• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 10
  • 10
  • 9
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Multi-Layered Dual-Band Dual-Polarized Reflectarray Design Toward Rim-Located Reconfigurabable Reflectarrays for Interference Mitigation in Reflector Antennas

Bora, Trisha 14 June 2024 (has links)
The rise of satellites in Low Earth Orbit (LEO) is causing more terrestrial electromagnetic interference in the important L- and X-band frequencies which are crucial for astronomical observations. This thesis introduces reflectarray design which can serve as a basis for an interference mitigation solution for radio telescopes. In the envisioned application, When the reflectarray is placed around the circumference of an existing radio telescope, it can drive a null into the radio telescopes radiation pattern sidelobe distribution. Since the reflectarray only occupies a small potion of the rim of the paraboloidal main reflector, its presence does not significantly effect the main lobe peak gain. Since Iridium and Starlink are the target mega-constellations, the reflectarray must be dual band. To cover the operational bandwidths of these constellations, the target bandwidth in the L-band (Iridium) is 0.7%, and that in the X-band (Starlink) is 17.1%. This makes the design of the reflectarray challenging as the frequencies are widely separated and the bandwidth in the X-band is wide The work of this thesis marks a first step in this effort. It includes a reflectarray design containing a multi-layer stack consisting of: (1) a grounded substrate, (2) an X-band slot loaded unit cell geometry, (3) a dielectric superstrate, and (4) an L-band layer containing crossed dipoles. The dual band reflectarray is dual linearly polarized to maintain symmetric response. The reflectarray is designed and simulated using full-wave solvers. The results show that the reflectarray designs are capable of pattern shaping at both bands and operate across the required bandwidths. This architecture could serve as a basis for future reflectarrays capable of nulling satellite interference from mega-constellations in observatory applications in the future. / Master of Science / The signal clarity issues stemming from the increasing number of satellites in Low Earth Orbit (LEO), particularly in the vital L- and X-band frequencies essential for global communications and radio astronomy, are the motivation of this thesis. The endeavor concentrates on designing a dual-band dual-polarized reflectarray antenna which may ultimately be used to help mitigate interference in these bands in radio telescopes. The work is focused on the frequency ranges utilized by the major satellite networks Iridium and Starlink, which operate within the L-band (1616-1626.5 MHz) and X-band (10.7-12.7 GHz). Recognizing the significance of these frequencies for global communication and also to radio astronomy, the reflectarray is designed to contribute to a an interference mitigation system which would ultimately allow for coexistence between radio telescopes and communications systems satellites. Targeting bandwidth achievements of 0.7% for the L-band and 17.1% for the X-band, the focus is on nulling interference arising across these frequency bands and thereby increasing the sensitivity of the radio telescope operating amongst these mega-constellations. The thesis documents a multilayered reflectarray antenna, containing a wide-band X-band layer of slot antennas on one layer and an L-band superstrate layer containing crossed dipoles at another, both of which utilize dual linear polarization for symmetric operation. The completed reflectarray can operate simultaneously in both bands. It has been shown in the two papers cited by {ellingson2021sidelobe,budhu2024design} that reflectarrays placed along the rim of radio telescopes main reflector can be used to drive nulls in the sidelobe envelope of its radiation pattern thereby nulling incoming interference. The antenna design of this thesis suggests a possible candidate for these interference mitigation systems where both bands are targeted.
12

