• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 1
  • 1
  • Tagged with
  • 14
  • 14
  • 14
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Multiple Retailer Inventory Routing Problem With Backorders

Alisan, Onur 01 July 2008 (has links) (PDF)
In this study we consider an inventory routing problem in which a supplier distributes a single product to multiple retailers in a finite planning horizon. Retailers should satisfy the deterministic and dynamic demands of end customers in the planning horizon, but the retailers can backorder the demands of end customers considering the supply chain costs. In each period the supplier decides the retailers to be visited, and the amount of products to be supplied to each retailer by a fleet of vehicles. The decision problems of the supplier are about when, to whom and how much to deliver products, and in which order to visit retailers while minimizing system-wide costs. We propose a mixed integer programming model and a Lagrangian relaxation based solution approach in which both upper and lower bounds are computed. We test our solution approach with test instances taken from the literature and provide our computational results.
2

Inventory routing problems on two-echelon systems : exact and heuristic methods for the tactical and operational problems / Inventory Routing Problems dans les systèmes à deux échelons : méthodes exactes et heuristiques pour les problèmes tactique et opérationnel

Farias de Araújo, Katyanne 25 November 2019 (has links)
Les activités de transport et de gestion des stocks ont un impact important les unes sur les autres. Assurer un niveau de stock idéal peut demander des livraisons fréquentes, ce qui entraîne des coûts logistiques élevés. Pour optimiser les compromis entre les coûts de stock et de transport, des systèmes VMI (Vendor Managed Inventory) ont été développés pour gérer ensemble les opérations de stock et de transport. Pour un ensemble de clients ayant des demandes sur un horizon de temps, le problème de détermination des tournées et des quantités à livrer avec un coût minimum de gestion de stock et de transport est connu sous le nom de Inventory Routing Problem (IRP). Les systèmes à deux échelons ont également été étudiés pour améliorer le flux de véhicules dans les zones urbaines. étant donné que des nouvelles politiques de gestion sont apparues, dans le but de limiter le trafic des gros véhicules et leur vitesse dans les centres urbains, des Centres de Distribution (DC) sont mis en place pour coordonner les flux de marchandises à l'intérieur et à l'extérieur des zones urbaines. Les produits sont donc livrés aux clients par les fournisseurs via les DC.Nous proposons de combiner un système à deux échelons avec le IRP. Nous introduisons un Operational Two-Echelon Inventory Routing Problem (O-2E-IRP), ce qui est une nouvelle extension du IRP à notre connaissance. Dans le O-2E-IRP proposé, les clients doivent être servis par un fournisseur strictement via des DC et les tournées doivent être définis dans les deux échelons sur un horizon de temps donné. Trois politiques de réapprovisionnement et de configurations de routage différentes sont modélisées pour ce problème. Nous développons deux formulations mathématiques, ainsi qu'un algorithme Branch-and-Cut (B&C) combiné à une matheuristique pour résoudre le problème. De plus, nous analysons plusieurs inégalités valides disponibles pour le IRP et nous introduisons de nouvelles inégalités valides inhérentes au IRP à deux échelons. Des expériences de calcul approfondies ont été effectuées sur un ensemble d'instances générées de manière aléatoire. Les résultats obtenus montrent que les performances des méthodes sont liées à la politique de stock et à la configuration de routage.Dans le contexte d'un IRP à deux échelons, deux décisions tactiques importantes doivent être prises en plus des décisions de livraison de routage et de quantité de livraison: à partir de quel DC sera fourni chaque client et en utilisant quels véhicules ? Répondre à ces questions est extrêmement difficile car cela implique de pouvoir minimiser les coûts opérationnels d'un système de livraison VMI à deux échelons à long-terme et avec des demandes incertaines. Pour faire face à cela, nous présentons le Tactical Two-Echelon Inventory Routing Problem (T-2E-IRP) qui optimise les décisions en fonction d'un horizon à long-terme et en tenant compte des demandes stochastiques. Trois