• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 10
  • 9
  • 6
  • 1
  • 1
  • Tagged with
  • 76
  • 76
  • 47
  • 42
  • 19
  • 17
  • 16
  • 16
  • 15
  • 14
  • 12
  • 11
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Regulation of Palmitoylation Enzymes and Substrates by Intrinsically Disordered Regions

Reddy, Krishna D. 15 November 2016 (has links)
Protein palmitoylation refers to the process of adding a 16-carbon saturated fatty acid to the cysteine of a substrate protein, and this can in turn affect the substrate’s localization, stability, folding, and several other processes. This process is catalyzed by a family of 23 mammalian protein acyltransferases (PATs), a family of transmembrane enzymes that modify an estimated 10% of the proteome. At this point in time, no structure of a protein in this family has been solved, and therefore there is poor understanding about the regulation of the enzymes and their substrates. Most proteins, including palmitoylation enzymes and substrates, have some level of intrinsic disorder, and this flexibility can be important for signaling processes such as protein- protein interactions and post-translational modifications. Therefore, we assumed that examining intrinsic disorder in palmitoylation enzymes and substrates would yield insight into their regulatory mechanisms. First, we found that among other factors, utilizing intrinsic disorder predictions led to a palmitoylation predictor that significantly outperformed existing predictors. Next, we discovered a conserved region of predicted disorder-to-order transition in the disordered C-termini of the PAT family. In Erf2, the yeast Ras PAT, we developed a model where this region reversibly interacts with membranes, and we found that this region mediates interaction with Acc1, an enzyme involved in fatty acid metabolism processes. Finally, we found that an XLID-associated nonsense mutation in zDHHC9, the mammalian Ras PAT, removed a disordered region that was critical for enzyme localization. Future studies of palmitoylation utilizing the framework of intrinsic disorder may lead to additional insights about this important regulatory process.
42

Production, purification et caractérisation de la protéine Hsp 12 de Saccharomyces cerevisiae, une protéine impliquée dans la sucrosité du vin. / Production, purification and characterization of the Hsp12 protein of Saccharomyces cerevisiae, a protein involved in the sweetness of wine.