Coexistence Between BLE and IEEE 802.15.4 Networks

Lustig, Jasper January 2018 (has links)
As increasingly more IoT devices are being deployed simultaneously in the dense 2.4 GHz ISM band, interference could start occurring. BLE, and IEEE 802.15.4 are two protocols used in IoT devices, that both are now also capable of using IPv6 communication. Since the protocols coexist in this same frequency band, interference could become a problem. However, uncooperative coexistence between these two protocols under higher IPv6 data rates is understudied, and could be unfair. This thesis aims to study possible coexistence, and mitigate it using CCA.An experimental test setup consisting of two nodes for each protocol in close proximity was used to measure possible reliability issues and data rate decrease by logging sent connection based packets over serial, while limiting the amount of available overlapping data channels for each protocol.The results show that even though PDR is maintained, throughput can decrease. While still using all channels, BLE suffers a throughput decrease of 2.25% and IEEE 802.15.4 a decrease of only 0.34%. In the most extreme case BLE can suffer a decrease of 73.3% in throughput, while IEEE sees a mean throughput decrease of 10.9%. When enabling CCA in this extreme case, an improvement of 54.6% in throughput was observed for BLE, while IEEE 802.15.4 saw a relative loss of 3.5%. Therefore, the conclusion could be made that enabling CCA in IEEE 802.15.4 can enable more fair coexistence between the protocols. / Eftersom allt fler IoT-enheter distribueras samtidigt i det täta 2,4 GHz ISM-bandet kan störningar inträffa. BLE och IEEE 802.15.4 är två protokoll som används i IoT-enheter, som båda nu också kan använda IPv6-kommunikation. Eftersom protokoll existerar i samma frekvensband kan störningar bli ett problem. Men osammanhängande samexistens mellan dessa två protokoll under högre IPv6-datahastigheter är underskattad och kan vara orättvist. Avhandlingen syftar till att studera eventuell samexistens och mildra den med hjälp av CCA.En experimentell testinställning bestående av två noder för varje protokoll i närheten, användes för att mäta eventuella pålitlighetsproblem och minskning av datahastighet genom att logga skickade anslutningsbaserade paket över seriell, samtidigt som man begränsar mängden tillgängliga överlappande datakanaler för varje protokoll.Resultaten visar att även om PDR upprätthålls kan genomströmningen minska. Medan BLE fortfarande använder alla kanaler, har BLE en genomströmningsminskning på 2.25% och IEEE 802.15.4 en minskning med endast 0.34%. I det mest extrema fallet kan BLE drabbas av en minskning med 73.3% i genomströmning, medan IEEE ser en genomsnittlig genomströmningsminskning på 10.9%. Vid aktivering av CCA i detta extrema fall observerades en förbättring av 54.6% i genomströmning för BLE medan IEEE 802.15.4 såg en relativ förlust på 3.5%. Därför kan slutsatsen dras att en attityd till CCA i IEEE 802.15.4 kan möjliggöra en mer rättvis samexistens mellan protokollen.
13

INTERFERENCE MITIGATION AND CHANNEL EQUALIZATION FOR ARTM TIER-1 WAVEFORMS USING KALMAN FILTER

Saquib, Mohammad, Popescu, Otilia, Popescu, Dimitrie C., Rice, Michael 10 1900 (has links)
ITC/USA 2006 Conference Proceedings / The Forty-Second Annual International Telemetering Conference and Technical Exhibition / October 23-26, 2006 / Town and Country Resort & Convention Center, San Diego, California / In this paper we describe a new method that is applicable to mitigating both multipath interference and adjacent channel interference (ACI) in aeronautical telemetry applications using ARTM Tier-1 waveforms. The proposed method uses a linear equalizer that is derived using Kalman filtering theory, which has been used for channel equalization for high-speed communication systems. We illustrate the proposed method with numerical examples obtained from simulations that show the bit error rate performance (BER) for different modulation schemes.
14

Interference mitigation strategy design and applications for wireless sensor networks