politiques de gestion des stocks sont modélisées et appliquées à un ou aux deux échelons. Nous développons une approche de simulation pour résoudre le T-2E-IRP sur un horizon de temps à long-terme. Nous proposons quatre formulations et deux algorithmes B&C pour définir l'affectation des clients et des véhicules aux DC en fonction d'un horizon de temps court. Ensuite, nous évaluons ces décisions d'affectation via un outil de simulation qui résout un sous-problème du T-2E-IRP, qui consiste en les décisions de livraisons du fournisseur aux DC et des DC aux clients, sur un horizon glissant. De nombreuses expériences sont effectuées pour un ensemble d'instances générées aléatoirement. L'impact de plusieurs paramètres utilisés pour déterminer l'affectation des clients et des véhicules aux DC sur le coût total est analysé. Basé sur des expériences, nous définissons la combinaison de paramètres qui fournit généralement les meilleurs résultats sur les instances générées. / Transport and inventory management activities have a great impact on each other. Ensuring an ideal inventory level can require frequent deliveries, leading to high logistics costs. To optimize the trade-offs between inventory and transportation costs, VMI (Vendor Managed Inventory) systems have been developed to manage inventory and transportation operations together. Given a set of customers with demands over a time horizon, the problem of determining routes and delivery quantities at a minimum inventory holding and transportation costs is known as Inventory Routing Problem (IRP). Two-echelon systems have also been studied to improve the freight vehicle flow inside urban areas. As new management policies have emerged, with the goal of limiting the traffic of large vehicles and their speed in urban centers, Distribution Centers (DC) are introduced to coordinate freight flows inside and outside the urban areas. Products are then delivered from the suppliers to the customers through the DC.We propose to combine a two-echelon system with the IRP. We introduce an Operational Two-Echelon Inventory Routing Problem (O-2E-IRP), which is a new extension of the IRP to the best of our knowledge. On the proposed O-2E-IRP, the customers must be served by a supplier strictly through DC and routes must be defined in both echelons over a given time horizon. Three different replenishment policies and routing configurations are modeled for this problem. We develop two mathematical formulations, and a Branch-and-Cut (B&C) algorithm combined with a matheuristic to solve the problem. In addition, we analyze several valid inequalities available for IRP, and we introduce new ones inherent to the IRP within two echelons. Extensive computational experiments have been carried out on a set of randomly generated instances. The obtained results show that the performance of the methods is related to the inventory policy and routing configuration.In the context of a two-echelon IRP, two important tactical decisions have to be taken in addition to route and quantity delivery decisions: from which DC will be supplied each customer and using which vehicles? Answering these questions is extremely difficult as it implies being able to minimize operational costs for a two-echelon VMI delivery system on long-term and with uncertain demands. In order to deal with this, we introduce the Tactical Two-Echelon Inventory Routing Problem (T-2E-IRP) that optimizes the decisions based on a long-term horizon and considering stochastic demands. Three inventory management policies are modeled and applied at one or both echelons. We develop a simulation approach to solve the T-2E-IRP on a long-term time horizon. We propose four formulations and two B&C algorithms to define the assignment of customers and vehicles to the DC based on a short time horizon. Then, we evaluate these assignment decisions through a simulation tool that solves a subproblem of the T-2E-IRP, which consists of the decisions of deliveries from the supplier to the DC and from the DC to the customers, on a rolling-horizon framework. Extensive computational experiments are performed for a set of randomly generated instances. The impact of several parameters used to determine the assignment of customers and vehicles to DC on the total cost is analyzed. Based on the experiments, we define the combination of parameters that generally provides the best results on the generated instances.
3

