• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 9
  • 9
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Rubber snow interface and friction

Ella, Samantha January 2014 (has links)
Tyres are used in everyday life for a variety of practical and recreational tasks. Frictional behaviour of tyres on any surface is important for vehicle safety and control; this behaviour becomes more important when that surface is snow. The interaction of rubber and a snow surface is complex and a deeper understanding of both is needed in order to help develop better tyres. Outdoor full scale tyre test results were compared to results from indoor laboratory tests using a linear tribometer and a surface of compacted artificial snow; these were in excellent correlation allowing a systematic and comprehensive study of rubber friction on snow to be conducted in the laboratory. Rubber samples of varied rubber compositions and geometries were used to gain an understanding of friction on snow. Samples with varying glass transition temperature (Tg), dynamic rigidity (G*) and Payne effect (dependence of the dynamic moduli on the amplitude of the applied strain) were investigated along with samples with and without sipes. The rubber friction coefficient (μ) was measured as a function of velocity and temperature. The siped samples exhibited a higher μ than those without sipes. FE simulations, rubber friction tests for varying contact pressures and steel blade force tests were performed to evaluate contributions from ‘surface’ friction and ploughing separately. The increased μ was attributed to the ploughing force from the front edges of the ‘subblocks’ created by the sipes. Although it is well known in the industry that siped tyres grip well, this is the first time it has been explained how sipes grip effectively through a combination of ploughing and rubber snow interaction. A comprehensive study of varying rubber properties (Tg, G* and Payne effect) was conducted to better understand their impact on snow friction. The findings were evaluated using the WLF shift factor to account for the running frequency of the rubber from the snow surface roughness. G* was found to be the dominant parameter for rubber μ when considering running frequency. Increased μ values were exhibited by rubbers with a lower G*. The decreased G* makes the rubber more compliant, thus increasing the contact area between the rubber and the snow, in turn increasing μ. A better knowledge of the surface roughness of snow will aid the understanding of the interaction between rubber and snow for tyres. A method was developed to characterise the artificial snow surface utilising sectioning and imaging of chemically stabilised snow samples. From images of the snow surface before friction testing the average indentor size can be found, this is used to analyse the running frequency of the rubber. Qualitatively comparing the surfaces before and after rubber friction testing shows a decrease in surface profile aggressivity after a test; this is attributed to melting of the snow from frictional heating and snow grain fracture. Friction tests were conducted to directly compare rubber friction on snow and ice using round edged samples. Again it was found that the rubber with the decreased G* exhibited higher friction; this was seen on both snow and ice confirming G* as the dominant rubber property for both surfaces, regardless of the surface roughness change. It was found that at low temperatures ice had a higher μ than snow, while at high temperatures snow exhibited a higher μ than ice. It is hypothesised that this intriguing switch is due to the surface roughness change leading to differing contact areas both with and without melt water. This switch is not seen when a simple heat transfer model is used, confirming the effect as a surface roughness change. The use of a modified Hertz model shows that indentation is the dominant mechanism at low velocities on snow. It is hypothesised that at high velocities melt water dominates on both snow and ice while adhesion may have a more significant role on ice at low velocities. These findings provide knowledge that can be used in the design of tyres for snow and ice in the future.
2

Análise da estrutura energética e da dinâmica de portadores fotogerados em heteroestruturas semicondutoras de InGaAs/InP e AlGaAs/GaAs / Analyses of the energy structure and dynamics of photogenerated carriers in InGaAs/InP and GaAs/AlGaAs semiconductor heterostructures

