• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 55
  • 40
  • 6
  • 6
  • 3
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 148
  • 28
  • 27
  • 25
  • 24
  • 21
  • 20
  • 19
  • 18
  • 16
  • 16
  • 16
  • 15
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Regulation of G1 exit by the Swi6p transcription factor /

Schaefer, Jonathan Brook. January 2007 (has links)
Thesis (Ph. D.)--University of Washington, 2007. / Vita. Includes bibliographical references (leaves 154-184).
52

Surface Stress during Electro-Oxidation of Carbon Monoxide and Bulk Stress Evolution during Electrochemical Intercalation of Lithium

January 2011 (has links)
abstract: This work investigates in-situ stress evolution of interfacial and bulk processes in electrochemical systems, and is divided into two projects. The first project examines the electrocapillarity of clean and CO-covered electrodes. It also investigates surface stress evolution during electro-oxidation of CO at Pt{111}, Ru/Pt{111} and Ru{0001} electrodes. The second project explores the evolution of bulk stress that occurs during intercalation (extraction) of lithium (Li) and formation of a solid electrolyte interphase during electrochemical reduction (oxidation) of Li at graphitic electrodes. Electrocapillarity measurements have shown that hydrogen and hydroxide adsorption are compressive on Pt{111}, Ru/Pt{111}, and Ru{0001}. The adsorption-induced surface stresses correlate strongly with adsorption charge. Electrocatalytic oxidation of CO on Pt{111} and Ru/Pt{111} gives a tensile surface stress. A numerical method was developed to separate both current and stress into background and active components. Applying this model to the CO oxidation signal on Ru{0001} gives a tensile surface stress and elucidates the rate limiting steps on all three electrodes. The enhanced catalysis of Ru/Pt{111} is confirmed to be bi-functional in nature: Ru provides adsorbed hydroxide to Pt allowing for rapid CO oxidation. The majority of Li-ion batteries have anodes consisting of graphite particles with polyvinylidene fluoride (PVDF) as binder. Intercalation of Li into graphite occurs in stages and produces anisotropic strains. As batteries have a fixed size and shape these strains are converted into mechanical stresses. Conventionally staging phenomena has been observed with X-ray diffraction and collaborated electrochemically with the potential. Work herein shows that staging is also clearly observed in stress. The Li staging potentials as measured by differential chronopotentiometry and stress are nearly identical. Relative peak heights of Li staging, as measured by these two techniques, are similar during reduction, but differ during oxidation due to non-linear stress relaxation phenomena. This stress relaxation appears to be due to homogenization of Li within graphite particles rather than viscous flow of the binder. The first Li reduction wave occurs simultaneously with formation of a passivating layer known as the solid electrolyte interphase (SEI). Preliminary experiments have shown the stress of SEI formation to be tensile (~+1.5 MPa). / Dissertation/Thesis / Deconvolution programm - see Appendix C / ECdata4 program - see Appendix C / Ph.D. Materials Science and Engineering 2011
53

Analysis of Single Fiber Pushout Test of Fiber Reinforced Composite with a Nonhomogeneous Interphase

Garapati, Sri Harsha 24 March 2009 (has links)
Fiber pushout test models are developed for a fiber-matrix-composite with a nonhomogeneous interphase. Using design of experiments, the effects of geometry, loading and material parameters on critical parameters of the pushout test such as the load-displacement curve and maximum interfacial shear and normal stresses are studied. The sensitivity analysis shows that initial load displacement curve is dependent only on the indenter type and not on parameters such as fiber volume fraction, interphase type, thickness of interphase, and boundary conditions. In contrast, interfacial shear stresses are not sensitive to indenter type, while the interfacial radial stresses are mainly sensitive to fiber volume fraction and the boundary conditions.
54

Electrochemical Analysis on Reaction Sites of Graphite Electrodes with Surface Film in Lithium-ion Batteries / 表面被膜存在下における黒鉛電極の反応場に関する研究

Inoo, Akane 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第22456号 / 工博第4717号 / 新制||工||1737(附属図書館) / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 作花 哲夫, 教授 阿部 竜 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
55

TWO FLUID MODELING OF HEAT TRANSFER IN FLOWS OF DENSE SUSPENSIONS

Pranay Praveen Nagrani (11573653) 18 October 2021 (has links)
We develop a two-fluid model (TFM) for heat transfer in dense non-Brownian suspensions. Specifically, we propose closure relations for the inter-phase heat transfer coefficient and the thermal diffusivity of the particle phase based on calibration against experimental data. The model is then employed to simulate non-isothermal flow in an annular Couette cell. We find that, when the shear rate is controlled by the rotation of the inner cylinder, both the shear and thermal gradients are responsible for particle migration. Within the TFM framework, we identify the origin and functional form of a "thermo-rheological" migration force that rationalizes our observations. Furthermore, we apply our model to flow in eccentric Couette cells. Our simulations reveal that the system's heat transfer coefficient is affected by both the classic shear-induced migration of particles and the newly identified thermo-rheological migration effect. Finally, we employed the proposed computational TFM framework to analyze electronics cooling by forced convection for microchannel cooling. We used a suspensions of high thermal conductivity (Boron Nitride) particles in a 3M Fluorinert FC-43 cooling fluid. Three-dimensional simulations were run to quantify the temperature distributions under uniform heating (5 W) and under hot-spot heating (2 W/cm^2) conditions. A 100 K junction level temperature improvement (enhanced thermal spreading) was seen for hot-spot heating and 15 K was observed for uniform heating, demonstrating the enhanced cooling capabilities of dense particulate suspensions of high-conductivity particles, over a clear FC-43 fluid.
56