Yao, Fang January 2010 (has links)
The Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 standard presents a very useful technology for implementing low-cost, low-power, wireless sensor networks. Its main focus, which is to applications requiring simple wireless connectivity with relaxed throughout and latency requirements, makes it suitable for connecting devices that have not been networked, such as industrial and control instrumentation equipments, agricultural equipments, vehicular equipments, and home appliances. Its usage of the license-free 2.4 GHz frequency band makes the technique successful for fast and worldwide market deployments. However, concerns about interference have arisen due to the presence of other wireless technologies using the same spectrum. Although the IEEE 802.15.4 standard has provided some mechanisms, to enhance capability to coexist with other wireless devices operating on the same frequency band, including Carrier Sensor Multiple Access (CSMA), Clear Channel Assessment (CCA), channel alignment, and low duty cycle, it is essential to design and implement adjustable mechanisms for an IEEE 802.15.4 based system integrated into a practical application to deal with interference which changes randomly over time. Among the potential interfering systems (Wi-Fi, Bluetooth, cordless phones, microwave ovens, wireless headsets, etc) which work on the same Industrial, Scientific, and Medical (ISM) frequency band, Wi-Fi systems (IEEE 802.11 technique) have attracted most concerns because of their high transmission power and large deployment in both residential and office environments. This thesis aims to propose a methodology for IEEE 802.15.4 wireless systems to adopt proper adjustment in order to mitigate the effect of interference caused by IEEE 802.11 systems through energy detection, channel agility and data recovery. The contribution of this thesis consists of five parts. Firstly, a strategy is proposed to enable IEEE 802.15.4 systems to maintain normal communications using the means of consecutive transmissions, when the system s default mechanism of retransmission is insufficient to ensure successful rate due to the occurrence of Wi-Fi interference. Secondly, a novel strategy is proposed to use a feasible way for IEEE 802.15.4 systems to estimate the interference pattern, and accordingly adjust system parameters for the purpose of achieving optimized communication effectiveness during time of interference without relying on hardware changes and IEEE 802.15.4 protocol modifications. Thirdly, a data recovery mechanism is proposed for transport control to be applied for recovering lost data by associating with the proposed strategies to ensure the data integrity when IEEE 802.15.4 systems are suffering from interference. Fourthly, a practical case is studied to discuss how to design a sustainable system for home automation application constructed on the basis of IEEE 802.15.4 technique. Finally, a comprehensive design is proposed to enable the implementation of an interference mitigation strategy for IEEE 802.15.4 based ad hoc WSNs within a structure of building fire safety monitoring system. The proposed strategies and system designs are demonstrated mainly through theoretical analysis and experimental tests. The results obtained from the experimental tests have verified that the interference caused by an IEEE 802.11 system on an IEEE 802.15.4 system can be effectively mitigated through adjusting IEEE 802.15.4 system s parameters cooperating with interference pattern estimation. The proposed methods are suitable to be integrated into a system-level solution for an IEEE 802.15.4 system to deal with interference, which is also applicable to those wireless systems facing similar interference issues to enable the development of efficient mitigation strategies.
15

Dense wireless network design and evaluation : an aircraft cabin use case

Cogalan, Tezcan January 2018 (has links)
One of the key requirements of fifth generation (5G) systems is having a connection to mobile networks without interruption at anytime and anywhere, which is also known as seamless connectivity. Nowadays, fourth generation (4G) systems, Long Term Evolution (LTE) and Long Term Evolution Advanced (LTE-A), are mature enough to provide connectivity to most terrestrial mobile users. However, for airborne mobile users, there is no connection that exists without interruption. According to the regulations, mobile connectivity for aircraft passengers can only be established when the altitude of the aircraft is above 3000 m. Along with demands to have mobile connectivity during a flight and the seamless connectivity requirement of 5G systems, there is a notable interest in providing in-flight wireless services during all phases of a flight. In this thesis, many issues related to the deployment and operation of the onboard systems have been investigated. A measurement and modelling procedure to investigate radio frequency (RF) propagation inside an aircraft is proposed in this thesis. Unlike in existing studies for in-cabin channel characterization, the proposed procedure takes into account the deployment of a multi-cell onboard system. The proposed model is verified through another set of measurements where reference signal received power (RSRP) levels inside the aircraft are measured. The results show that the proposed model closely matches the in-cabin RSRP measurements. Moreover, in order to enforce the distance between a user and an interfering resource, cell sectorization is employed in the multi-cell onboard system deployment. The proposed propagation model is used to find an optimum antenna orientation that minimizes the interference level among the neighbouring evolved nodeBs (eNBs). Once the optimum antenna deployment is obtained, comprehensive downlink performance evaluations of the multi-cell, multi-user onboard LTE-A system is carried out. Techniques that are proposed for LTE-A systems, namely enhanced inter-cell interference coordination (eICIC) and carrier aggregation (CA), are employed in the system analysis. Different numbers of eNBs, antenna mounting positions and scheduling policies are examined. A scheduling algorithm that provides a good tradeoff between fairness and system throughput is proposed. The results show that the downlink performance of the proposed onboard LTE-A system achieves not only 75% of the theoretical limits of the overall system throughput but also fair user data rate performance, irrespective of a passenger's seat location. In order to provide the seamless connectivity requirement of 5G systems, compatibility between the proposed onboard system deployment and the already deployed terrestrial networks is investigated. Simulation based analyses are carried out to investigate power leakage from the onboard systems while the aircraft is in the parked position on the apron. According to the regulations, the onboard system should not increase the noise level of the already deployed terrestrial system by 1 dB. Results show that the proposed onboard communication system can be operated while the aircraft is in the parked position on the apron without exceeding the 1 dB increase in the noise level of the already deployed terrestrial 4G network. Furthermore, handover parameters are obtained for different transmission power levels of both the terrestrial and onboard systems to make the transition from one system to another without interruption while a passenger boards or leaves the aircraft. Simulation and measurement based analyses show that when the RSRP level of the terrestrial system is below -65 dBm around the aircraft, a boarding passenger can be smoothly handed over to the onboard system and vice versa. Moreover, in order to trigger the handover process without interfering with the data transmission, a broadcast control channel (BCCH) power boosting feature is proposed for the in-cabin eNBs. Results show that employing the BCCH power boosting feature helps to trigger the handover process as soon as the passengers step on board the aircraft.
16