Patricio, Marco Antonio Tito 21 November 2018 (has links)
Esta tese apresenta um estudo experimental em sistemas eletrônicos multicamadas formados em diversas heteroestruturas semicondutoras de alta qualidade crescidas por epitaxia de feixes moleculares. Especificamente, poços quânticos isolados baseados em InGaAs/InP e super-redes baseadas em GaAs/AlGaAs foram caraterizados por meio de medidas de fotoluminescência (PL) em função da temperatura, potência de excitação e do campo magnético. O estudo de efeitos na dinâmica de processos de recombinação destes sistemas eletrônicos é a base principal deste trabalho. Além disso, exploramos os efeitos da desordem sobre os processos de recombinação e demonstramos que o espalhamento por rugosidade interfacial é responsável pela resposta óptica destes sistemas. Nas amostras de InGaAs/InP com maior largura do espaçador observamos um novo efeito, o tempo de recombinação Auger aumenta notavelmente com a potência de excitação. Atribuímos este novo efeito à distribuição de elétrons fotoexcitados em diferentes vales da banda de condução. E em amostras de menor largura do espaçador, o relaxamento da regra de seleção do momento induzido pela desordem faz que o tempo de recombinação Auger diminua com o aumento da potência. Por outro lado, nas amostras de GaAs/AlGaAs, evidenciamos que a desordem gerada pela rugosidade interfacial afeta consideravelmente o transporte dos elétrons da banda de condução, e em poços quânticos de largura apropriada resulta em uma transição metal-isolante. A borda de mobilidade Ec, energia crítica que separa os estados estendidos dos estados localizados, foi determinada a partir das medidas do tempo de recombinação em função da energia de emissão de PL. Para uma desordem crítica, a Ec mostra uma interseção com a energia do nível de Fermi, a qual corresponde à transição metal-isolante. Além disso, realizamos medidas de PL resolvida no tempo em função do campo magnético. Observamos que a redistribuição espacial de elétrons causada pelo campo magnético afeta os tempos de recombinação. Nas amostras metálicas, os resultados mostraram deslocamento da Ec para altas energias, devido à quantização da energia dos elétrons provocada pelo campo magnético. No entanto, nas amostras isolantes, o campo magnético foi responsável pelo relaxamento significativo da regra de seleção do momento, que aumenta a probabilidade de recombinação dos elétrons localizados com os buracos fotoexcitados da banda de valência e, por consequência, diminui o tempo de recombinação. / This thesis presents an experimental study in multilayer electronic systems formed in several high quality semiconductor heterostructures grown by molecular beam epitaxy. Specifically, GaAs/AlGaAs based superlattices and isolated quantum wells based on InGaAs/InP were characterized by photoluminescence (PL) measurements as a function of temperature, pump power and magnetic field. The study of effects on the dynamics of the recombination processes of these electronic systems is the principal goal of this work. In addition, we explore the effects of the disorder on the recombination processes and show that the interfacial roughness scattering is responsible for the optical response in these systems. In the small spacer InGaAs/InP samples, we observed a new effect, the Auger recombination time becomes larger with the increasing the pump power. We propose that the distribution of photoexcited electrons over different conduction band valleys might account for this effect. In large spacer quantum wells, the non-radiative recombination time is reduced with the increasing pump power, as a consequence the disorder-induced relaxation of the momentum rule. On the other hand, in GaAs/AlGaAs samples, we showed that the disorder generated by interfacial roughness considerably affects transport of the conduction band electrons and at appropriate quantum wells width results in a metal-to-insulator transition. The mobility edge energy Ec was determined from the measurements of the recombination time as a function of energy allowed. At a critical disorder, the mobility edge energy demonstrates intersection with the Fermi level energy which correspond to the metal-insulator transition. In addition, we perform time-resolved PL measurements as a function of the magnetic field. We observed that the spatial distribution of electrons caused by the magnetic field influence on the recombination time. In the metallic samples was observed a shift of the mobility edge to higher energy due to the magnetic field quantization of conduction band electron energy. However, in the insulating samples, the magnetic field was responsible to cause a significant relaxation of the momentum selection rule which enhances the probability of recombination of the localized electrons with the photoexcited holes of the valence band, and consequently the recombination time is reduced.
3

