• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 88
  • 22
  • 8
  • 8
  • 4
  • 2
  • 1
  • 1
  • Tagged with
  • 273
  • 273
  • 149
  • 144
  • 139
  • 128
  • 106
  • 64
  • 54
  • 40
  • 40
  • 36
  • 36
  • 34
  • 26
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Spectroscopy and Photometry of Scattered Light Echoes from Supernovae

Sinnott, Brendan 10 1900 (has links)
<p>We present an observational protocol to observe and interpret asymmetries in stellar explosions using scattered light echoes. Spectroscopy of multiple light echoes are used to observe single astronomical sources from multiple viewing angles, allowing for direct observations of explosion asymmetries, when they exist. We present asymmetry detections for two famous historical supernovae: the ~25-year-old SN 1987A and the ~330-year-old Cassiopeia A. In both supernovae we find asymmetries in the first few hundred days of the explosion that appear to be correlated with the geometry of Fe-rich material in the remnant states.</p> <p>Spectroscopy of SN 1987A light echoes reveals a variation in the Hα line profile as a function of echo azimuth, with maximum asymmetry at position angles 16◦ and 186◦, in agreement with the major-axis of the elongated remnant ejecta. We interpret our asymmetry detection as evidence for a two-sided distribution of high-velocity 56Ni in the first few hundred days of SN 1987A, with the most dominant asymmetry redshifted in the south. For Cassiopeia A, we find evidence for a ~4000 km/s velocity excess in the first hundred days of the explosion, roughly aligned with an Fe-rich outflow in the supernova remnant and approximately opposite in direction to the motion of the compact object.</p> <p>Core-collapse supernovae have not yet been successfully modelled despite decades of progress in input physics and computing capability. Despite the significance of thermonuclear Type Ia supernovae to cosmology, the progenitor systems and explosion details also remain unclear. Both observational and theoretical work suggest that non-spherical effects are not only common in supernovae, but may in fact aid in generating successful explosions. In addition to offering a new technique for observing supernova asymmetries, spectroscopy of scattered light echoes allows a direct causal connection to be made between stellar explosions and their observed remnant states.</p> / Doctor of Philosophy (PhD)
52

Simulating Cluster Formation and Radiative Feedback in Molecular Clouds

Howard, Corey S. 10 1900 (has links)
<p>The formation of star clusters occurs in a complex environment and involve a large number of physical processes. One of the most important processes to consider is radiative feedback. The radiation released by forming stars heats the surrounding gas and suppresses the fragmentation of low mass objects. Ionizing radiation can also drive large scale outflows and disperse the surrounding gas. Owing to all this complexity, the use of numerical simulations to study cluster formation in molecular clouds has become commonplace. In order to study the effects of radiative feedback on cluster formation over larger spatial scales than previous studies, we present hydrodynamical simulations using the AMR code FLASH which make use of cluster particles. Unlike previous studies, these particles represent an entire star cluster rather than individual stars. We present a subgrid model for representing the radiative output of a star cluster which involves randomly sampling an IMF over time to populate the cluster. We show that our model is capable of reproducing the properties of observed clusters. The model was then incorporated into FLASH to examine the effects of radiative feedback on cluster formation in full hydrodynamical simulations. We find that the inclusion of radiative transfer can drive large scale outflows and decreases the overall star formation efficiency by a factor of 2. The inclusion of radiative feedback also increases the degree of subclustering. The use of cluster particles in hydrodynamical simulations represents a promising method for future studies of cluster formation and the large scale effects of radiative feedback.</p> / Master of Science (MSc)
53

MODELING IONIZED AND MOLECULAR REGIONS OF THE INTERSTELLAR MEDIUM USING THE SPECTRAL SYNTHESIS CODE CLOUDY

Wagle, Gururaj 01 January 2014 (has links)
The focus of this dissertation is to study the star-forming regions of the interstellar medium (ISM), using two very diverse environments: the Polaris Flare, high-galactic latitude, cirrus cloud complex consisting of several starless molecular cores with no nearby hot stars; and the Orion Nebula, which is the closest massive star forming region. The two environments provide a wide range of physical conditions. It is commonly assumed that the Herschel far-infrared (FIR) fluxes are a good measure of column density, hence, mass of interstellar clouds. We find that the FIR fluxes are insensitive to the column density if AV ≳ 2. The Polaris Flare has been previously observed with the Herschel Space Telescope. We use Cloudy to model the molecular cores in MCLD 123.5+24.9 of the Polaris Flare. The Polaris Flare, 150 pc distant, is well within the Galactic disc. There are no nearby hot stars. Therefore, the cloud is illuminated by an external far-ultraviolet (FUV) flux (6-13 eV) due to the galactic background interstellar radiation field (ISRF). The dust grains absorb the incident FUV flux and re-emit in the FIR continuum emission. We use detailed grain models that suggest that the grains in dense regions are coated with water and ammonia ices, increasing their sizes and opacities. In our models, dust temperatures decline rapidly into the cloud. Therefore, the cloud interiors contribute very little additional FIR flux, leading to an underestimate of inferred column density. Cloudy also predicts mm-wavelength molecular lines for comparison with published observations. Our models suggest that at low temperatures (≲ 20K), molecules freeze-out on grain surfaces, and desorption by cosmic rays becomes important. Our models of inter-core regions in MCLD 123.5+24.9 significantly under predict molecular line strengths unless the gas is clumped into high-density regions. We use Cloudy to construct a detailed model of the Orion H ii region. This study is an improvement over the work of Baldwin et al. 1991 with the new atomic data and stellar atmosphere models, and a wealth of archival observational data obtained over last two decades. We use collisionally excited lines to determine the elemental abundance of the region.
54