Design and Modeling of a High-Power Periodic Spiral Antenna with an Integrated Rejection Band Filter

O'Brien, Jonathan M. 14 November 2017 (has links)
This work details the design and fabrication of an ultra-wideband periodic spiral antenna (PSA) with a notch filter embedded directly into the radiating aperture. Prototype fabrication of the PSA reveals long assembly time due to forming the antenna element, therefore modifications are made to allow fabricating the antenna elements on a thin, flexible, Polyimide substrate. A transmission line model is develop to support the updated configuration of the antenna elements. In addition, a symmetric spurline filter is integrated into the arms of the spiral antenna in order to address the common problem of interference in ultra-wideband systems. For the first time, a placement study is conducted to show the optimal location of the filter as a function of frequency. The presented transmission line model demonstrates the ability to decouple the design of the filter and antenna by being able to predict the resonant frequency and achieved rejection after integration of the two. Measured results show a gain rejection of 21 dB along with the ability to tune the resonance of the filter from 1.1 – 2.7 GHz using a lumped capacitor. For high power applications, thermal measurements are conducted, and for the first time, thermal profiles along the top of the antenna are used to show the radiation bands in a spiral antenna. Power tests are successfully conducted up to 40 W across the entire operational bandwidth and up to 60 W for 2 GHz and below. At these elevated power levels, a large voltage is generated across the lumped capacitor used to tune the resonance of the spurline filter; this issue is addressed through the development of a capacitive wedge that is overlapped on top of the spurline stub, which increases the voltage handling to 2,756 V. Measured results reveal a reduced tuning range compared to using lumped capacitors and a gain rejection of greater than 10 dB for all configurations.
17

Cooperative uplink Inter-Cell Interference (ICI) mitigation in 5G networks

Pitakanda, Pitakandage Tinith Asanga January 2017 (has links)
In order to support the new paradigm shift in fifth generation (5G) mobile communication, radically different network architectures, associated technologies and network operation algorithms, need to be developed compared to existing fourth generation (4G) cellular solutions. The evolution toward 5G mobile networks will be characterized by an increasing number of wireless devices, increasing device and service complexity, and the requirement to access mobile services ubiquitously. To realise the dramatic increase in data rates in particular, research is focused on improving the capacity of current, Long Term Evolution (LTE)-based, 4G network standards, before radical changes are exploited which could include acquiring additional spectrum. The LTE network has a reuse factor of one; hence neighbouring cells/sectors use the same spectrum, therefore making the cell-edge users vulnerable to heavy inter cell interference in addition to the other factors such as fading and path-loss. In this direction, this thesis focuses on improving the performance of cell-edge users in LTE and LTE-Advanced networks by initially implementing a new Coordinated Multi-Point (CoMP) technique to support future 5G networks using smart antennas to mitigate cell-edge user interference in uplink. Successively a novel cooperative uplink inter-cell interference mitigation algorithm based on joint reception at the base station using receiver adaptive beamforming is investigated. Subsequently interference mitigation in a heterogeneous environment for inter Device-to-Device (D2D) communication underlaying cellular network is investigated as the enabling technology for maximising resource block (RB) utilisation in emerging 5G networks. The proximity of users in a network, achieving higher data rates with maximum RB utilisation (as the technology reuses the cellular RB simultaneously), while taking some load off the evolved Node B (eNodeB) i.e. by direct communication between User Equipment (UE), has been explored. Simulation results show that the proximity and transmission power of D2D transmission yields high performance gains for D2D receivers, which was demonstrated to be better than that of cellular UEs with better channel conditions or in close proximity to the eNodeB in the network. It is finally demonstrated that the application, as an extension to the above, of a novel receiver beamforming technique to reduce interference from D2D users, can further enhance network performance. To be able to develop the aforementioned technologies and evaluate the performance of new algorithms in emerging network scenarios, a beyond the-state-of-the-art LTE system-level-simulator (SLS) was implemented. The new simulator includes Multiple-Input Multiple-Output (MIMO) antenna functionalities, comprehensive channel models (such as Wireless World initiative New Radio II i.e. WINNER II) and adaptive modulation and coding schemes to accurately emulate the LTE and LTE-A network standards.
18