Quantifying three dimensional effects in acoustic rough surface scattering

Joshi, Sumedh Mohan 12 July 2011 (has links)
Interface roughness can have a significant effect on the scattering of sound energy, and therefore an understanding of the effects of roughness is essential to making predictions of sound propagation and transmission underwater. Many models of roughness scattering currently in use are two dimensional (2D) in nature; three dimensional (3D) modeling requires significantly more time and computational resources. In this work, an effort is made to quantify the effects of 3D scattering in order to assess whether or under what conditions 3D modeling is necessary. To that end, an exact 3D roughness scattering model is developed based on a commercially available finite element package. The finite element results are compared with two approximate scattering models (the Kirchhoff approximation and first order perturbation theory) to establish the validity and regimes of applicability of each. The rough surfaces are realizations generated from power spectra measured from the sea floor. However, the surfaces are assumed to be pressure release (as on an air-water interface). Such a formulation is nonphysical, but allows the assessment of the validity of the various modeling techniques which is the focus of this work. The comparison between the models is made by calculating the ensemble average of the scattering from realizations of randomly rough surfaces. It is shown that a combination of the Kirchhoff approximation and perturbation theory models recovers the 3D finite element solution. / text
4

Mechanical degradation in oxides formed on zirconium alloys

Platt, Philip Michael January 2014 (has links)
The present work has been produced as part of an on-going collaboration between the University of Manchester and Amec, with the primary aim of furthering mechanistic understanding of corrosion processes in zirconium alloys out-of-reactor. Zirconium alloys are used as cladding material for nuclear fuel pellets, and correct understanding of the corrosion process in autoclave is essential to predicting material behaviour in-reactor. This EngD thesis is composed of five proposed papers that investigate observations and hypotheses under the theme of mechanical degradation in oxides formed on zirconium alloys in autoclave. First investigations concern observed stress relaxation in zirconium oxide. Finite element analysis is used to capture mechanical aspects of the corrosion process and apply this to stress behaviour determined previously using synchrotron x-ray diffraction. The results indicate that a mechanism other than creep or hydrogen induced lattice strain must be present to account for the observed stress relaxation. One such potential mechanism is crack formation; statistical analysis of scanning electron microscopy images has been used to identify a link between the development of roughness at the metal-oxide interface, crack formation in the oxide and transition points or acceleration in the corrosion kinetics. Parameters such as the median radius of curvature and profile slope (Rdq) have been applied, as these parameters do not require the definition of a periodic wavelength or amplitude. These and other parameters are related to information in literature to indicate that for samples of Zircaloy-4 and ZIRLOTM, which go through transition, the interface roughness changes in a way that would increase localised stress concentrations. The third material is an experimental low tin alloy, which under the same oxidation conditions, and during the same time period, does not appear to go through transition and does not develop an interface roughness in the same way. A critical assessment of finite element analysis applied to oxidising non-planar interfaces shows the significant limitations in the existing mechanism for representing oxidation expansion and stress formation. Autoclave oxidation experiments of artificially roughened samples of Zircaloy-4 were carried out to further understand the impact of out-of-plane stress generation. The results indicate a divergence based on surface roughness after ~86 days oxidation. SEM examination of images in cross section highlighted accelerated oxidation above surface roughness peaks, and an increased crack area in rougher samples. Finally, finite element analysis of the tetragonal to monoclinic phase transformation showed that biaxial compressive stress relaxation, or the tri-axial tensile stress associated with an advancing crack tip, could reduce the transformation strain energy and destabilise the tetragonal phase. The volumetric expansion and shear strain associated with the phase transformation produces stress in the surrounding oxide sufficient to generate nano-scale cracks perpendicular to the metal-oxide interface. This would allow fast ingress routes for oxygen containing species, and therefore acceleration in the corrosion kinetics.
5

Etude analytique, numérique et expérimentale des effets de rugosités d'interfaces dans une structure métal/colle/métal sur les ondes SH / Analytical, numerical and experimental approaches to interpret the effects on SH waves of interface roughness in a metal/glue/metal structure