Multi-item Inventory-routing Problem For An Fmcg Company

Zerman, Erel 01 October 2007 (has links) (PDF)
In this study, inventory&ndash / routing system of a company operating in Fast Moving Consumer Goods (FMCG) industry is analyzed. The company has decided to redesign distribution system by locating regional warehouses between production plants and customers. The warehouses in the system are all allowed to hold stock without any capacity restriction. The customers are replenished by the warehouse to which they have been assigned. Customer stocks are continuously monitored by the warehouse and deliveries are to be scheduled. In this multi&ndash / item, two-echelon inventory&ndash / distribution system, main problem is synchronizing inventory and distribution decisions. An integrated Mixed Integer Programming optimization model for inventory and distribution planning is proposed with the aim of optimally coordinating inventory management and vehicle routing. The model determines the replenishment periods of items and amount of delivery to each customer / and constructs the delivery routes with the objective of cost minimization. The integrated model is coded in GAMS and solved by CPLEX. The integrated inventory-routing model is simulated with retrospective data of the company. Computational results on test problems are provided to show the effectiveness of the model developed in terms of the performance measures defined. Moreover, the feasible solution obtained for a period is compared to the realized inventory levels and distribution schedules. Computational results seem to indicate a substantial advantage of the integrated inventory-routing system over the existing distribution system.
4

[en] MULTI-VEHICLES MULTI-PRODUCTS INVENTORY ROUTING PROBLEM WITH TRANSSHIPMENT: A CASE STUDY / [pt] ROTEIRIZAÇÃO DE MULTI-VEÍCULOS E MULTI-PRODUTOS COM ESTOQUE E TRANSBORDO: UM ESTUDO DE CASO

NATHALIA JUCA MONTEIRO 18 September 2017 (has links)
[pt] O transporte e os estoques correspondem a maior parte dos custos logísticos de uma empresa. Com o avanço da tecnologia, passou-se a analisar em conjunto esses dois componentes e não mais separados, como era feito anteriormente. O Problema de Roteirização de Veículos com Estoque (Inventory Routing Problem – IRP), nasceu dessa análise conjunta e procura encontrar a melhor rota para os veículos, atendendo a um determinado nível de estoque. Este trabalho apresenta um modelo de IRP com múltiplos veículos e produtos, onde existe a possibilidade de transbordo entre os centros de distribuição existentes. O modelo desenvolvido foi elaborado em um estudo de caso real em uma empresa do setor varejista. Após sua elaboração, o modelo foi testado com uma instância menor e comparado a situação atual da empresa, a fim de testar sua eficiência. Em seguida, foi rodado com os dados completos da empresa, e foram analisados os resultados. Na resolução, foi utilizado o software Xpress, o qual utiliza programação inteira como método de resolução. / [en] Transport and inventories account for most of a company s logistics costs. With the advancement of technology, we began to analyze these two components together and no longer separate, as was done previously. The Inventory Routing Problem (IRP) was born from this joint analysis and seeks to find the best route for the vehicles, meeting a certain level of inventory. This work presents an IRP model with multiple vehicles and products, where there is the possibility of transshipment between existing distribution centers. The developed model was elaborated in a real case study in a company of the retail sector. After its elaboration, the model was tested with a smaller instance and compared to the current situation of the company in order to test its efficiency. It was then run with the complete company data, and the results were analyzed. In the resolution, Xpress software was used, which uses integer programming as the resolution method.
5

Problèmes de tournée avec prise en compte explicite de la consommation d'énergie / Inventory Routing Problems with Explicit Energy Consideration

