• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 6
  • 6
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Mediating the exchange coupling and anisotropy in nanoscale magnets via interfacial interactions

Desautels, Ryan January 2015 (has links)
Nanoscale materials behave differently than their bulk counterparts due, in part, to the reduced length scales and the increased surface to core atom ratio. As the length scales decrease, the surface atoms become increasingly important as they make up a larger percentage of the total number of atoms. These surface atoms have magnetic properties that differ from the core atoms due to a surface anisotropy that alters the interparticle, intraparticle, and exchange interactions. In this work, we have synthesized three different nanoscale systems that will allow us to explore the physics of the different interactions. Cu/gamma-Fe2O3 core/shell nanoparticles were chosen because the gamma-Fe2O3 cores have vacancies in their B-sites, broken coordination at the surface, and experience superexchange interactions. As a comparison, multiphase undoped and V-doped SiO2/FeCo nanoparticles were chosen as these nanoparticles do not suffer from vacancies or surface disorder and experience both direct exchange interactions from the nanoparticle core and superexchange interactions between the FeCo core and the metal silicate interfacial phase. Finally, Fe nanocrystallites were grown in a Cu matrix as they present no vacancies or surface disorder, and they are single phase. We observed that the interfacial phases that form in these core/shell and nanocrystallite/matrix nanoscale systems alters significantly the physics of the magnetism. The overall magnetic properties, the elemental magnetism, and the atomic magnetism were all observed to be altered by this interfacial phase, along with the interparticle and intraparticle interactions. In addition, the thickness of this interfacial phase, and thus the strength of its affect, was controlled by controlling the thickness of the shells or the amount of intermixing in the case of the nanostructured thin film. / February 2016
2

Soldering in High Pressure Die Casting and its Prevention by Lubricant and Oxide Layers

Fraser, Darren Timothy Unknown Date (has links)
Soldering results from the interfacial interactions between the die and the casting alloy during high pressure die casting and is one of the major die failure modes. To prevent this occurring, lubricant layers and surface coatings are used to act as a barrier between the die and the casting alloy. The microstructures of a series of soldered layers on H13 tool steel core pins were examined after conducting high pressure die casting experiments with a specially designed die using removable core pins and Al-11Si-3Cu casting alloy. This showed that first, a casting alloy build-up layer formed, and then intermetallic phases nucleated at the die steel interface and grew to cover the entire surface in subsequent casting cycles. The structures of intermetallic layers formed during immersion of H13 tool steel into an Al-11Si-3Cu casting alloy melt were studied by X-ray diffraction and energy dispersive spectroscopy (EDS). A thick composite layer away from the H13 steel substrate consisted of irregular intermetallic phases and solidified casting alloy. A thin intermetallic layer was present between the composite layer and an inner compact layer next to the steel substrate. The irregular intermetallic phase in the thick composite layer away from the H13 steel substrate was identified to have a body centre cubic (bcc) structure, abcc-( FeSiAlCrMnCu). The thin and continuous intermetallic layer between the composite layer and the inner compact layer was found to be structurally isomorphous with aH-Fe2SiAl8. The compositional differences observed between aH and abcc phases indicated that the latter consisted of a higher amount of chromium, manganese, copper, and a lower amount of iron. It was likely that the presence of chromium, manganese and copper in the H13 tool steel caused the transformation of aH®abcc. The inner compact layer next to the steel substrate was identified to be orthorhombic h-Fe2Al5 containing silicon and chromium. An examination of lubricants to prevent soldering in high pressure die casting in conjunction with Nissan Casting Australia Pty Ltd. found that soldering was reduced by using a suitable lubricant. The chemistry of the lubricant, spray parameters, and die surface temperature were important factors in producing a protective lubricant layer. It was found that lubricant containing polypropylene waxes prevented soldering significantly better than lubricant containing polyethylene waxes. It was also found that the lubricant containing polypropylene waxes had lower surface tension. An examination of the use of iron oxide layers to prevent soldering in high pressure die casting was performed. H13 tool steel was oxidised in air and produced porous iron oxide with a mixture of haematite (Fe2O3) and magnetite (Fe3O4). These porous iron oxides did not completely prevent the H13 steel from soldering in immersion tests as intermetallic cones formed at the surface of the steel. Commercial steam tempering of H13 steel produced more compact iron oxide layers with magnetite (Fe3O4) and haematite (Fe2O3) structures. It was found that these compact iron oxide layers offered better protection against soldering than the porous layers created in air. Pure iron oxidised in a CO2/H2 gas mixture at a ratio of 95:5 at 550°C produced structurally pure, compact magnetite (Fe3O4) layers. H13 steel oxidised in a CO2/H2 gas mixture at a ratio of 95:5 at 550°C produced compact iron oxide layers that showed only magnetite (Fe3O4) structure. The magnetite (Fe3O4) layer containing chromium, manganese, silicon and vanadium formed next to the H13 substrate was found to be a very adherent layer and protected H13 steel from soldering in high pressure die casting experiments with a specially designed die using removable core pins and Al-11Si-3Cu casting alloy. An examination of aluminium oxide layers to prevent soldering in high pressure die casting was performed. Incoloy MA956 containing 4.5 wt.% aluminium, oxidised in air at 1100°C, produced a single, compact, adherent oxide layer with a-alumina (Al2O3) structure, that prevented the formation of intermetallic phases between aluminium alloy and Incoloy MA956 during high pressure die casting. However, non-reactive casting alloy build-up formed on the oxide coatings, similarly to physical vapour deposition (PVD) and vanadium carbide coatings. It was found that the thickness of the non-reactive casting alloy build-up was reduced by decreasing the roughness of the oxide coatings by lightly grinding of the surface of the coatings. The industrial application of these findings are discussed and directions for further research are presented.
3

