• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 791
  • 228
  • 132
  • 83
  • 58
  • 45
  • 42
  • 40
  • 26
  • 22
  • 13
  • 8
  • 5
  • 5
  • 3
  • Tagged with
  • 1912
  • 677
  • 375
  • 343
  • 234
  • 198
  • 187
  • 157
  • 151
  • 136
  • 136
  • 128
  • 126
  • 122
  • 102
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
871

Consequences of Vegetation Change on the Dynamics of Labile Organic Matter and Soil Nitrogen Cycling in a Semiarid Ecosystem

Hooker, Toby D. 01 May 2009 (has links)
Sagebrush-dominated ecosystems are being transformed by wildfire, rangeland improvement techniques, and exotic plant invasions. These disturbances have substantial effects on the composition and structure of native vegetation, but the effects on ecosystem C and N dynamics are poorly understood. To examine whether differences in dominant vegetation affect the quantity and quality of plant organic matter inputs to soil, ecosystem C and N pools and rates of plant turnover were compared among historically grazed Wyoming big sagebrush, introduced perennial crested wheatgrass, and invasive annual cheatgrass communities. Since low soil moisture during the summer may inhibit the microbial colonization of plant detrital inputs and result in C-limitations to microbial growth, soils were treated with an in situ pulse of plant detritus prior to the onset of the summer dry-season, and rates of soil C and gross N cycling were compared between treated and untreated soils. Finally, because plant detritus is the dominant form of labile C input to soil microbes over a large portion of the year, the decomposition of 13C-labeled annual grass detritus was used to determine the importance of plant detritus versus soil organic matter as microbial substrate. Results revealed large differences in ecosystem C and N pools, and in the quantity of plant C and N inputs to soil among vegetation types, but differences in soil C and N cycling rates were more subtle. Plant biomass pools were greatest for sagebrush stands, but plant C and N inputs to soil were greatest in cheatgrass communities, such that rates of plant C and N turnover appeared to be accelerated in disturbed ecosystems. Earlier release of plant biomass to soil detrital pools stimulated N availability to a greater extent than C availability relative to untreated soils, and this effect could not be predicted from the C:N stoichiometry of plant detritus. Finally, in situ decomposition of cheatgrass detritus was rapid; however, there was no clear evidence of a time-lag during summer in microbial colonization of recently released plant detritus, and microbial consumption of plant detritus did not result in N-limitations to microbial growth.
872

Invertebrate Community Changes Along Coqui Invasion Fronts in Hawaii

Choi, Ryan T 01 May 2011 (has links)
The Puerto Rican coqui frog, Eleutherodactylus coqui, was introduced to Hawaii in the late 1980s via the commercial horticulture trade. Previous research has shown that coquis can change invertebrate communities, but these studies were conducted at small scales using controlled, manipulative experiments. The objective of this research was to determine whether coqui invasions change invertebrate communities at the landscape scale across the island of Hawaii. At each invasion front, we measured environmental variability on either side of the front and removed sites that were too variable across the front to ensure that the impacts we measured were the result of the invasion. After doing this, there remained 15 sites for which we compared invertebrate communities in 30 m x 30 m plots situated on either side of coqui invasion fronts. In each plot, we collected invertebrate samples from three invertebrate communities, the leaf litter, foliage, and flying invertebrate communities. Multivariate analyses show that coqui frogs change leaf litter communities, by reducing microbivore and herbivore abundances. Coqui also change flying community composition, but have no measurable effect on foliage communities. Across sites, we found that coquis reduced the number of leaf litter invertebrates by 27%, and specifically abundant Acari by 36%. We also found that coquis increased the abundance of flying Diptera by 19% across sites. We suggest that the leaf litter community is altered through direct coqui predation and that Diptera increase because of increased frog carcasses and excrement in invaded plots. Results support previous studies conducted in more controlled settings, but add to our understanding of the invasion by demonstrating that coqui effects on invertebrate communities are measurable at the landscape scale.
873

Reproductive Tactics of Aphidophagous Lady Beetles: Comparison of a Native Species and an Invasive Species that is Displacing It

