseudomallei. A més a més, diferents assajos de patogenicitat en tomaquera i alberginiera van provar que els gens awr presentaven un paper clar en virulència per aquests hostes. Contràriament, la presència d’aquestes proteïnes en la planta model Arabidopsis thaliana produïen una disminució en la capacitat infectiva/multiplicativa. Això indicaria una dualitat dels efectors AWR depenent del context que ens trobem, ja sigui contribuint a la patogenicitat del bacteri o bé éssent reconeguts per la planta i així disminuint la patogenicitat bacteriana. Per tal de desentranyar les funcions de les proteïnes AWR, es van expressar de forma transitòria a la planta model no-hoste Nicotiana spp. L’expressió d’algunes proteïnes AWR va provocar una forta necrosi de les fulles que s’assemblaria a una resposta hipersensible. Mitjançant diferents tincions i assajos de PCR en temps real es va corroborar que l’AWR5 presentava aquest tipus de mort cel•lular programada. L’elevada toxicitat d’algunes AWRs es va demostrar també en llevat. En el transcurs d’aquesta tesi també s’ha realitzat un crivellatge en doble híbrid per tal de buscar proteïnes dianes de la planta per a l’AWR4 (la menys tòxica). A més a més, es va posar a punt l’expressió dels AWRs a E. coli o bé a R. solanacearum per tal d’abordar altres tècniques que permetin una millor cerca d’interactors en el futur.
4

Nuevas aportaciones al metabolismo secundario del tomate. Identificación y estudio de moléculas implicadas en la respuesta a la infección con pseudomonas syrinagae pv. tomato

Zacarés Sanmartín, Laura 10 September 2008 (has links)
Los fenilpropanoides constituyen un grupo de metabolitos secundarios producidos y utilizados por las plantas como parte de la respuesta defensiva tanto constitutiva como inducible. Un gran número de ellos están implicados en la resistencia frente a la enfermedad a diferentes niveles: señalización (ácido salicílico), agentes antimicrobianos (fitoalexinas), y endurecimiento de la pared celular (lignina). Las amidas derivadas del ácido hidroxicinámico (HCAAs) son un conjunto de metabolitos, pertenecientes al grupo de los fenilpropanoides, que desempeñan un importante papel en la defensa de las plantas frente a patógenos y predadores. Las HCAAs se forman a partir de la condensación de tioésteres de hidroxicinamoil-CoA con feniletilaminas, tales como la tiramina. El último paso en la biosíntesis de las HCAAs está catalizado por el enzima tiramina hidroxicinamoil transferasa (THT). En la presente tesis se muestra la identificación y el estudio de cuatro HCAAs, p-cumaroildopamina, feruloildopamina, p-cumaroiltiramina y feruloiltiramina, asociadas a la infección de tomate con la bacteria Pseudomonas syringae pv. tomato. Su identificación y caracterización estructural se han llevado a cabo mediante técnicas de cromatografía líquida de alta resolución y espectrometría de masas (HPLC-MS). Se ha analizado la posible implicación del ácido salicílico y del etileno en la inducción patogénica de dichas moléculas y del enzima responsable de su biosíntesis (THT). Además, se ha estudiado la actividad antioxidante y antibacteriana in vitro de las cuatro HCAAs identificadas. Por último, se han obtenido líneas transgénicas de Arabidopsis thaliana y de tomate que sobreexpresan el gen de la THT, y se han analizado los perfiles cromatográficos de dichas líneas. / Zacarés Sanmartín, L. (2008). Nuevas aportaciones al metabolismo secundario del tomate. Identificación y estudio de moléculas implicadas en la respuesta a la infección con pseudomonas syrinagae pv. tomato [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/3021 / Palancia

Page generated in 0.1185 seconds