Interfacial study of cell adhesion to liquid crystals using widefield surface plasmon resonance microscopy.

Soon, Chin Fhong, Khaghani, Seyed A., Youseffi, Mansour, Nafarizal, N., Saim, H., Britland, Stephen T., Blagden, Nicholas, Denyer, Morgan C.T. 16 April 2013 (has links)
No / Widefield surface plasmon resonance (WSPR) microscopy provides high resolution imaging of interfacial interactions. We report the application of the WSPR imaging system in the study of the interaction between keratinocytes and liquid crystals (LC). Imaging of fixed keratinocytes cultured on gold coated surface plasmon substrates functionalized with a thin film of liquid crystals was performed in air using a 1.45 NA objective based system. Focal adhesion of the cells adhered to glass and LC were further studied using immunofluorescence staining of the vinculin. The imaging system was also simulated with 2 × 2 scattering matrix to investigate the optical reflection of the resonant plasmonic wave via the glass/gold/cell and glass/gold/LC/cell layers. WSPR imaging indicated that keratinocytes are less spread and formed distinct topography of cell–liquid crystal couplings when cultured on liquid crystal coated substrates. The simulation indicates that glass/LC shifted the surface plasmon excitation angle to 75.39° as compared to glass/air interface at 44°. The WSPR microcopy reveals that the cells remodelled their topography of adhesion at different interfaces.
4

Aluminum and Copper Chemical Vapor Deposition on Fluoropolymer Dielectrics and Subsequent Interfacial Interactions

Sutcliffe, Ronald David 12 1900 (has links)
This study is an investigation of the chemical vapor deposition (CVD) of aluminum and copper on fluoropolymer surfaces and the subsequent interfacial interactions.
5

Fluctuations et interactions en situation de nano-confinement anisotrope / Interactions and fluctuations under anisotropic nano-confinement conditions / Flutuações e interações em situação de nano-confinamento anisotrópico