Kajita, Yukie 01 December 2008 (has links)
Coccinella septempunctata L. (Coleoptera: Coccinellidae) has been introduced to North America in recent decades, raising concerns of adverse impacts on native lady beetles, including the congeneric C. transversoguttata richardsoni (Brown). The central focus of my dissertation is to understand the importance of reproduction, in particular, in promoting invasion of C. septempunctata and its replacement of native lady beetles in alfalfa fields of western North America. Studies were conducted to compare reproductive tactics of the invasive C. septempunctata and the native C. transversoguttata, by addressing: 1) maximum rate of reproduction of overwintered lady beetles, 2) population dynamics of the invasive and native lady beetles and their aphid prey, and seasonal reproductive patterns, over a 3-year period (2004'2006) in alfalfa fields, 3) reproductive tactics and plasticity in response to various prey availabilities, and 4) ovarian dynamics and observation of oosorption in response to prey removal. The invasive C. septempunctata gained a reproductive advantage over native, North American lady beetles from its larger body size when feeding on abundant prey. The invasive species gained additional advantage by its allocation of prey to larger numbers of relatively small eggs. In alfalfa fields, females of C. septempunctata reproduced more readily and laid more eggs than females of C. transversoguttata even at low prey density. C. septempunctata females collected from the field were also more successful in approaching their maximum body weights and reproduction, as observed under ideal conditions, than were females of native C. transversoguttata. In the laboratory, C. septempunctata females produced larger numbers of relatively small eggs, and they maintained their body weights even as they were producing eggs at low rates when aphids were provided in limited numbers. More immediate adjustment of reproductive effort with prey removal, and higher recovery of reproductive rate when prey again became available, were observed in C. septempunctata, compared with C. transcersoguttata. These reproductive abilities of C. septempucntata may contribute to its invasion success and dominance in alfalfa fields. Further studies are needed to determine why females of C. septempunctata are in better physiological condition than are females of C. transversoguttata in spring alfalfa fields.
874

Diet, Density, and Distribution of the Introduced Greenhouse Frog, <i>Eleutherodactylus planirostris</i>, on the Island of Hawaii

Olson, Christina A. 01 May 2011 (has links)
The greenhouse frog, Eleutherodactylus planirostris, native to Cuba and the Bahamas, was recently introduced to Hawaii. Studies from other invaded habitats suggest that it may impact Hawaiian ecosystems by consuming and potentially reducing endemic invertebrates. However, there have been no studies on the greenhouse frog in Hawaii. The first component of this study was to conduct a diet analysis. We conducted a stomach content analysis of 427 frogs from 10 study sites on the island of Hawaii. At each site, we also collected invertebrates using two different sampling methods: leaf litter collection and sticky traps to characterize available resources. Greenhouse frogs consumed predominantly leaf litter invertebrates. Dominant prey items consisted of Hymenoptera: Formicidae (32.4%), Acari (19.2%), and Collembola (17.4%). Greenhouse frogs consumed more Formicidae than was measured in the environment. At one study site, we estimated there were 12,500 frogs ha-1 using mark-recapture methods and greenhouse frogs consumed 129,000 invertebrates ha-1 night-1 at this site. The second component of this study was to determine the distribution of the greenhouse frog on the island of Hawaii, with a male breeding call presence/absence survey at 446 points along the major road network. The greenhouse frog was detected at 61 sites (14%), and found mostly in lowland areas, in habitats of native shrublands and forests, nonnative forests, agricultural lands, and pastures on the southwestern and eastern sides of the island. We determined detection probabilities of the greenhouse frog and the invasive coqui frog, E. coqui. Detection probability of the greenhouse frog was low on the first two surveys and improved by the third survey. Detection probability of the coqui was higher than the greenhouse frog, but overall site occupancy estimates were similar for both species. Because the greenhouse frog appears to be as widespread as the coqui, we recommend that research be conducted to investigate its impacts ecologically to determine whether control efforts should also be aimed at this species.
875