Léger, Antoine 19 November 2019 (has links)
La protéine Hsp12 est une protéine de choc thermique (12 kDa) exprimée par la levure Saccharomyces cerevisiae et associée à la réponse au stress. En effet, il a été montré que les transcrits du gène HSP12 sont exprimés en réponse à différents stress. De plus, la protéine Hsp12 serait responsable de la sucrosité du vin observée au cours de l’autolyse des levures lors de la vinification. Cependant, le goût sucré pourrait provenir de la protéine Hsp12 entière, ou, d’un ou plusieurs peptides issus de la protéine Hsp12. L’objectif de cette étude était d’obtenir la protéine Hsp12 native pure à partir de culture de Saccharomyces cerevisiae afin de comprendre son rôle, d’une part dans la réponse au stress chez la levure et, d’autre part dans la sucrosité du vin.Des cultures de la souche œnologique Fx10 de Saccharomyces cerevisiae ont été réalisées afin d’étudier la protéine Hsp12 native. La production de la protéine Hsp12 en réponse à différents stress a été étudiée au cours des cultures, grâce à un dosage ELISA développé lors de cette étude. Il a ainsi été mis en évidence que la protéine Hsp12 est produite en quantités significativement supérieures en réponse à des stress thermiques et osmotiques. Le stress éthanolique quant à lui entraine une diminution de la quantité de protéine Hsp12. La protéine Hsp12 native extraite à partir des cultures a été purifiée. Un procédé de purification en 3 étapes a été développé. Plusieurs résines et conditions chromatographiques ont été criblées en microplaques. La résine en mode mixte PPA HyperCel a permis d’éliminer des contaminants majeurs grâce à sa sélectivité. La chromatographie d’exclusion stérique a permis d’éliminer les contaminants restants et ainsi d’obtenir la protéine Hsp12 native avec une pureté de 99%. Différentes techniques biophysiques et calorimétriques ont permis de caractériser la protéine Hsp12 native purifiée, en présence de membranes modèles. Il a ainsi été démontré que la protéine Hsp12 est une protéine intrinsèquement non ordonnée (intrinsically disordered protein - IDP). Elle est caractérisée par l’absence de structures secondaires en solution aqueuse et par la formation d’hélices α en présence de SDS et du phospholipide PiP2. La liaison avec le PiP2 suggère un rôle dans la stabilisation de la membrane plasmique des levures. La protéine Hsp12 pourrait ainsi avoir un rôle de chaperonne de membrane. Une caractérisation organoleptique de la protéine Hsp12 native purifiée a également été réalisée. Il apparait que la protéine Hsp12 entière n’est pas responsable de la sucrosité mais plutôt un ou des peptides issus sa digestion enzymatique. / Hsp12 is a heat shock protein (12 kDa) expressed by the yeast Saccharomyces cerevisiae and associated with the stress response. Indeed, it has been shown that transcripts of the HSP12 gene are expressed in response to different stresses. In addition, the protein Hsp12 would be responsible for the sweetness of wine observed during the autolysis of yeasts during vinification. However, the sweet taste could come from the entire Hsp12, or from one or more peptides derived from Hsp12. The objective of this study was to obtain the pure native Hsp12 protein from Saccharomyces cerevisiae culture in order to understand its role, on the one hand in the stress response in yeast and on the other hand in the sweetness of wine.Cultures of the Saccharomyces cerevisiae Fx10 enological strain were made to study the native Hsp12 protein. The production of the Hsp12 protein in response to different stresses was studied during the cultures, thanks to an ELISA assay developed during this study. It has thus been demonstrated that the Hsp12 protein is produced in significantly greater quantities in response to thermal and osmotic stress. Ethanol stress causes a decrease in the amount of Hsp12 protein. The native Hsp12 protein extracted from the cultures was purified. A 3-step purification process has been developed. Several resins and chromatographic conditions were screened in microplates. PPA HyperCel mixed-mode resin has eliminated major contaminants due to its selectivity. Steric exclusion chromatography allowed the removal of remaining contaminants and thus obtain the native Hsp12 protein with a purity of 99%. Various biophysical and calorimetric techniques were used to characterize the purified native Hsp12 protein in the presence of model membranes. It has thus been demonstrated that the Hsp12 protein is an intrinsically disordered protein (IDP). It is characterized by the absence of secondary structures in aqueous solution and by the formation of α helices in the presence of SDS and phospholipid PiP2. The binding with PiP2 suggests a role in the stabilization of the plasma membrane of yeasts. The Hsp12 protein could thus act as a membrane chaperone. Organoleptic characterization of the purified native Hsp12 protein was also performed. It appears that the entire Hsp12 protein is not responsible for the sweetness but rather one or more peptides resulting from its enzymatic digestion.
43

Investigating Minor States of the Oncoprotein N-MYC, with Focus on Proline Cis/Trans Isomerisation using NMR Spectroscopy

Haugskott, Frida January 2021 (has links)
MYC is a family of three regulator genes that codes for transcription factors. Expression of Myc proteins from MYC genes is found to be deregulated in 70 % of all cancer forms. The three human homologs C-Myc, N-Myc and L-Myc are mainly associated with cancer in the lymphatic system, nerve tissues and lung cancer, respectively. Even though N-Myc is associated with Neuroblastoma, the cancer variant that is most common among children, the field is focused towards C-Myc. The activation of C-Myc begins with phosphorylation of Serine 62, followed by trans-to-cis isomerisation of Proline 63. Then Threonine 58 becomes phosphorylated leading to that Serine 62 is dephosphorylated and subsequent cis-to-trans isomerisation of Proline 63, and C-Myc is marked for degradation. Cis-trans isomerisation is necessary for regulation of gene expression, and is therefore important to understand. Since N-Myc and C-Myc have identical sequences between residues 47 to residue 69, the hypothesis is that N-Myc is activated in the same manner, but this has not been confirmed. In this project the first 69 amino acids of N-Myc were analysed with NMR spectroscopy. This resulted in a near complete assignment of the major conformation, and of the alternative minor conformations as well. The traditional assignment experiments HNCACB, HN(CO)CACB, HNCO, HN(CA)CO in combination with CCH-TOCSY and HN(CCO)C revealed that the majority of the minor configurations can be explained by cis/trans isomerisation of prolines. In addition, the protein was analysed with direct carbon detected NMR spectroscopy to be able to detect the prolines.
44