He, Yun 04 December 2017 (has links)
Dans le problème de tournées avec gestion de stock ou "Inventory Routing Problem" (IRP), le fournisseur a pour mission de surveiller les niveaux de stock d'un ensemble de clients et gérer leur approvisionnement en prenant simultanément en compte les coûts de transport et de stockage. Etant données les nouvelles exigences de développement durable et de transport écologique, nous étudions l'IRP sous une perspective énergétique, peu de travaux s'étant intéressés à cet aspect. Plus précisément, la thèse identifie les facteurs principaux influençant la consommation d'énergie et évalue les gains potentiels qu'une meilleure planification des approvisionnements permet de réaliser. Un problème relatif à l'approvisionnement en composants de chaînes d'assemblage d'automobiles est tout d'abord considéré pour lequel la masse transportée, la dynamique du véhicule et la distance parcourue sont identifiés comme les principaux facteurs impactant la consommation énergétique. Ce résultat est étendu à l'IRP classique et les gains potentiels en termes d'énergie sont analysés. Un problème industriel de tournées avec gestion de stock est ensuite étudié et résolu, notamment à l'aide d'une méthode de génération de colonnes. Ce problème met en évidence les limitations du modèle IRP classique, ce qui nous a amené à définir un modèle d'IRP plus réaliste. Finalement, une méthode de décomposition basée sur la relaxation lagrangienne est développée pour la résolution de ce problème dans le but de minimiser la consommation énergétique / The thesis studies the Inventory Routing Problem (IRP) with explicit energy consideration. Under the Vendor Managed Inventory (VMI) model, the IRP is an integration of the inventory management and routing, where both inventory storage and transportation costs are taken into account. Under the new sustainability paradigm, green transport and logistics has become an emerging area of study, but few research focus on the ecological aspect of the classical IRP. Since the classical IRP concentrates solely on the economic benefits, it is worth studying under the energy perspective. The thesis gives an estimation of the energetic gain that a better supplying plan can provide. More specifically, this thesis integrates the energy consumption into the decision of the inventory replenishment and routing. It starts with a part supplying problem in car assembly lines, where the transported mass, the vehicle dynamics and the travelled distance are identified as main energy influencing factors. This result is extended to the classical IRP with energy objective to show the potential energy reduction that can be achieved. Then, an industrial challenge of IRP is presented and solved using a column generation approach. This problem put the limitations of the classical IRP model in evidence, which brings us to define a more realistic IRP model on a multigraph. Finally, a Lagrangian relaxation method is presented for solving this new model with the aim of energy minimization.
6

Inventory routing problem under dynamic, uncertain and green considerations / Problème de routage d'inventaire sous des considérations dynamiques, incertaines et écologiques

Rahimi, Mohammad 14 June 2017 (has links)
La gestion des stocks et la maîtrise de la distribution sont les deux activités importantes dans le management de la chaîne logistique. L’optimisation simultanée de ces deux activités est connue sous l’intitulé du problème de gestion de stock et de tournée de livraison (Inventory Routing Problem, IRP). L’IRP traditionnelle est confronté aux différents problèmes, causé principalement par le manque d'informations complètes et/ou temps réel, tels que les changements de la demande, l’embouteillage soudain causé par un accident, etc. Le partage et la mise à jour d'information logistique peut améliorer l'efficacité d’IRP. De plus, en raison de la spécificité de l'IRP dans la logistique urbaine, il est important de considérer d'autres critères comme les critères sociaux, environnementaux et le niveau de service qui pourraient être en conflictuel. L’objectif principal de cette thèse est de développer des modèles et des méthodes des IRP avec la prise en compte des incertitudes, du niveau de service et de l’impact environnemental, social en finalement les informations du temps réel (IRP dynamique). Dans cette thèse, trois modèles mathématiques sont proposés. Le premier modèle multi-objectif est pour identifier un compromis entre le niveau de service, les critères environnementaux et économiques. Pour gérer des paramètres incertains, on applique une approche floue. Dans le deuxième modèle, nous avons étudié l'impact des critères sociaux sur les IRPs en proposant un modèle mathématique bi-objectif. Une approche stochastique basée sur des scénarios est développée pour faire face à l'incertitude dans le modèle. Enfin, le troisième model concerne l'impact de l'utilisation d'informations du temps réel dans les IRP. Il est à noter que, selon la durée de vie du produit tant sur le plan financier que sur le plan écologique, les produits périssables sont considérés dans les trois modèles proposés. Les résultats montrent une gestion dynamique est beaucoup plus efficace que la statique. / The inventory management and transportation are two main activities of supply chain management. The joint optimization of these two activities is known as Inventory Routing Problem (IRP). The main objective of IRP is to determine the set of retailers to be delivered to in each period, the delivery sequence for each vehicle, and the quantities of goods delivered to each retailer for each period of a planning horizon. The traditional IRPs are faced different problems, caused mainly by lack of complete and/or timely information such as shifts in demand, traffic caused by a sudden vehicles accident, etc. sharing of updated and reliable logistics information can meaningful improve the efficiency of IRP. Moreover, because of the specificity of IRP in urban logistic, it is important to tack into account other criteria as social, environmental criteria and service level that could be in conflict. The main objective of this thesis is to (i) choose appropriate social, environmental and service level criteria, (ii) integrate them in mathematical models, and (iii) study the impact of these criteria on dynamic optimization of IRPs for perishable products under uncertain parameters. For this purpose, three mathematical models are proposed. The first model is multi-objective mathematical model in order to make a trade-off between service level, environmental criteria and economic. To decrease quantity of expired products, a nonlinear step function as holding cost function is integrated in the model. Moreover, to solve the problem a fuzzy possibilistic approach is applied to handle uncertain parameters. In the second model, a bi-objective mathematical model is proposed to study impact of social issues on the IRPs. In the proposed model, first objective function concerns economic criteria while the second one social issues. A scenario-based stochastic approach is developed to cope with uncertainty in the model. Finally, the third model concerns impact of using real-time information in efficiency of IRPs. It is noteworthy that, according significant role of perishable products in the both financially and ecology sides of IRPs, perishable products are considered in all three proposed model while even proposed models are appropriate to nonperishable ones as well. The results show that a dynamic management is more efficient than the static one.
7