Modeling Bark Beetle Outbreak and Fire Interactions in Western U.S. Forests and the Invasion Potential of an Invasive Puerto Rican Frog in Hawaii Using Remote Sensing Data

Bisrat, Simon A. 01 May 2010 (has links)
I used Moderate-Resolution Imaging Spectroradiometer (MODIS) imagery to answer two ecological questions. In the first project, I investigated the interactions between bark beetle-caused tree mortality and fire occurrence in western U.S. forests. I used remotely sensed fire data detected by MODIS satellite and bark beetle-caused tree mortality data. I tested the hypothesis that there is an increased probability of fire incidence in bark beetle-damaged forests compared to healthy forests using conditional probability modeling across the national forests of the western U.S. regardless of forest type. My results did not show a consistent pattern (increase or decrease of conditional probability of fire occurrence, &#;CP) across all lag time periods considered. However, when &#;CP is averaged across the 5-year study period (2001-2005) fire probability increased at 2-year (16%) and 3-year (9%) lags with 0, 1, 4, and 5-year lags showing no positive effect of bark beetle activity on fire probability. Further, when I analyzed fire-bark beetle-caused tree mortality separately for persistent fires (fires that lasted for at least two 8-day composite periods per season) and transient fires (fires that lasted for only one 8-day composite period per season), the &#;CP increased in all lag periods except the 5-year lag for persistent fires. In the second stage of this project, I used a non-parametric modeling approach to test how important bark beetle-caused tree mortality is in influencing fire occurrence relative to other climate and topography-derived variables in spruce-fir, Douglas-fir, lodgepole, and ponderosa pine forests. My results showed that climate and topography-derived predictors were consistently selected as important predictors of fire occurrence while bark beetle-caused tree mortality showing the least importance. In the second project, I predicted the invasive potential of a Puerto Rican frog species in Hawaii using the following MODIS products: land surface temperature; normalized difference vegetation index and enhanced vegetation index; and leaf area index/fraction of photosynthetically active radiation absorbed by plant canopies. My predicted maps showed that the invasive frog species in Hawaii is likely to expand its current habitat. My results also showed that MODIS-derived biophysical variables are able to characterize the suitable habitats of the invasive frog species.
876

Treatment of Saltcedar (Tamarix spp.): Economics and Feasibility

Thompson, Christopher L. 01 December 2008 (has links)
The invasive species Saltcedar is affecting water and land resources throughout the western states of America. Because of great water use capabilities and other ecosystem detriments, Saltcedar has been targeted for treatment. For successful management of Saltcedar, individual landowners need to be aware of the costs and benefits of treating Saltcedar. Eleven of the most commonly reported treatment methods were evaluated for firm level economic feasibility. Evaluated on the basis of treatment cost, treatment effectiveness, Saltcedar water-use, and re-vegetation water-use, a production plan of ten years was created for each treatment method. Some treatment methods required re-treatment and were evaluated with re-treatments most commonly found in the literature. Of the treatment methods evaluated, five treatment methods were determined to be most feasible. Landowner valuation of environmental changes in the ecosystem brought on by Saltcedar is very important in the decision of which treatment method to implement. Personal valuation, over a period of ten years, will often determine which treatment methods are most cost efficient.
877

Une méthode de décomposition de domaine mixte non-intrusive pour le calcul parallèle d’assemblages / A non-invasive mixed domain decomposition for parallel computation of assemblies