Conformation of Y145Stop Prion Protein in Solution and Amyloid Fibrils Probed by Nuclear Magnetic Resonance Spectroscopy

Xia, Yongjie 12 October 2017 (has links)
No description available.
45

Structural and Functional Characterization of the MBD2-NuRD Co-Repressor Complex

Desai, Megha 01 January 2014 (has links)
The MBD2-NuRD co-repressor complex is an epigenetic regulator of the developmental silencing of embryonic and fetal β-type globin genes in adult erythroid cells as well as aberrant methylation-dependent silencing of tumor suppressor genes in neoplastic diseases. Biochemical characterization of the MBD2-NuRD complex in chicken erythroid cells identified RbAp46/48, HDAC1/2, MTA1/2/3, p66α/β, Mi2α/β and MBD2 to comprise this multi-protein complex. In the work presented in Chapter 2, we have pursued biophysical and molecular studies to describe a previously uncharacterized domain of human MBD2 (MBD2IDR). Biophysical analyses show that MBD2IDR is an intrinsically disordered region (IDR). Despite this inherent disorder, MBD2IDR increases the overall binding affinity of MBD2 for methylated DNA. MBD2IDR also recruits the histone deacetylase core components (RbAp48, HDAC2 and MTA2) of NuRD through a critical area of contact requiring two contiguous amino acid residues, Arg286 and Leu287. Mutation of these critical residues abrogates interaction of MBD2 with the histone deacetylase core and impairs the ability of MBD2 to repress the methylated tumor suppressor gene Prostasin in MDA-MB-435 breast cancer cells. These findings expand our knowledge of the multi-dimensional interactions of the MBD2-NuRD complex that govern its function. In Chapter 3, we have discussed a novel mechanism for MBD2-mediated silencing of the fetal γ-globin gene. Through microarray expression analyses in adult erythroid cells of MBD2-/- mice, we identified ZBTB32 and miR-210 as downstream targets of MBD2. Over-expression of ZBTB32 and miR-210 in adult erythroid cells causes increased expression of the silenced fetal γ-globin gene. Thus, our results indicate that MBD2 may regulate γ-globin gene expression indirectly though ZBTB32 and miR-210 in adult erythroid cells.
46

Etude structurale et fonctionnelle d'un domaine intrinsèquement désordonné de l'oncoprotéine BCR-ABL responsable de la leucémie myéloïde chronique / Structural and functional study of an intrinsically disordered domain of the BCR-ABL oncoprotein responsible for chronic myeloid leukemia

Maneville, Stephanie 09 October 2013 (has links)
L'oncoprotéine BCR-ABL est responsable de la physiopathologie de la Leucémie Myéloïde Chronique (LMC). La fusion d'une partie de la protéine ABL et de BCR entraîne une dérégulation de l'activité kinase portée par ABL. Plusieurs domaines contenus dans ces deux protéines jouent un rôle important dans l'activation du pouvoir oncogène. L'un d'entre eux est une région de BCR, située en N-terminal, contenant un domaine de liaison au domaine SH2. Durant ce travail de thèse, j'ai caractérisé, pour la première fois, les propriétés structurales de cette région, à l'aide de plusieurs méthodes biophysiques: le domaine de BCR est intrinsèquement désordonné. En parallèle, j'ai étudié les interactions entre le domaine de liaison de BCR et les domaines SH d'ABL. J'ai identifié de nouveaux sites d'interactions avec ABL sur BCR. Enfin, j'ai évalué l'impact fonctionnel des nouveaux sites d’interactions au sein de l'oncoprotéines BCR-ABL, dans un modèle cellulaire. Les résultats préliminaires montrent que deux nouveaux sites auraient un rôle dans le pouvoir oncogénique de BCR-ABL. Ces résultats offrent la possibilité de développer de nouveaux médicaments complémentaires aux existants, qui cibleraient une nouvelle région de BCR-ABL, ainsi pourraient lutter contre les résistances apparues chez les patients vis-à-vis des traitements actuels. / The BCR-ABL oncoprotein is responsible for the pathogenesis of chronic myelogenous leukemia (CML). The fusion of a part of ABL and BCR leads to deregulation of kinase activity of ABL. Several domains in these two proteins play an important role in the activation of oncogenic properties. One of them is a BCR region, located at the N- terminal part, containing a SH2 domain binding. In this thesis , I have characterized for the first time , the structural properties of this region, using several biophysical methods : the domain of BCR is intrinsically disordered. In parallel, I have studied the interactions between the binding domain of BCR and theSH domains of ABL. I identified new sites of interaction with ABL into BCR. Finally, I evaluated the functional impact of new sites of interaction within the BCR- ABL oncoprotein in a cellular model. Preliminary results show that two new sites have a role in the oncogenic properties of BCR- ABL. These results offer the possibility to develop new drugs complementary to existing , that target a new region of BCR- ABL and could fight against the resistance occurred in patients vis-a-vis current treatments.
47