Foze Ndjomo, Ludovic Cardin 15 October 2015 (has links)
L’étude de la propagation des ondes élastiques dans des plaques présentant des défauts en surface ou en volumetrouve sa place dans divers domaines industriels (aéronautique, automobile, aérospatial,…) pour le contrôle de l’état de santé des matériaux. L’étude menée ici en ondes transversales horizontales (SH) porte plus particulièrement sur les effets de rugosité aux interfaces d’une structure tri-couche, deux plaques isotropes collées par une couche mince de colle (les interfaces entre la couche de colle et les deux plaques sont rendues rugueuses pour améliorer l’adhésion), les plaques n'étant pas obligatoirement de même nature. L’objectif à terme est de caractériser cette rugosité et par-delà d'analyserson influence sur la qualité de collage. Les rugosités peuvent être quelconques ; celles considérées ici sont soit périodiques, soit pseudo-aléatoires. Les approches retenues sont analytiques, numériques et expérimentales. L’approche analytique basée sur une formulation intégrale adaptée à la propagation en ondes SH est utilisée pour déterminer les champs de déplacements et de contraintes dans les deux plaques. L’étude numérique par éléments finis qui utilise le logiciel COMSOL donne les coefficients de transmission. L’étude expérimentale met en oeuvre des transducteurs piézoélectriques à ondes transversales pour l’émission, et un vibromètre laser en réception, l’objectif étant de générer et d’identifier les modes propagatifs dans les structures étudiées, et d’évaluer leur comportement selon le type de rugosité.Les résultats et comparaisons portent sur les champs (déplacement-contrainte) et les coefficients de transmission enprésence de rugosité, avec ou non accords de phase lorsque des périodicités apparaissent sur les profils de rugosité. / Analysing the elastic wave propagation in rough plates opens the way to several applications such as the health monitoringof materials in industrial sectors (aeronautics, automotive, aerospace,..). The study here in using shear horizontal waves(SH), focuses on the effects of roughness at the interfaces of a bi-layered structure which consists of two isotropic platesadhesively bonded using a thin layer of glue (the interfaces between the adhesive layer and the two plates are roughenedto improve adhesion), the plates being not necessarily of the same nature. The aim of this study is to characterize thisroughness and beyond to analyze its influence on the quality of bonding. The roughness may have any profile; thoseconsidered here are either periodic or pseudo-random. The approaches used are analytical, numerical and experimental. The analytical approach, based on the integral formulation developed for SH-wave propagation, is used to determine the fields of displacements and stresses in both plates. The numerical finite element analysis using the COMSOL software gives the transmission coefficients. In the experimental study, shear waves piezoelectric transducers are used for the emission and a laser vibrometer for the reception; the final aim being to generate and to identify the modes propagating in the studied structures, and to evaluate their behavior depending on the roughness. The displacement and stress perturbation maps, and transmission coefficients are presented in the presence of roughness, with or without phase-matching.
6

Accurate treatment of interface roughness in nanoscale double-gate metal oxide semiconductor field effect transistors using non-equilibrium green's functions

Fonseca, James Ernest January 2004 (has links)
No description available.
7

Design of Thermal Barrier Coatings : A modelling approach

Gupta, Mohit Kumar January 2014 (has links)
Atmospheric plasma sprayed (APS) thermal barrier coatings (TBCs) are commonly used for thermal protection of components in modern gas turbine application such as power generation, marine and aero engines. TBC is a duplex material system consisting of an insulating ceramic topcoat layer and an intermetallic bondcoat layer. TBC microstructures are highly heterogeneous, consisting of defects such as pores and cracks of different sizes which determine the coating's final thermal and mechanical properties, and the service lives of the coatings. Failure in APS TBCs is mainly associated with the thermo-mechanical stresses developing due to the thermally grown oxide (TGO) layer growth at the topcoat-bondcoat interface and thermal expansion mismatch during thermal cycling. The interface roughness has been shown to play a major role in the development of these induced stresses and lifetime of TBCs.The objective of this thesis work was two-fold for one purpose: to design an optimised TBC to be used for next generation gas turbines. The first objective was to investigate the relationships between coating microstructure and thermal-mechanical properties of topcoats, and to utilise these relationships to design an optimised morphology of the topcoat microstructure. The second objective was to investigate the relationships between topcoat-bondcoat interface roughness, TGO growth and lifetime of TBCs, and to utilise these relationships to design an optimal interface. Simulation technique was used to achieve these objectives. Important microstructural parameters influencing the performance of topcoats were identified and coatings with the feasible identified microstructural parameters were designed, modelled and experimentally verified. It was shown that large globular pores with connected cracks inherited within the topcoat microstructure significantly enhanced TBC performance. Real topcoat-bondcoat interface topographies were used to calculate the induced stresses and a diffusion based TGO growth model was developed to assess the lifetime. The modelling results were compared with existing theories published in previous works and experiments. It was shown that the modelling approach developed in this work could be used as a powerful tool to design new coatings and interfaces as well as to achieve high performance optimised morphologies.
8