Simulating Protostellar Evolution and Radiative Feedback in the Cluster Environment

Klassen, Mikhail 10 1900 (has links)
<p>Stars form in clusters amidst complex and coupled physical phenomena. Among the most important of these is radiative feedback, which heats the surrounding gas to suppress the formation of many low-mass stars. In simulations of star formation, pre-main-sequence modeling has often been neglected and stars are assumed to have the radii and luminosities of zero-age main sequence stars. We challenge this approach by developing and integrating a one-zone protostellar evolution model for FLASH and using it to regulate the radiation output of forming stars. The impact of accurate pre-main-sequence models is less ionizing radiation and less heating during the early stages of star formation. For stars modeled in isolation, the effect of protostellar modeling resulted in ultracompact HII regions that formed slower than in the ZAMS case, but also responded to transitions in the star itself. The HII region was seen to collapse and subsequently be rebuilt as the star underwent a swelling of its radius in response to changes in stellar structure and nuclear burning. This is an important effect that has been missed in previous simulations. It implies that observed variations in HII regions may signal changes in the stars themselves, if these variation can be disentangled from other environmental effects seen in the chaotic cluster environment.</p> / Master of Science (MSc)
55

Spectral Results for the Blue Plume Stars in Canis Major Overdensity

Rafiul Islam, Mirza Sharoz 01 January 2015 (has links)
We present distances and kinematics and look at the possible populations for the blue plume (BP) stars in the Canis Major Overdensity (CMa). We conducted a medium resolution spectral survey on the BP stars (N=303) in CMa (centered at l = 238° ; b = -8°) using the data from AAOmega Spectrograph. We used a modified version of the Statistics-sensitive Non-linear Iterative Peak-clipping (SNIP) algorithm to normalize our fluxed absorption spectra. After determining the radial velocities from measurements of strong absorption features for the stars we use a Bayesian analysis of spectral feature strengths and photometric colors to determine Teff, Logg and [Fe/H]. Our procedure makes use of grid for model synthetic spectra computed using SPECTRUM with Atlas9 model atmospheres and Kurucz model colors. We determine the absolute magnitude using the stellar parameters and BaSTI isochrones and compute distances and ages for the BP stars. Our analysis of the BP stars indicates Teff ranging from 6500K to 8000K, metallicity ranging from 0.0 to -1.0 with an average of -0.5. We found for this temperature range that the surface gravity of the stars could not be well constrained. From the spatial and kinematics results we found that most of the stars are thick disk stars with a small mixture of thin disk stars. The stars are most likely a mixture of thick disk blue stragglers and normal A-type stars preferentially seen to greater depths due to the low dust extinction in this location of the Galaxy.
56

MAGNETIC FIELDS AND OTHER PHYSICAL CONDITIONS IN THE INTERSTELLAR MEDIUM

Kiuchi, Furea 01 January 2012 (has links)
This document consists of two very different projects but the common thread is in the interest of magnetic fields. It describes the effect of magnetic fields in two Interstellar Medium regions in the Galaxy. Electromagnetic force is one of the four fundamental forces in physics. It is not known where magnetic field has initially risen in the Universe, but what is certain is that it has significant effect in the dynamics of star formation and galaxy formation. The studies aim to better understand the effects of field in an active star forming region and in the halo of the Galaxy. We observed the HI 21 cm spectral line via the Zeeman effect in attempt to detect line-of-sight magnetic field strengths in both of the projects. For the star forming region project in Chapter 2, towards the Eagle Nebula, an upper limit of the field strength was determined. From the observational results, physical conditions of the region were modeled. For the second project in Chapter 3, we attempted to detect magnetic fields via Zeeman effect towards non galactic disk objects. All of the observed positions have radial velocities that cannot be explained by the simple galactic rotation. Hence, they are considered to be non galactic disk sources and often grouped as High Velocity Clouds. With a unique observational technique and analysis, we derived the best fit line-of-sight magnetic fields. A particular interest to us is the Smith Cloud. From the detection of magnetic field, we attempted to estimate the density of the ambient medium in the halo, which will be useful for studying the galaxy formation.
57