Structural and dynamic characterization of the Golgi Reassembly and Stacking Protein (GRASP) in solution / Caracterização estrutural e dinâmica da proteína de estruturação e compactação do complexo de Golgi (GRASP) em solução

Mendes, Luis Felipe Santos 07 February 2018 (has links)
The Golgi complex is an organelle responsible for receiving synthesized cargo from the endoplasmic reticulum for subsequent post-translations modifications, sorting and secretion. A family of proteins named Golgi Reassembly and Stacking Proteins (GRASP) is essential for the correct assembly and laterally tethering of the Golgi cisternae, a necessary structuration to keep this organelle working correctly. The GRASP structure is mainly composed of two regions: an N-terminal formed by two PDZ domains connected by a short loop (GRASP domain) and a non-conserved C-terminal region, rich in serine and proline residues. Although there are now a few crystal structures solved for the N-terminal domain, it is surprising to notice that no information is currently available regarding a full-length protein or even about dynamic and structural differences between the two PDZs in solution, which is the main functional region of this protein. Using a full-length GRASP model, we were capable of detecting the coexistence of regular secondary structures and large amounts of disordered regions. The overall structure is less compact than a regular globular protein and the high structural flexibility makes its hydrophobic core more accessible to solvent. GRASP coexist in a dynamic conformational ensemble of a µs-ms timescale. Our results indicate an unusual behavior of GRASP in solution, closely resembling a class of collapsed intrinsically disordered proteins called molten globule. We report here also the disorder-to-order transition propensities for a native molten globule-like protein in the presence of different mimetics of cell conditions. Changes in the dielectric constant (such as those experienced close to the membrane surface) seem to be the major factor capable of inducing several disorder-to-order transitions in GRASP, which seems to show very distinct behavior when in conditions that mimic the vicinity of the membrane surface as compared to those found when free in solution. Other folding factors such as molecular crowding, counter ions, pH and phosphorylation exhibit lower or no effect on GRASP secondary structure and/or stability. This is the first study focusing on understanding the disorder-to-order transitions of a molten globule structure without the need for any mild denaturing condition. Regarding the PDZs that form the GRASP domain, we observed that GRASPs are formed by a more unstable and flexible PDZ1 and much more stable and structurally well-behaved PDZ2. More than that, many of the unstable regions found in PDZ1 are in the predicted binding pocket, suggesting a structural promiscuity inside this domain that correlates with the functional promiscuity of interacting with multiple protein partners. This thesis presents the first structural characterization of a full-length GRASP, the first model of how GRASPs (or any molten globule-like protein) can be modulated by the cell during different cell functionalities and the first work in the community proving that the established idea that both PDZs are structurally equivalent is not completely right / O complexo de Golgi é um organela responsável pela recepção de carga sintetizada no retículo endoplasmático e por subsequente modificações pós-traducionais, classificação e secreção. Uma família de proteínas chamada Golgi Reassembly and Stacking Proteins (GRASP) é essencial para o correto empilhamento das cisternas e conexões laterais das pilhas do complexo de Golgi, uma estruturação necessária para manter essa organela funcionando corretamente. A estrutura das GRASPs é composta de duas regiões principais: uma extensão N-terminal formado por dois domínios PDZ conectados por um loop (domínio GRASP) e uma região C-terminal não conservada, rica em resíduos de serina e prolina. Embora existam algumas estruturas cristalográficas resolvidas para o domínio N-terminal, é surpreendente notar que não havia nenhuma informação na literatura sobre a construção inteira de um GRASP, ou mesmo um estudo detalhado sobre os PDZs no N-terminal em solução, que é a principal região funcional dessa proteína. Usando um modelo de GRASP em sua construção completa, fomos capazes de detectar a coexistência de estruturas secundárias regulares e grandes quantidades de regiões desordenadas. A estrutura é menos compacta do que uma proteína globular e a alta flexibilidade estrutural torna o seu núcleo hidrofóbico mais acessível ao solvente. GRASPs coexistem em um conjunto conformacional dinâmico numa escala de tempo característico de s-ms. Nossos resultados indicam um comportamento incomum da GRASP em solução, similar à de uma classe de proteínas intrinsicamente desordenadas colapsadas conhecidas como glóbulos fundidos. Nós relatamos também as propensões de transição estrutural do tipo desordem-ordem para uma proteína glóbulo fundido nativa, induzidas pela presença de diferentes miméticos de condições celulares especificas. A mudança na constante dielétrica do meio (como as experimentadas próximas à superfície da membrana biológica) é o principal modulador estrutural, capaz de induzir múltiplas transições desordem-ordem na GRASP, sugerindo um comportamento muito distinto quando em condições que imitam a vizinhança da superfície da membrana em comparação com os encontrados quando livre em solução. Outros fatores de enovelamento, tais como o molecular crowding, contra-ions, pH e a fosforilação exibem efeitos menores (ou nenhum) na estrutura secundária e/ou estabilidade da GRASP. Este é o primeiro estudo focado na compreensão das transições desordem-ordem em uma estrutura do tipo glóbulo fundido sem que houvesse a necessidade de qualquer condição desnaturante. Em relação aos PDZs que formam o domínio GRASP, observamos que as GRASPs são formadas por um PDZ1 mais instável e flexível e um PDZ2 muito mais estável e estruturalmente bem comportado. Mais do que isso, muitas das regiões instáveis encontradas no PDZ1 estão no predito bolsão de ligação, sugerindo uma promiscuidade estrutural dentro desse domínio que se correlaciona com a promiscuidade funcional de interação com múltiplos parceiros proteicos. É apresentado nesta tese a primeira caracterização estrutural de uma GRASP em sua forma completa, o primeiro modelo de como as GRASPs (ou qualquer proteína em forma de glóbulo fundido) pode ser modulada estruturalmente pela célula durante diferentes funcionalidades e o primeiro trabalho na comunidade provando que a estabelecido ideia de que ambos os PDZs são estruturalmente equivalentes não é completamente correta
48