Mid-infrared quantum cascade lasers

Flores, Yuri Victorovich 10 June 2015 (has links)
Quantenkaskadenlaser (QCLs) wurden vor gerade zwanzig Jahren erfunden und haben seitdem stetig im weltweiten Markt der optoelektronischen Bauelemente für den Infrarot an Bedeutung gewonnen. Anwendungsbeispiele für aktuelle und potenzielle Einsatzgebiete von QCLs sind photoakustische Spektroskopie, Umweltüberwachung, Simulation von heißen Körpern, und optische Freiraumdatenübertragung. Rekord optische Leistungen von 14 W und Leistungseffizienzen zwischen 15-35 % wurden bei mittelinfraroten QCLs für Betriebstemperaturen zwischen 80-300 K erreicht. Die weitere Verbesserung dieser Eigenschaften hängt nicht nur von Aspekten wie Wärmemanagement und Chip-Packaging ab, sondern auch von Verbesserungen im Laserdesign zwecks der Reduzierung des Ladungsträgerleckstroms. Dennoch sind die verschiedenen Mechanismen und Komponenten des Leckstroms in Quantenkaskadenlasern leider noch nicht gründlich untersucht worden. Die vorliegende Arbeit liefert a realistische Beschreibung der Ladungsträgertransports in QCLs. Wir beschreiben u.a. Leckströme vom Quantentopf- in höhere Zustände und diskutieren elastische und inelastische Streumechanismen von Ladungsträgern bei mittelinfraroten Quantenkaskadenlasern. Wir illustrieren außerdem die Notwendigkeit zur Berücksichtigung der Elektronentemperatur für eine vollständigere Analyse der Ladungsträgertransporteigenschaften von Quantenkaskadenlasern. Methoden zur experimentellen Ermittlung des temperaturabhängigen Leckstroms in Quantenkaskadenlasern werden präsentiert. Unser Ansatz liefert eine Methode zur effektiven Analyse von der QCL-Leistung und Vereinfacht die Optimierung von QCL aktive Regionen. / Two decades after their invention in 1994, quantum-cascade lasers (QCLs) become increasingly important in the global infrared optoelectronics market. Photoacoustic spectroscopy, environment monitoring, hot object simulation, and free-space communication systems are selected examples of the current and potential applications of QCLs. Record optical powers as large as 14 W and power-conversion efficiencies ranging between 15-35 % have been reported for MIR QCLs for temperatures 80-300 K. Further improvement of these characteristics depends not only of aspects as heat management and chip-packaging, but also on improving the active-region design to reduce several leakage channels of charge carriers. However, mechanisms through which leakage of charge carriers affects QCLs performance have not been thoroughly researched. A better understanding of the several (non-radiative) scattering mechanisms involved in carrier transport in QCLs is needed to design new structures and optimize their performance. This work provides a realistic description of charge carriers transport in QCLs. We discuss in particular carrier leakage from QCL quantum-well confined states into higher and lower states. The two main mechanisms for non-radiative intersubband scattering in MIR QCLs are electron-longitudinal-optical-phonon scattering and interface roughness-induced scattering. We present methods for the experimental determination of the leakage current in QCLs at and above laser threshold, which allowed us to estimate the sheet distributions of conduction band states and better understand the impact of temperature activated leakage on QCLs characteristics. We found that even at temperatures low enough to neglect ELO scattering, carriers leakage due to IFR becomes significant for devices operating at high electron temperatures. Altogether, this approach offers a straightforward method to analyze and troubleshoot new QCL active region designs and optimize their performance.
9