Variable Temperature Rate Coefficient Studies through a Coaxial Molecular Beam Radiofrequency Ring Electrode Ion Trap

Yuan, Bing January 2012 (has links)
The dissertation focuses on the temperature dependent rate coefficient measurement of reactions in the interstellar medium using a coaxial molecular beam ring electrode ion trap apparatus. The first chapter introduces the previous studies of ion-molecule reactions in the ISM, the types of instruments mainly used in the reaction rate coefficient study, the former research on the ring electrode ion trap and the gas phase reaction mechanisms. Compare to other instruments, our molecular beam - ring electrode ion trap is extremely good at ion cooling and temperature control for both ions and neutral molecules. Chapter two describes each part of the instrument used in detail. Ions produced by electron impact in the ion source chamber, are mass filtered and then reach the ring electrode ion trap. In the trap, ions collide with molecules in the molecular beam where reaction takes place. When the reaction is done, all the ions remained in the trap (the reactant and product ions) come out and move to the detector. The molecular beam terminates at residual gas analyzer which is used for the number density calibration. The third chapter shows how the temperature of ions and molecules are controlled separately in order to find the reaction mechanism. Ions are cooled by the pulsed He buffer in the ring electrode trap and a chopped beam is used to make sure the ions are cooled to the desired low temperature when the reaction takes place. Chapters four to six describe the three reactions being studied using this instrument: N₂⁺ + H₂O charge transfer reaction, H₃O⁺ + C₂H₄ proton transfer reaction and H3O⁺ + (C₂H₂)₂/C₂H₂ dimer reaction. The temperature dependent rate coefficient data of these reactions are explained by the average dipole orientation theory, statistical theory and Colussi's acetylene dimer model, respectively. Two temperatures are defined and applied in the experimental rate coefficients analysis: ion-molecule center of mass collision temperature and the reaction statistical temperature which is based on the numbers of degrees of freedom of both reactants.
58

Shells, bubbles and holes : the porosity of the interstellar medium in galaxies

Bagetakos, Ioannis January 2012 (has links)
We present an analysis of the properties of HI holes detected in 20 galaxies that are part of “The HI Nearby Galaxy Survey” (THINGS). We detected more than 1000 holes in total in the sampled galaxies. Where they can be measured, their sizes range from about 100 pc (our resolution limit) to about 2 kpc, their expansion velocities range from 4 to 36 km/s, and their ages are estimated to range between 3 and 150 Myr. The holes are found throughout the discs of the galaxies, out to the edge of the HI disc; 23% of the holes fall outside R25. We find that shear limits the age of holes in spirals; shear is less important in dwarf galaxies which explains why HI holes in dwarfs are rounder, on average than in spirals. Shear, which is particularly strong in the inner part of spiral galaxies, also explains why we find that holes outside R25 are larger and older. We derive the scale height of the HI disc as a function of galactocentric radius and find that the disc flares at large radii in all galaxies. We proceed to derive the surface and volume porosity (Q2D and Q3D) and find that this correlates with the type of the host galaxy: later Hubble types tend to be more porous. The size distribution of the holes in our sample follows a power law with a slope of a=−2.9. Assuming that the holes are the result of massive star formation, we derive values for the supernova rate (SNR) and star formation rate (SFR) which scales with the SFR derived based on other tracers. If we extrapolate the observed number of holes to include those that fall below our resolution limit, down to holes created by a single supernova, we find that our results are compatible with the hypothesis that HI holes result from star formation. We use HI data from THINGS, 8μm, 24μm, 70μm and HI maps from SINGS, CO(2–1) data from HERACLES and FUV data from NGS to present a visual comparison of these maps with respect to the locations of HI holes. We find that the vast majority of HI holes are also prominent in the 8μm map and to some extent in the 24μm map. There is a lack of molecular gas from the interior of nearly all the holes, which is consistent with the idea that the latter are filled with hot gas. About 60% of young holes have FUV emission detected in their interiors highlighting the presence of the parent OB association. In addition, FUV is detected on the rims of some of the older HI holes, presumably due to the dispersion of the OB association with respect to the gas. We describe the development of a 2–D cross-correlation method to compare multi-wavelength maps in a quantitative way (quantified by Ccoef ) and give some first results from the application of this method to the nearby galaxy NGC2403. We find that the all the dust tracers are well correlated (Ccoef > 0.7) with the 8μm–24μm correlation being the highest (Ccoef > 0.88). Similarly all the star formation tracers are well linked as expected (Ccoef > 0.6). With respect to the relations between star formation and dust tracers we found that most are well matched (Ccoef > 0.7) as dust grains are heated by radiation in star forming regions. At smaller scales (15") FUV correlates poorly (Ccoef ~ 0.3) with the dust tracers, a direct consequence of the absorption of FUV photons by dust. We find that the HI is reasonably well correlated with the 8μm emission (Ccoef ~ 0.6) illustrating the fact that HI is mixed with PAH’s. Interestingly, the HI map shows some correlation with the SF map (Ccoef ~ 0.4) even though FUV and HI emissions were found to be completely uncorrelated (Ccoef ~ 0).
59