Smyková pevnost vlákny vyztuženého polymerního kompozitu / Shear strength of the fiber-reinforced polymer composite

Jurko, Michal January 2020 (has links)
The diploma thesis deals with the study of Inter-Laminar Shear Strength (ILSS) of polymer composites, based on unsaturated polyester resin with unidirectionally oriented basalt or glass fibers. The basis of the experimental part is the preparation of composite samples with different types of surface treatment of a fibers (a reinforcement) as well as the surface treatment itself. The untreated, the commercially treated fibers and the plasmatreated fibers used as reinforcement in the polymer composites were analysed by a short beam shear test and their ILSS was determined. The effect of various deposition conditions during Plasma-Enhanced Chemical Vapour Deposition (PECVD) on the value of ILSS of the composite with originally unsized glass or basalt fibers was studied. The impact of aging on the interlaminar shear strength of the composites was investigated for commercially treated glass fibers. The Scanning Electron Microscopy (SEM) is also used in the thesis together with the Energy Dispersive Spectroscopy (EDS). Based on all the results a proposal was made to correct and improve the deposition conditions and thus improve the interphase to achieve the required shear properties of polymer composites.
57

Multifunctional composite interphase

Zhang, Jie 05 June 2012 (has links)
In this work, carbon nanotubes were deposited onto the insulative glass fibre surface to form a semiconductive network. Utilizing the unique properties of CNTs network, a multifunctional composite interphase could be achieved. The interfacial adhesion strength was improved by CNTs distributed in the interphase. The semiconductive interphase have been used as a chemical/phaysical sensor, strain sensor and microswitch.
58

Spectroscopic Characterization of Molecular Interdiffusion at a Poly(Vinyl Pyrrolidone) / Vinyl Ester Interface

Laot, Christelle Marie III 03 October 1997 (has links)
Mechanical properties of (woven carbon fiber / vinyl ester matrix) composites can be greatly improved if the interphase between the reinforcing high-strength low-weight fiber and the thermoset resin is made more compliant. In order to improve the adhesion of the vinyl ester matrix to the carbon fiber, a thermoplastic coating such as poly(vinyl pyrrolidone) (PVP) can be used as an intermediate between the matrix and the fiber. The extent of mutual diffusion at the (sizing material / polymer matrix) interphase plays a critical role in determining the mechanical properties of the composite. In this research, the molecular interdiffusion across a poly(vinyl pyrrolidone))/vinyl ester monomer (PVP/VE) interface is being investigated by Fourier Transform Infrared Attenuated Total Reflectance (FTIR-ATR) spectroscopy. The ATR method which can be used to characterize the transport phenomena, offers several advantages, such as the ability to monitor the diffusion <I>in situ</I> or to observe chemical reactions. In order to separate the effects of the vinyl ester monomer diffusion and the crosslinking reaction, ATR experiments were carried out at temperatures below the normal curing temperature. Diffusion coefficients were determined by following variations in infrared bands as a function of time, and fitting this data to a Fickian model. The values of the diffusion coefficients calculated were consistent with values found in the literature for diffusion of small molecules in polymers. The dependence of diffusion coefficients on temperature followed the Arrhenius equation. Hydrogen bonding interactions were also characterized. The diffusion model used in this study, however, does not seem to be appropriate for the particular (PVP/VE) system. Because the glass transition temperature of the PVP changed as diffusion proceeded, one would expect that the mutual diffusion coefficient did not stay constant. In fact, it was shown that the Tg can drop by 140oC during the diffusion process. A more suitable model of the (PVP/VE) system should take into account plasticization, hydrogen bonding, and especially a concentration dependent diffusion coefficient. Further analysis is therefore needed. / Master of Science
59

In Situ Probe Microscopic Studies on Graphite Electrodes for Lithium-ion Batteries / その場プローブ顕微鏡を用いたリチウムイオン電池用黒鉛負極に関する研究

Hee-Youb, Song 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第20000号 / 工博第4244号 / 新制||工||1657(附属図書館) / 33096 / 京都大学大学院工学研究科物質エネルギー化学専攻 / (主査)教授 安部 武志, 教授 作花 哲夫, 教授 阿部 竜 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
60

Processing and Properties of Multifunctional Two-Dimensional Nanocomposite Based on Single Wall Carbon Nanotubes

Al Mafarage, Ali M. 10 May 2019 (has links)
No description available.

Page generated in 0.0522 seconds