Bougis, Kévin 28 November 2016 (has links)
La structure et les interactions qui stabilisent des empilements lamellaires lyotropes de bicouches lipidiques "poilues" (et dépourvues de charge électrique nette) dans leur état fluide sont principalement étudiées par diffusion de rayons X aux petits angles. Les empilements lamellaires sont utilisés comme matrices hôtes afin de confiner et d’encapsuler des nano-bâtonnets d’ADN qui s’auto-assemblent en différentes structures en fonction du confinement réalisé. L’objectif fixé est de comprendre l’origine des mécanismes qui sont responsables de la formation de tels assemblages supramoléculaires. Dans ce but,on s’intéresse aux mécanismes entropiques et interfaciaux, sensibles expérimentalement à la physico-chimie du système, cette dernière affectant notamment le caractère "lié"ou "non lié" des systèmes lamellaires à haute dilution. Un modèle thermodynamique est utilisé afin d’interpréter la décroissance exponentielle "classique" observée dans les profils de pression osmotique en fonction de l’hydratation, sans faire appel à la force"d’hydratation". Une transition structurale est mise en évidence, à faible hydratation,entre deux phases lamellaires "liées". Le changement structural de la bicouche est discuté en termes de couplage entre confinements vertical et latéral. La caractérisation de la matrice lamellaire hôte autorise finalement une description des organisations des bâtonnets d’ADN qui semblent directement corrélées aux propriétés physiques des bicouches, faisant ainsi apparaître quelques perspectives pour leur encapsulation au sein "d’ognons". / Structure and interactions stabilizing the lyotropic lamellar stack of (electrically-neutral)mixed "hairy" lipid bilayers in their fluid state are mainly investigated by means of small angleX-ray scattering. The lamellar stacks are used as hosts to confine and encapsulate DNA nanorods which organize themselves into different structures depending on the confinement.The challenge here is to understand the mechanisms responsible for the formation of these supramolecular assemblies. In this aim, we are interested in entropic and interfacial mechanisms which are both experimentally sensitive to the physical-chemistry of the system, changing in particular the “bound” or “unbound” character of the waters wollen systems. A thermodynamic model is then used for interpreting the “classical”exponential decay obtained in osmotic profiles as a function of hydration, without resorting to “hydration forces”. A structural transition between two different “bound” lamellar phases is brought out at low hydration. The bilayer structural changes are discussed as resulting from a coupling between lateral and vertical confinements. The lamellar host characterization finally allows a description of the DNA nanorods organizations which seem to be directly correlated to the physical properties of the bilayers, leaving some perspectives for the encapsulation inside “onions”. / A estrutura e as interações, que estabilizam os empilhamentos lamelares liotrópicos dasmembranas lipídicas em seu estado fluido, são estudadas principalmente por espalhamento de raios-x a baixos ângulos. As membranas “peludas” (eletricamente neutras) são compostas de uma mistura em diversas proporções de lecitina, um fosfolipídio zwiteriônico, ede simulsol, um cotensoativo etoxilado não iônico similar a um copolímero dibloco (curto). Esses empilhamentos lamelares são utilizados como matrizes hospedeiras, com o intuito deconfinar e de encapsular nanobastões de DNA que se auto organizam em diferentes estruturas,em função do confinamento aplicado. O objetivo fixado é de compreender aorigem dos mecanismos responsáveis pela formação dessas organizações supramoleculares,não regidas pelas interações eletrostáticas. Dessa forma, nos interessamos aos mecanismos entrópicos e interfaciais, que são ligados à elasticidade membranar e às interações mais específicas que intervêm nas interfaces membrana-membrana ou DNA-membrana. Aabordagem experimental consiste em modificar os diferentes parâmetros físico-químicosda matriz hospedeira, como a hidratação do sistema, a natureza química do cotensoativo (blocos hidrofóbicos e/ou hidrofílicos) e a proporção de cotensoativo no interior da membrana.O cotensoativo tem então uma função chave para modificar os dois mecanismos,perturbando o estado “ligado” ou “não-ligado” em sistemas lamelares altamente diluídos.Um modelo termodinâmico é utilizado para interpretar o decréscimo exponencial “clássico”observado para os perfis de pressão osmótica, quando se aumenta a hidratação, semutilizar a “força de hidratação”. Uma transição estrutural é evidenciada, à baixahidratação, entre duas fases lamelares “ligadas”. A mudança estrutural da membranaé discutida graças ao acoplamento entre confinamento lateral e vertical, em analogia àconhecida transição “escova-cogumelo” induzida pelo confinamento lateral, relevante paralongos polímeros lineares funcionalizados em superfícies rígidas [10]. A caracterizaçãoda matriz lamelar hospedeira permite, finalmente, uma descrição das organizações dosbastões de DNA que parecem diretamente correlacionados com as propriedades físicasdas membranas, deixando, então, algumas perspectivas para sua encapsulação no interiorde estruturas semelhantes a ”cebolas”.
6

Consequences of Interfacial Interactions on Adsorption and Adhesion

Singla, Saranshu January 2018 (has links)
No description available.

Page generated in 0.1457 seconds