Scattering-Rate Approach for Vertical Electron Transport in III-V Quantum Cascade Heterostructures

Kurlov, Sergii 25 July 2018 (has links)
Seit ihrer Erfindung in 1994 haben sich Quantenkaskadenlaser (QCL) zu der Standard-Halbleiterlaserquelle im mittleren und weiten Infrarotspektrum entwickelt. Diese unipolaren Laser basieren auf der Populations-Inversion zwischen quantisierten sub-Bändern in Halbleiterheterostrukturen. Ein gutes theoretisches Modell ist essenziell für die Optimierung und weitere Entwicklung von neuen QCL Laserquellen. Eine einfache Methode, Elektronentransport in QCL zu beschreiben, stützt sich auf ein phänomenologisches Modell für die Streuraten zwischen elektronischen sub-Bändern. Das Hauptziel dieser Arbeit ist die Entwicklung eines kompakten Ansatzes für Streuraten für die effiziente Vorhersage der temperaturabhängigen Charakteristika von QCLs im mittleren Infrarotspektrum. Die Arbeit beginnt mit einem kurzen Überblick über Halbleiterheterostrukturen und die wichtigsten Streumechanismen für Übergänge zwischen sub-Bändern in QCLs. Dabei sind elastische Übergänge sowie Phononenstreuung für die Übergangsraten zwischen verschiedenen sub-Bändern relevant. Außerdem werden die notwendigen Modellierungstechniken für Simulationsprozesse in QCLs mit einem selbst-konsistenten Streuraten-Modell vorgestellt. In dieser Arbeit wurde ein vereinfachtes Modell für vertikalen Elektronentransport zwischen sub-Bändern bei der Temperatur von Flüssigstickstoff entwickelt. Die Übergangsrate ist in diesem Ansatz das Produkt des Überlappintegrals der quadrierten Moduli der einhüllenden Funktion und einem phänomenologischen Faktor, der von der Übergangsenergie abhängt. Der Übergangsfaktor wird für verschiedene Übergangsmechanismen einzeln hergeleitet, und eine Erweiterung des Modells auf einen breiten Temperaturbereich wird vorgestellt. Schließlich analysieren wir die sogenannte T0-Charakteristik für einige Designs der aktiven Region, die aus Rechnungen mit vorhandenen temperaturabhängigen Modellen und experimentellen Daten gewonnen wurden. / Since their invention in 1994, quantum cascade lasers (QCLs) have become the standard semiconductor laser source for the mid- and far-infrared spectral range. These unipolar devices are based on the population inversion between quantized subbands in biased semiconductor heterostructures. A useful theoretical model is essential for the optimization and further development of new QCL sources. A simple method for describing the electron transport in QCL is based on scattering rates between electron subbands. These can be described easiest using a phenomenological model with experimental or empirical parameters. The main goal of this work is development of compact description of scattering processes in the frame of scattering-rate approach for the reliable prediction of temperature dependent characteristics of mid-infrared quantum cascade lasers. We start this work with a brief overview of semiconductor heterostructures and main intersubband scattering mechanisms for quantum cascade lasers. The resulting transition rates from initial states to another subbands are described by phonons and elastic scattering. Additionally, necessary modeling techniques are considered for simulation processes in QCLs using self-consistent scattering-rate model. Based on original work we introduce a simplified model for vertical electron transport between separated subbands at liquid nitrogen temperatures. In this approach the transition rate is written as the product of the overlap integral for the squared moduli of the envelope functions and a phenomenological factor that depends on the transition energy. The approach is reviewed and extended for a broad temperature range. There, the transition factor is derived and written for different scattering mechanisms separately. Then we analyze “so-called” T0 characteristic for a number of active region designs received from the calculations by present temperature dependent model and the experimental data.

Page generated in 0.0743 seconds