• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sobre invariantes topológicos de folheações holomorfas com singularidade isolada / On topological invariants of holomorphic leaflets with isolated singularity

Araujo, Hamilton Regis Menezes de 19 May 2017 (has links)
ARAUJO, H. R. M. Sobre invariantes topológicos de folheações holomorfas com singularidade isolada. 2017. 62 f. Dissertação (Mestrado Acadêmico em Matemática) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2017. / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-05-25T20:23:00Z No. of bitstreams: 1 2017_dis_hrmaraujo.pdf: 556971 bytes, checksum: 9f274c4a5c917004f3b67a3fc72c5547 (MD5) / Rejected by Rocilda Sales (rocilda@ufc.br), reason: Boa tarde, Conferi a Dissertação de HAMILTON REGIS MENEZES DE ARAUJO, e constatei apenas dois erros na formatação no trabalho que dever ser alterados pelo autor: 1- Epígrafe ( a estrutura desse elemento deve ser a que se segue, com alinhamento à direita: "O sucesso é ir de fracasso em fracasso sem perder o entusiasmo." (Winston Churchill) 2- Títulos das seções (os títulos das seções que se encontram no sumário e ao longo do texto estão incorretos. As normas da ABNT recomendam que apenas a primeira letra do título das seções esteja em maiúscula, com exceção de nomes próprios. Ex.: 2.2 Índice de um Campo em uma Singularidade Isolada deve ser alterado para: 2.2 Índice de um campo em uma singularidade isolada Atenciosamente, on 2017-05-26T16:04:16Z (GMT) / Submitted by Andrea Dantas (pgmat@mat.ufc.br) on 2017-05-29T13:43:41Z No. of bitstreams: 1 2017_dis_hrmaraujo.pdf: 556572 bytes, checksum: cae2a014846c47e96be936dd25bbd9da (MD5) / Approved for entry into archive by Rocilda Sales (rocilda@ufc.br) on 2017-05-29T14:07:05Z (GMT) No. of bitstreams: 1 2017_dis_hrmaraujo.pdf: 556572 bytes, checksum: cae2a014846c47e96be936dd25bbd9da (MD5) / Made available in DSpace on 2017-05-29T14:07:05Z (GMT). No. of bitstreams: 1 2017_dis_hrmaraujo.pdf: 556572 bytes, checksum: cae2a014846c47e96be936dd25bbd9da (MD5) Previous issue date: 2017-05-19 / Considering the foliation induced by a complex holomorph vector field, we will look for topological invariants in the neighborhood of a singular point. At first, the Milnor Number of a vector field becomes important, in the sense that this number is topological invariant. In another discussion, we will emphasize vector fields in dimension two, in which case the leaves, whose foliation is induced by the field, will be integral curves of a 1-form. In this sense, we will deal with Desingularization, that is, after a finite number of processes, which we will call Blow-ups or explosions, we will turn the initial foliation into a foliation whose singularities are all simple. Finally, the Desingularization process of a field will give us tools that make it possible to relate the data obtained in this process to the objects treated throughout the work, with this we will present other topological invariants of foliations. / Considerando a folheação induzida por um campo vetorial complexo holomorfo, buscaremos exibir invariantes topológicos na vizinhança de um ponto singular. Num primeiro momento, ganha importância o Número de Milnor de um campo vetorial, no sentido desse número ser invariante topológico. Em outra discussão, daremos ênfase a campos vetoriais em dimensão dois, nesse caso, as folhas, cuja folheação é induzida pelo campo, serão curvas integrais de uma 1-forma. Nesse sentido, trataremos de Desingularização, ou seja, após um número finito de processos, que chamaremos de Blow-ups, ou explosões, transformaremos a folheação inicial em uma folheação cujas singularidades são todas simples. Por fim, o processo de Desingularização de um campo nos dará ferramentas que possibilitam relacionar os dados obtidos nesse processo com os objetos tratados ao longo de todo o trabalho, diante disto apresentaremos outros invariantes topológicos de folheações.
2