Biophysical studies of protein assemblies

Wicky, Basile Isidore Martin January 2019 (has links)
Proteins are synthesised as linear polymeric chains. The subtle energetic interplay of interatomic interactions results in chain folding, through which proteins may acquire defined structures. This spatial organisation is encoded by the protein sequence itself; the so-called thermodynamic hypothesis formulated by Anfinsen in 1961. A defined structure is often considered a pre-requisite to protein function, but widespread existence of intrinsically disordered proteins (IDPs) has prompted a re- evaluation of the ways biological function may be encoded into polypeptide chains. Furthermore, proteins often exist as part of multi-component entities, where regulation of assembly is integral to their properties. The interplay between disorder, oligomerisation and function is the focus of this thesis. Some IDPs fold conditionally upon interacting with a partner protein; a process known as coupled folding and binding. What are the biophysical advantages and consequences of disorder in the context of these interactions? A common feature of IDPs is their sequence composition bias, with charged residues being often over-represented. It is therefore tempting to speculate that electrostatic interactions may play a major role in coupled folding and binding reactions. Surprisingly, the opposite was found to be true. Charge-charge interactions only contributed about an order of magnitude to the association rate constants of two contrasting model systems. The lack of pre-formed binding interfaces-a consequence of disorder-might preclude electrostatic acceleration from complementary patches. By looking at the role of the sequence, many studies have taken a protein-centric approach to understanding disorder. Yet there is paucity of data about the effect of extrinsic factors on interactions involving disordered partners. Investigating the role of co-solutes, it was discovered that the kinetic and thermodynamic profiles of coupled folding and binding reactions were sensitive to ion-types. This effect followed the Hofmeister series, and occurred at physiological concentrations of salt. The sensitivity of coupled folding and binding reactions-a consequence of the lack of stability of IDPs-might be advantageous. Given the role of ions in biology, this 'biophysical sensing' could be a mechanism of physiological relevance, allowing modulation of protein-protein interactions involving disordered partners in response to changes in their environments. In cells, signalling networks are often multi-layered, and involve competing protein-protein interactions. The interplay between the biophysical characteristics of the components, and the behaviour of the network were investigated in a model tripartite system composed of folded and disordered proteins. The BCL-2 family regulates the intrinsic pathway of apoptosis through control of mitochondrial outer-membrane permeabilisation; a result of BAK and BAX oligomerisation. Through a shared homology motif (termed BH3), the subtle balance of their interactions determines cellular fate at the molecular level. Characterisation of the model under simple biochemical conditions revealed large differences in affinities among binary interactions; the consequence of the lifetime of the complexes, not their speed of association. A membrane-like environment, re-created using detergents, allows the oligomerisation of BAK and BAX in vitro. Furthermore, investigation of the tripartite system under detergent conditions showed that regulation of the network was the result of competing hetero- and homo-oligomerisation events. Relationships to their biophysical properties were gained by probing their energy landscapes using protein folding techniques. The connection between the biophysical properties of the components of the network and their interactions provides a molecular explanation for the regulation of apoptosis. This thesis offers insights into the ways structured assemblies and environmentally responsive disorder elements may encode functions into proteins.