Problema de estoque e roteirização com demanda estocástica e janelas de tempo: uma abordagem utilizando relaxação lagrangeana / Inventory and routing problem with stochastic demand and time windows: an approach using lagrangean relaxation

Alves, Pedro Yuri Araujo Lima 23 March 2018 (has links)
Fornecedores necessitam atender a demanda de seus clientes da forma mais adequada possível e mantendo a qualidade de seu serviço, porém em muitos casos essa demanda é desconhecida. Esse problema pode ser modelado como um problema de roteirização e estoque com demanda estocástica o qual inclui o controle de estoque, transporte do produto e decisões de agendamento da entrega. Existem vários trabalhos na literatura para resolver esse problema, porém nenhum deles lida com janela de tempo de atendimento, capacidade máxima de estoque tanto no cliente quanto no depósito e o nível de confiança de atendimento individualizado para cada cliente. O objetivo principal deste trabalho é propor um novo algoritmo baseado em otimização matemática para lidar com esse problema mais realista. Além disso, este trabalho tem como objetivo secundário melhorar o algoritmo de estado da arte baseado em otimização matemática, visando encontrar soluções com um menor tempo computacional e custo. Foram realizados experimentos com instâncias sintéticas com 15 até 50 clientes, as quais são geradas aleatoriamente, e com uma instância real, baseada na experiência profissional no mercado empresarial e em cenários reais de distribuição na cidade de São Paulo / Providers need to supply the demand of their clients as optimally as possible and maintaining the quality of their service, however in many cases this demand is unknown. This problem can be modeled as a inventory routing problem with stochastic demand, which includes inventory control, product transportation and delivery scheduling decisions. There are several papers in the literature to solve this problem, but none of them deals with service time window, maximum stock capacity for both the customer and the depot and individualized confidence level for each costumer. The main objective of this work is to propose a new algorithm based on mathematical optimization to deal with this more realistic problem. In addition, this work has as secondary objective to improve the state of the art algorithm based on mathematical optimization, aiming to find solutions with a lower computational time and cost. Experiments were performed with synthetic instances with 15 to 50 clients, which are randomly generated, and with a real instance, based on professional experience in the business market and in real distribution scenarios in the city of São Paulo
8