A topologia de folheações e sistemas integráveis Morse-Bott em superfícies / The topology of foliations and integrable Morse-Bott systems on surfaces

Sarmiento, Ingrid Sofia Meza 23 July 2015 (has links)
Nesta tese estudamos os sistemas integráveis definidos em superfícies compactas possuindo uma integral primeira que é uma função Morse-Bott a valores em R. Estes sistemas são aqui chamados de sistemas integráveis Morse-Bott. Classificamos as curvas fechadas e oitos associados a pontos de selas imersos em superfícies compactas. Essa classificação é aplicada ao estudo das folheações Morse-Bott em superfícies e nos permite definir um invariante topológico completo para a classificação topológica global destas folheações. Como uma aplicação desse estudo obtemos a classificação dos sistemas Morse-Bott assim como a classificação topológica das funções Morse-Bott em superfícies compactas e orientáveis. Demonstramos ainda um teorema da realização baseado em duas transformações e numa folheação geradora. Para o caso das funções Morse-Bott também obtivemos um teorema de realização. Finalmente, investigamos a generalização de alguns dos resultados anteriores para sistemas definidos em superfícies não orientáveis. / In this thesis we study integrable systems on compact surfaces with a first integral as a Morse-Bott function with target R. These systems are called here integrable Morse-Bott systems. Initially we present the classification of closed curves and eights associated to saddle points on compact surfaces. This classification is applied to the study of Morse- Bott foliations on surfaces allowing us to define a complete topological invariant for the global topological classification of these foliations. Then as an application of this study we obtain the classification of integrable Morse-Bott systems as well as the topological classification of Morse-Bott functions on compact and orientable surfaces. We also prove a realization theorem based on two transformation and a generating foliation (the foliation on the sphere with two centers). In the case of Morse-Bott functions we also obtain a realization theorem. Finally we investigate generalizations of previous results for systems defined on non-orientable surfaces.
3

A topologia de folheações e sistemas integráveis Morse-Bott em superfícies / The topology of foliations and integrable Morse-Bott systems on surfaces

Ingrid Sofia Meza Sarmiento 23 July 2015 (has links)
Nesta tese estudamos os sistemas integráveis definidos em superfícies compactas possuindo uma integral primeira que é uma função Morse-Bott a valores em R. Estes sistemas são aqui chamados de sistemas integráveis Morse-Bott. Classificamos as curvas fechadas e oitos associados a pontos de selas imersos em superfícies compactas. Essa classificação é aplicada ao estudo das folheações Morse-Bott em superfícies e nos permite definir um invariante topológico completo para a classificação topológica global destas folheações. Como uma aplicação desse estudo obtemos a classificação dos sistemas Morse-Bott assim como a classificação topológica das funções Morse-Bott em superfícies compactas e orientáveis. Demonstramos ainda um teorema da realização baseado em duas transformações e numa folheação geradora. Para o caso das funções Morse-Bott também obtivemos um teorema de realização. Finalmente, investigamos a generalização de alguns dos resultados anteriores para sistemas definidos em superfícies não orientáveis. / In this thesis we study integrable systems on compact surfaces with a first integral as a Morse-Bott function with target R. These systems are called here integrable Morse-Bott systems. Initially we present the classification of closed curves and eights associated to saddle points on compact surfaces. This classification is applied to the study of Morse- Bott foliations on surfaces allowing us to define a complete topological invariant for the global topological classification of these foliations. Then as an application of this study we obtain the classification of integrable Morse-Bott systems as well as the topological classification of Morse-Bott functions on compact and orientable surfaces. We also prove a realization theorem based on two transformation and a generating foliation (the foliation on the sphere with two centers). In the case of Morse-Bott functions we also obtain a realization theorem. Finally we investigate generalizations of previous results for systems defined on non-orientable surfaces.

Page generated in 0.0682 seconds