49

Etudes fonctionnelles et biophysiques de Hug1 ; une protéine intrinsèquement désordonnée impliquée dans le métabolisme des nucléotides / Hug1, an intrinsically disordered protein involved in nucleotide metabolism ; functional and biophysical insights

Meurisse, Julie 18 September 2012 (has links)
Face aux agressions constantes que subit l’ADN, les cellules ont développé des mécanismes de protection, nommés checkpoints pour maintenir l’intégrité de leur génome. Chez Saccharomyces cerevisiae, la kinase Rad53 joue un rôle central dans ces voies et son activation conduit à de nombreux effets cellulaires tels que le ralentissement du cycle cellulaire, le ralentissement de la réplication, l’activation de la transcription de certains gènes, l’activation de la réparation… Lors d’un crible transcriptomique, utilisant une souche exprimant une forme hyperactive de Rad53, nous avons identifié le gène HUG1 comme l’un des gènes les plus transcrits suite à l’activation de la voie RAD53. Cependant les fonctions de Hug1 demeurent énigmatiques.Pour mieux comprendre les fonctions de Hug1 dans la réponse aux dommages de l’ADN, nous avons recherché ses partenaires physiques et avons identifié les protéines Rnr2 et Rnr4, les deux composants de la petite sous-unité de la Ribonucléotide Réductase (RNR). La RNR est un complexe enzymatique qui catalyse l’étape limitante de synthèse des nucléotides. Nous avons alors cherché à caractériser cette interaction par diverses méthodes. Nous avons ainsi montré que Hug1 est une protéine intrinsèquement désordonnée capable d’interagir physiquement avec la petite sous-unité de la RNR et qu’au moins onze acides aminés de Hug1 sont impliqués dans son interaction avec la RNR. Lors de nos investigations, nous avons observé que le fait d’étiqueter Rnr2 en position C-terminale sensibilisait les souches aux stress génotoxiques et que cette sensibilité était supprimée si on abrogeait la fonction de HUG1, faisant de Hug1 un nouvel inhibiteur de la RNR. Ainsi nous sommes parvenus à proposer un modèle de régulation de la RNR par Hug1. / To maintain genome integrity, cells have developed protection mechanisms, called checkpoints, in response to DNA damage insults. In Saccharomyces cerevisiae, Rad53 protein kinase is one of the major actors in these mechanisms, and its activation triggers several cellular responses such as cell cycle delay, replication delay, transcription modifications, activation of DNA repair pathways… Using an hyperactivative allele of RAD53, we identified HUG1, as one of the most induced gene in a transcriptomic analysis upon RAD53 pathway activation. However Hug1’s functions remains elusive.To better understand Hug1’s functions in DNA damage response, we searched for physical partners and identified Rnr2 and Rnr4 proteins, which are the two small subunits of Ribonucleotide Reductase (RNR). The RNR is an enzymatic complex that catalyses nucleotide reduction, a step limiting for dNTPs synthesis. We next experimentally tackled the Hug1-RNR interaction using various methods. We showed so that Hug1 is a small intrinsically disordered protein able to interact physically with the small RNR subunit and that at least eleven amino acids in Hug1 are involved in this interaction. During our investigations, we observed that C-terminal tagging of Rnr2 sensitizes strains to genotoxics stress and that this sensitivity was suppressed when HUG1’s function is abrogated. Hence, we showed that Hug1 is a negative RNR regulator and propose a model for Hug1’s function.
50