Oumaziz, Paul 07 July 2017 (has links)
Les assemblages sont des éléments critiques pour les structures industrielles. De fortes non-linéarités de type contact frottant, ainsi que des précharges mal maîtrisées rendent complexe tout dimensionnement précis. Présents en très grand nombre sur les structures industrielles (quelques millions pour un A380), cela implique de rafiner les modèles localement et donc de gérer des problèmes numé-riques de très grandes tailles. Les nombreuses interfaces de contact frottant sont des sources de difficultés de convergence pour les simulations numériques. Il est donc nécessaire de faire appel à des méthodes robustes. Il s’agit d’utiliser des méthodes itératives de décomposition de domaine, permettant de gérer des modèles numériques extrêmement grands, couplées à des techniques adaptées afin de prendre en compte les non-linéarités de contact aux interfaces entre sous-domaines. Ces méthodes de décomposition de domaine restent encore très peu utilisées dans un cadre industriel. Des développements internes aux codes éléments finis sont souvent nécessaires et freinent ce transfert du monde académique au monde industriel.Nous proposons, dans ces travaux de thèse, une mise-en-oeuvre non intrusive de ces méthodes de décomposition de domaine : c’est-à-dire sans développement au sein du code source. En particulier, nous nous intéressons à la méthode Latin dont la philosophie est particulièrement adaptée aux problèmes non linéaires. La structure est décomposée en sous-domaines reliés entre eux au travers d’interfaces. Avec la méthode Latin, les non-linéarités sont résolues séparément des aspects linéaires. La résolution est basée sur un schéma itératif à deux directions de recherche qui font dialoguer les problèmes linéaires globaux etles problèmes locaux non linéaires.Au cours de ces années de thèse, nous avons développé un outil totalement non intrusif sous Code_Aster permettant de résoudre par une technique de décomposition de domaine mixte des problèmes d’assemblage. Les difficultés posées par le caractère mixte de la méthode Latin sont résolues par l’introduction d’une direction de recherche non locale. Des conditions de Robin sur les interfaces des sous-domaines sont alors prises en compte simplement sans modifier les sources de Code_Aster. Nous avons proposé une réécriture algébrique de l’approche multi-échelle assurant l’extensibilité de la méthode. Nous nous sommes aussi intéressés à coupler la méthode Latin en décomposition de domaine à un algorithme de Krylov. Appliqué uniquement à un problème sous-structuré avec interfaces parfaites, ce couplage permet d’accélérer la convergence. Des structures préchargées avec de nombreuses interfaces de contact frottant ont été traitées. Des simulations qui n’auraient pu être menées par un calcul direct sous Code_Aster ont été réalisées via cette stratégie de décomposition de domaine non intrusive. / Abstract : Assemblies are critical elements for industrial structures. Strong non-linearities such as frictional contact, as well as poorly controlled preloads make complex all accurate sizing. Present in large numbers on industrial structures (a few million for an A380), this involves managing numerical problems of very large size. The numerous interfaces of frictional contact are sources of difficulties of convergence for the numerical simulations. It is therefore necessary to use robust but also reliable methods. The use of iterative methods based on domain decomposition allows to manage extremely large numerical models. This needs to be coupled with adaptedtechniques in order to take into account the nonlinearities of contact at the interfaces between subdomains. These methods of domain decomposition are still scarcely used in industries. Internal developments in finite element codes are often necessary, and thus restrain this transfer from the academic world to the industrial world.In this thesis, we propose a non-intrusive implementation of these methods of domain decomposition : that is, without development within the source code. In particular, we are interested in the Latin method whose philosophy is particularly adapted to nonlinear problems. It consists in decomposing the structure into sub-domains that are connected through interfaces. With the Latin method the non-linearities are solved separately from the linear differential aspects. Then the resolution is based on an iterative scheme with two search directions that make the global linear problems and the nonlinear local problems dialogue.During this thesis, a totally non-intrusive tool was developed in Code_Aster to solve assembly problems by a mixed domain decomposition technique. The difficulties posed by the mixed aspect of the Latin method are solved by the introduction of a non-local search direction. Robin conditions on the subdomain interfaces are taken into account simply without modifying the sources of Code_Aster. We proposed an algebraic rewriting of the multi-scale approach ensuring the extensibility of the method. We were also interested in coupling the Latin method in domain decomposition to a Krylov algorithm. Applied only to a substructured problem with perfect interfaces, this coupling accelerates the convergence. Preloaded structures with numerous contact interfaces have been processed. Simulations that could not be carried out by a direct computationwith Code_Aster were performed via this non-intrusive domain decomposition strategy.
878

Méthode global/local non-intrusive pour les simulations cycliques non-linéaires / Noninvasive global/local method for nonlinear and cyclic computations