Simultaneous Signaling and Channel Estimation for In-Band Full-Duplex Communications Employing Adaptive Spatial Protection

January 2014 (has links)
abstract: In-band full-duplex relays are envisioned as promising solution to increase the throughput of next generation wireless communications. Full-duplex relays, being able to transmit and receive at same carrier frequency, offers increased spectral efficiency compared to half-duplex relays that transmit and receive at different frequencies or times. The practical implementation of full-duplex relays is limited by the strong self-interference caused by the coupling of relay's own transit signals to its desired received signals. Several techniques have been proposed in literature to mitigate the relay self-interference. In this thesis, the performance of in-band full-duplex multiple-input multiple-output (MIMO) relays is considered in the context of simultaneous communications and channel estimation. In particular, adaptive spatial transmit techniques is considered to protect the full-duplex radio's receive array. It is assumed that relay's transmit and receive antenna phase centers are physically distinct. This allows the radio to employ adaptive spatial transmit and receive processing to mitigate self-interference. The performance of this protection is dependent upon numerous factors, including channel estimation accuracy, which is the focus of this thesis. In particular, the concentration is on estimating the self-interference channel. A novel approach of simultaneous signaling to estimate the self-interference channel in MIMO full-duplex relays is proposed. To achieve this simultaneous communications and channel estimation, a full-rank pilot signal at a reduced relative power is transmitted simultaneously with a low rank communication waveform. The self-interference mitigation is investigated in the context of eigenvalue spread of spatial relay receive co-variance matrix. Performance is demonstrated by using simulations, in which orthogonal-frequency division-multiplexing communications and pilot sequences are employed. / Dissertation/Thesis / Masters Thesis Electrical Engineering 2014
19

Equalization and channel estimation algorithms and implementations for cellular MIMO-OFDM downlink