Determination of Stellar Parameters through the Use of All Available Flux Data and Model Spectral Energy Distributions

Ekanayake, Gemunu 01 January 2017 (has links)
Basic stellar atmospheric parameters, such as effective temperature, surface gravity, and metallicity plays a vital role in the characterization of various stellar populations in the Milky Way. The Stellar parameters can be measured by adopting one or more observational techniques, such as spectroscopy, photometry, interferometry, etc. Finding new and innovative ways to combine these observational data to derive reliable stellar parameters and to use them to characterize some of the stellar populations in our galaxy is the main goal of this thesis. Our initial work, based on the spectroscopic and photometric data available in literature, had the objective of calibrating the stellar parameters from a range of available flux observations from far-UV to far-IR. Much effort has been made to estimate probability distributions of the stellar parameters using Bayesian inference, rather than point estimates. We applied these techniques to blue straggler stars (BSSs) in the galactic field, which are thought to be a product of mass transfer mechanism associated with binary stars. Using photometry available in SDSS and GALEX surveys we identified 85 stars with UV excess in their spectral energy distribution (SED) : indication of a hot white dwarf companion to BSS. To determine the parameter distributions (mass, temperature and age) of the WD companions, we developed algorithms that could fit binary model atmospheres to the observed SED. The WD mass distribution peaks at 0.4M , suggests the primary formation channel of field BSSs is Case-B mass transfer, i.e. when the donor star is in red giant phase of its evolution. Based on stellar evolutionary models, we estimate the lower limit of binary mass transfer efficiency β ~ 0.5. Next, we have focused on the Canis Major overdensity (CMO), a substructure located at low galactic latitude in the Milky Way, where the interstellar reddening (E(B-V )) due to dust is significantly high. In this study we estimated the reddening, metallicity distribution and kinematics of the CMO using a sample of red clump (RC) stars. The averageE(B-V)(~0.19)is consistent with that measured from Schlegel maps (Schlegal et.al. 1998). The overall metallicity and kinematic distribution is in agreement with the previous estimates of the disk stars. But the measured mean alpha element abundance is relatively larger with respect to the expected value for disk stars.
60

The connection between supernova remnants and the Galactic magnetic field

West, Jennifer Lorraine 03 1900 (has links)
The study of Supernova Remnants (SNRs) is fundamental to understanding the chemical enrichment and magnetism in galaxies, including our own Milky Way. In an effort to understand the connection between the morphology of SNRs and the Galactic Magnetic Field (GMF), we have examined the radio images of all known SNRs in our Galaxy and compiled a large sample that have an axisymmetric morphology, which we define to mean SNRs with a bilateral or barrel-shaped morphology, in addition to one-sided shells. We selected the cleanest examples and model each of these at their appropriate Galactic position using two GMF models, one of which includes a vertical halo component, and another that is oriented entirely parallel to the plane. Since the magnitude and relative orientation of the magnetic field changes with distance from the Sun, we analyze a range of distances, from 0.5 to 10 kpc in each case. Using a physically motivated model of an SNR expanding into an ambient GMF that includes a vertical halo component, we find it is possible to reproduce observed morphologies of many SNRs in our sample. These results strongly support the presence of an off-plane, vertical component to the GMF, and the importance of the Galactic field on SNR morphology. Our approach also provides a potentially new method for determining distances to SNRs, or conversely, distances to features in the large-scale GMF if SNR distances are known. The mechanism for acceleration of cosmic rays in SNRs is another outstanding question in the field. To investigate this, the same sample of axisymmetric SNRs was again modelled, but this time using two competing, and physically motivated, Cosmic Ray Electron (CRE) acceleration cases: quasi-perpendicular and quasi-parallel. We find that the quasi-perpendicular CRE acceleration case is much more consistent with the data than the quasi-parallel CRE acceleration case, with G327.6+14.6 (SN1006) being a notable exception. We propose that SN1006 may be an example of a case where both quasi-parallel and quasi-perpendicular acceleration is simultaneously at play in a single SNR. / October 2016

Page generated in 0.0643 seconds