Blanchard, Maxime 18 January 2018 (has links)
Cette thèse vise à proposer des outils innovants pour le calcul de structures aéronautiques évoluant à haute température. En effet, les régimes de fonctionnement des moteurs actuels conduisent à des évolutions élasto-viscoplastiques généralisées dans les pièces métalliques et l’utilisation de modèles simplifiés (élastiques) n’est plus totalement satisfaisante en terme de précision, même en phase de préconception. De même, la géométrie complexe permettant le refroidissement continu des pièces (micro-perforations) doit être prise en compte de manière exacte. Les techniques de calcul standard pour ce genre de problème conduiraient à des simulations lentes et peu flexibles (la moindre modification entraînant une remise en œuvre complète de la chaîne de calcul). Plus précisément, cette thèse étend les méthodes de type global/local non-intrusives au cas de la viscoplasticité généralisée en utilisant deux échelles de temps et d'espace, chacune adaptée aux phénomènes locaux et globaux à capturer. La méthode est ensuite étendue au calcul de nombreux cycles complexes de chargement, par des techniques de saut de cycles. Le schéma de couplage en temps permet alors une adaptation locale du pas de temps par sous-domaine. Des techniques d’accélération de convergence sont proposées, à l’échelle d’un incrément puis à celle de la succession de cycles (sauts de cycles). Ces développements permettent d’obtenir rapidement et précisément une estimation du cycle limite qui alimente un modèle de durée de vie. Le couplage non-intrusif est réalisé dans un script de programmation pilotant un code commercial (dans notre cas le langage Python et Abaqus/Standard). La méthode a été appliquée sur des plateformes de calculs industrielles, en réutilisant directement des maillages et les mises en données issues de modèles intervenant plus tôt dans la chaîne de calcul. Un cas métier, issu d’un bureau d’études de Safran Aircraft Engines, a pu être traité. / This thesis consists in developing innovating tools destined to the simulation of aeronautical structures evolving at high temperature. Indeed, working rates of current engines lead to an elasto-viscoplastic evolution generalized in metallic parts and the use of simplified models (linear elastic) are no longer totally satisfying in term of accuracy, even in initial design process. Likewise, the complex geometry allowing the continuous cool down process of parts (micro-perforations) has to be exactly taken into account. The standard computation techniques dedicated to this kind of models would lead to slow simulations with a lack of flexibility (the slightest modifications leading to restart the whole design process of the computation chain).More precisely, this thesis extends the noninvasive global/local methods to the framework of viscoplasticity generalized to the whole structure, using two scales in time and space, each one adapted to global and local phenomena to capture. The method is then extended to the computation of high number of complex load cycles, by skipped cycles techniques. The time coupling scheme lets then a local adaptation of time steps per subdomain. Convergence acceleration techniques are also set up, first for one time step and then through several load cycles (skipped cycles). These developments conduct to obtain quickly an evaluation of the limit cycle providing data to a lifetime expectancy model.The noninvasive coupling is realized in a programming language script managing the commercial software (respectively in our case Python and Abaqus/Standard). The method has been applied on industrial computational platforms, by reusing directly meshes and data from previous engineering tasks appearing earlier in the computational chain. A genuine test case from a Safran Aircraft Engines design office, was performed successfully.
879

Pacific Northwest To New England: Exploring The Intersections Of Invasive Ecology, Forest Management, And Alternative Energy