Ketonen, J. (Johanna) 17 June 2012 (has links)
Abstract The aim of the thesis is to develop algorithms and architectures to meet the high data rate, low complexity requirements of the future mobile communication systems. Algorithms, architectures and implementations for detection, channel estimation and interference mitigation in the multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) receivers are presented. The performance-complexity trade-offs in different receiver algorithms are studied and the results can be utilized in receiver design as well as in system design. Implementation of detectors for spatial multiplexing systems is considered first. The linear minimum mean squared error (LMMSE) and the K-best list sphere detector (LSD) are compared to the successive interference cancellation (SIC) detector. The SIC algorithm was found to perform worse than the K-best LSD when the MIMO channels are highly correlated. The performance difference diminishes when the correlation decreases. With feedback to the transmitter, the performance difference is even smaller, but the full rank transmissions still require a more complex detector. A reconfigurable receiver, using a simple or a more complex detector as the channel conditions change, would achieve the best performance while consuming the least amount of power in the receiver. The use of decision directed (DD) channel estimation is also studied. The 3GPP long term evolution (LTE) based pilot structure is used as a benchmark. The performance and complexity of the pilot symbol based least-squares (LS) channel estimator, the minimum mean square error (MMSE) filter and the DD space-alternating generalized expectation-maximization (SAGE) algorithm are studied. DD channel estimation and MMSE filtering improve the performance with high user velocities, where the pilot symbol density is not sufficient. With DD channel estimation, the pilot overhead can be reduced without any performance degradation by transmitting data instead of pilot symbols. Suppression of co-channel interference in the MIMO-OFDM receiver is finally considered. The interference and noise spatial covariance matrix is used in data detection and channel estimation. Interference mitigation is applied for linear and nonlinear detectors. An algorithm to adapt the accuracy of the matrix decomposition and the use of interference suppression is proposed. The adaptive algorithm performs well in all interference scenarios and the power consumption of the receiver can be reduced. / Tiivistelmä Tämän väitöskirjatyön tavoitteena on kehittää vastaanotinalgoritmeja ja -arkkitehtuureja, jotka toteuttavat tulevaisuuden langattomien tietoliikennejärjestelmien suuren datanopeuden ja pienen kompleksisuuden tavoitteet. Työssä esitellään algoritmeja, arkkitehtuureja ja toteutuksia ilmaisuun, kanavaestimointiin ja häiriönvaimennukseen monitulo-monilähtötekniikkaa (multiple-input multiple-output, MIMO) ja ortogonaalista taajuusjakokanavointia (orthogonal frequency division multiplexing, OFDM) yhdistäviin vastaanottimiin. Algoritmeista saatavaa suorituskykyhyötyä verrataan vaadittavaan toteutuksen monimutkaisuuteen. Työn tuloksia voidaan hyödyntää sekä vastaanotin- että järjestelmäsuunnittelussa. Lineaarista pienimmän keskineliövirheen (minimum mean square error, MMSE) ilmaisinta ja listapalloilmaisinta (list sphere detector, LSD) verrataan peräkkäiseen häiriönpoistoilmaisimeen (successive interference cancellation, SIC). SIC-ilmaisimella on huonompi suorituskyky kuin LSD-ilmaisimella radiokanavan ollessa korreloitunut. Korrelaation pienentyessä myös ilmaisimien suorituskykyero pienenee. Erot suorituskyvyissä ovat vähäisiä silloinkin, jos järjestelmässä on takaisinkytkentäkanava lähettimelle. Tällöinkin korkean signaali-kohinasuhteen olosuhteissa LSD-ilmaisimet mahdollistavat tilakanavoidun, suuren datanopeuden tiedonsiirron. Radiokanavan muuttuessa uudelleenkonfiguroitava vastaanotin toisi virransäästömahdollisuuden vaihtelemalla kompleksisen ja yksinkertaisen ilmaisimen välillä. Kanavaestimointialgoritmeja ja niiden toteutuksia vertaillaan käyttämällä lähtökohtana nykyisen mobiilin tiedonsiirtostandardin viitesignaalimallia. Tutkittavat algoritmit perustuvat pienimmän neliösumman (least squares, LS) ja pienimmän keskineliövirheen menetelmään, sekä päätöstakaisinkytkettyyn (decision directed, DD) kanavaestimointialgoritmiin. DD-kanavaestimaattori ja MMSE-suodatin parantavat vastaanottimen suorituskykyä korkeissa käyttäjän nopeuksissa, joissa viitesignaaleiden tiheys ei ole riittävä. DD-kanavaestimoinnilla datanopeutta voidaan nostaa viitesignaaleiden määrää laskemalla vaikuttamatta suorituskykyyn. Työssä tarkastellaan myös saman kanavan häiriön vaimennusta. Häiriöstä ja kohinasta koostuvaa kovarianssimatriisia käytetään ilmaisuun ja kanavaestimointiin. Työssä esitetään adaptiivinen algoritmi matriisihajoitelman tarkkuuden ja häiriön vaimennuksen säätämiseen. Algoritmi mahdollistaa hyvän suorituskyvyn kaikissa häiriötilanteissa vähentäen samalla virrankulutusta.
20

Hardware Implementation and Analysis of Temporal Interference Mitigation : A High-Level Synthesis Based Approach

January 2020 (has links)
abstract: The following document describes the hardware implementation and analysis of Temporal Interference Mitigation using High-Level Synthesis. As the problem of spectral congestion becomes more chronic and widespread, Electromagnetic radio frequency (RF) based systems are posing as viable solution to this problem. Among the existing RF methods Cooperation based systems have been a solution to a host of congestion problems. One of the most important elements of RF receiver is the spatially adaptive part of the receiver. Temporal Mitigation is vital technique employed at the receiver for signal recovery and future propagation along the radar chain. The computationally intensive parts of temporal mitigation are identified and hardware accelerated. The hardware implementation is based on sequential approach with optimizations applied on the individual components for better performance. An extensive analysis using a range of fixed point data types is performed to find the optimal data type necessary. Finally a hybrid combination of data types for different components of temporal mitigation is proposed based on results from the above analysis. / Dissertation/Thesis / Masters Thesis Computer Engineering 2020

Page generated in 0.1351 seconds