Problema de estoque e roteirização com demanda estocástica e janelas de tempo: uma abordagem utilizando relaxação lagrangeana / Inventory and routing problem with stochastic demand and time windows: an approach using lagrangean relaxation

Pedro Yuri Araujo Lima Alves 23 March 2018 (has links)
Fornecedores necessitam atender a demanda de seus clientes da forma mais adequada possível e mantendo a qualidade de seu serviço, porém em muitos casos essa demanda é desconhecida. Esse problema pode ser modelado como um problema de roteirização e estoque com demanda estocástica o qual inclui o controle de estoque, transporte do produto e decisões de agendamento da entrega. Existem vários trabalhos na literatura para resolver esse problema, porém nenhum deles lida com janela de tempo de atendimento, capacidade máxima de estoque tanto no cliente quanto no depósito e o nível de confiança de atendimento individualizado para cada cliente. O objetivo principal deste trabalho é propor um novo algoritmo baseado em otimização matemática para lidar com esse problema mais realista. Além disso, este trabalho tem como objetivo secundário melhorar o algoritmo de estado da arte baseado em otimização matemática, visando encontrar soluções com um menor tempo computacional e custo. Foram realizados experimentos com instâncias sintéticas com 15 até 50 clientes, as quais são geradas aleatoriamente, e com uma instância real, baseada na experiência profissional no mercado empresarial e em cenários reais de distribuição na cidade de São Paulo / Providers need to supply the demand of their clients as optimally as possible and maintaining the quality of their service, however in many cases this demand is unknown. This problem can be modeled as a inventory routing problem with stochastic demand, which includes inventory control, product transportation and delivery scheduling decisions. There are several papers in the literature to solve this problem, but none of them deals with service time window, maximum stock capacity for both the customer and the depot and individualized confidence level for each costumer. The main objective of this work is to propose a new algorithm based on mathematical optimization to deal with this more realistic problem. In addition, this work has as secondary objective to improve the state of the art algorithm based on mathematical optimization, aiming to find solutions with a lower computational time and cost. Experiments were performed with synthetic instances with 15 to 50 clients, which are randomly generated, and with a real instance, based on professional experience in the business market and in real distribution scenarios in the city of São Paulo
9

The Inventory Routing Problem With Deterministic Order-up-to Level Inventory Policies

Ozlem, Pinar 01 September 2005 (has links) (PDF)
This study is concerned with the inventory routing problem with deterministic, dynamic demand and order-up-to level inventory policy. The problem mainly arises in the supply chain management context. It incorporates simultaneous decision making on inventory management and vehicle routing with the purpose of gaining advantage from coordinated decisions. An integrated mathematical model that represents the features of the problem is presented. Due to the magnitude of the model, lagrangean relaxation solution procedures that identify upper bounds and lower bounds for the problem are developed. Satisfactory computational results are obtained with the solution procedures suggested on the test instances taken from the literature.
10

An Integrated Inventory Control And Vehicle Routing Problem

Solyali, Oguz 01 August 2005 (has links) (PDF)
In this study, we consider a logistics system, in which a single supplier delivers a product to multiple retailers over a finite time horizon. Supplier decides on the amount to order in each period and services retailers facing deterministic dynamic demand via a fleet of vehicles having limited capacity. Each retailer has specific minimum and maximum levels of inventory in an order-up-to level inventory policy setting. The problem is to simultaneously determine the quantity of product to order to the supplier, retailers to be visited, the quantity of product to be delivered to retailers and routes of vehicles in each period so as to minimize system-wide costs. We present a mathematical formulation for the problem, for which we develop several Lagrangian relaxation based solution procedures providing both upper and lower bounds to the problem. We implement these solution procedures on test instances and present the results. Computational study shows that our solution procedures generate good feasible solutions in reasonable time.

Page generated in 0.0976 seconds