Neidermeier, Alexandra N. 01 January 2020 (has links)
Invasive species exact important ecologic, economic, and cultural tolls in forests. This research focused on the intersections of invasive ecology, forest management, and a forest commodity. Invasive ecology was explored through an assessment of two potential biological control agents of hemlock woolly adelgid. The two species of silver fly (Leucopis spp.) from the Pacific Northwest were first examined for temporal resource partitioning patterns. The niches of these species were then examined spatially by developing a species distribution model. Leucopis spp. exhibited sinusoidal patterns of daily emergence when examined over a 29-day period, with peak daily abundances that were inversely related. Spatially, however, landscape-scale and climatic indicators were not significant in predicting the presence of Leucopis spp. in the Pacific Northwest. This adds important information about niche dynamics of Leucopis spp. in the Pacific Northwest, which may have logistical and operational implications for their use in the USDA Forest Service’s Hemlock Woolly Adelgid Initiative. Additionally, the potential opportunities and risks of using wood that has been impacted by invasive species and pests was explored through a literature analysis focused on three species posing a threat to northeastern US forests: emerald ash borer, hemlock woolly adelgid, and southern pine beetle. Based on this review, I concluded that although opportunities for the use of this wood are sometimes recognized, the phytosanitary risks in feedstock pre-treatment are not being directly addressed in US-related literature. These studies provide important evidence for adaptive solutions to forest pests that consider both forest health and forest economics.
880

Mechanisms of Adaptation in the Newly Invasive Species <i>Brachypodium sylvaticum</i> (Hudson) Beauv.

Marchini, Gina Lola 22 December 2015 (has links)
It is common knowledge that invasive species cause worldwide ecological and economic damage, and are nearly impossible to eradicate. However, upon introduction to a novel environment, alien species should be the underdogs: They are present in small numbers, possess low genetic diversity, and have not adapted to the climate and competitors present in the new habitat. So, how are alien species able to invade an environment occupied by native species that have already adapted to the local environment? To discover some answers to this apparent paradox I conducted four ecological genetic studies that utilized the invasive species Brachypodium sylvaticum (Hudson) Beauv. to determine mechanisms contributing to adaptation and success in the novel habitat. The first study used simulations and experiments to test the hypothesis that genetic purging, the process where genetic load is reduced by selection against the recessive deleterious alleles expressed in the homozygous state, promotes invasive range expansion. I found that homozygous populations on B. sylvaticum's range periphery displayed lower inbreeding depression compared to heterozygous populations near introduction sites. Empirical tests with B. sylvaticum further demonstrate that purging of genetic load is a plausible scenario promoting range expansion during invasion. Next, I explored how the interaction between population genetic diversity and the environment contributed to the establishment and spread of Brachypodium sylvaticum. I found that nitrogen application increases both final size and shoot biomass for B. sylvaticum individuals from source populations with low HS levels to levels found in individuals from populations with high HS. A coefficient of relative competition intensity index (RCI) displayed reduced effects of interspecific competition on B. sylvaticum biomass in high nitrogen plots. Results show that elevated nitrogen deposition is a factor that increases establishment of introduced species with historically small effective population sizes. Thirdly, I investigated phenotypic differentiation during the establishment and range expansion of Brachypodium sylvaticum. Utilizing a novel approach, unique alleles were used to determine the genetic probability of contribution from native source regions to invasive regions. These probabilities were integrated into QST-FST comparisons to determine the influence of selection and genetic drift on twelve physiological and anatomical traits associated with drought stress. Phenotypic divergence greater than neutral expectations was found for five traits between native and invasive populations, indicating selective divergence. Results from this study show that the majority of divergence in B. sylvaticum occurred after introduction to the novel environment, but prior to invasive range expansion. The final chapter of my dissertation investigates the adaptive role of genetic differentiation and plasticity for Brachypodium sylvaticum invasion. Plasticity was measured across treatments of contrasting water availability. Linear and nonlinear selection gradients determined the effect of directional and quadratic selection on plasticity and genetic differentiation. Invasive trait divergence was a consequence of post-introduction selection leading to genetic differentiation, as there were no plastic responses to contrasting water availability for any measured traits. Genetic divergence of invasive plants was not consistently in the direction indicated by selection, suggesting limitations of selection that may be a consequence of physical constraints and/or tradeoffs between growth and abiotic tolerance. Results suggest that selection, rather than plasticity, is driving phenotypic change in the invaded environment. The combined volume of these studies contributes significantly to the field of invasion and plant biology by providing novel insights into the processes underlying range expansion, adaptation, and ultimately, evolution of introduced species.

Page generated in 0.0397 seconds