Ordre et désordre, bases structurales de la reconnaissance moléculaire chez les paramyxovirus / Structural Basis of Molecular Recognition in Intrinsically Disordered Viral Proteins

Communie, Guillaume 24 October 2013 (has links)
Environ 40 pour cent du protéome humain est composé d'importantes régions dépliées. Ces protéines intrinsèquement désordonnées (PID) n'adoptent pas de structures secondaires et tertiaires stables mais échantillonnent un vaste paysage conformationnel. Malgré cela, elles sont aujourd'hui connues pour intervenir dans de nombreux processus biologiques ou pathologiques. À l'instar des eucaryotes, les virus -- surtout les virus à ARN -- ont eux aussi recours aux propriétés particulières des PID pour effectuer les interactions nécessaires à leur réplication. Les paramyxovirus, comme le virus de la rougeole, sont des virus à ARN simple brin de polarité négative et environ 10 pour cent de leur génome de 15 à 18 kilobases code pour des régions dépliées. Cette thèse détaille l'étude de deux protéines virales directement impliquées dans la réplication, la nucléoprotéine et la phosphoprotéine. Elles interagissent l'une avec l'autre et sont composées à la fois de régions dépliées et repliées. Des données à résolution atomique ont été obtenues en spectroscopie par Résonance Magnétique Nucléaire (RMN) en ce qui concerne les parties désordonnées, et en cristallographie pour ce qui est des parties repliées. Les résultats apportent un nouvel aperçu du rôle du désordre conformationnel dans la transcription et la réplication des paramyxovirus. / About 40 percent of the human proteome contains large disordered regions. These intrinsically disordered proteins (IDPs) do not adopt stable secondary and tertiary structures, but sample a large conformational space. In spite of that, they are now known to be involved in many physiological as well as pathological processes. Following the example of eukaryotes, viruses -- especially RNA viruses -- benefit from the particular features of IDPs in their replication machinery. Paramyxoviruses, that includes Measles virus, are single stranded, negative sense RNA viruses and about 10 percent of their 15 to 18 kilobase RNA genome is known to encode for disordered regions. This thesis focuses on the study of two different proteins of paramyxoviruses, namely the nucleoprotein and the phosphoprotein that are directly involved in the replication of the viral genome. They interact with each other and are composed of folded and disordered domains. Atomic resolution information is obtained about the structure and dynamics of these proteins using a combination of Nuclear Magnetic Resonance (NMR) spectroscopy measurements for the disordered parts and X-ray crystallography for the folded domains. The results provide novel insight into the role of conformational disorder in transcription and replication of paramyxoviruses.

Page generated in 0.0947 seconds