• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 19
  • 14
  • 9
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 192
  • 192
  • 147
  • 122
  • 64
  • 35
  • 28
  • 24
  • 23
  • 21
  • 18
  • 17
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Aplicações da mobilidade iônica acoplada a espectrometria de massas como uma técnica analítica para o estudo de misturas complexas e separação de isômeros / Applications of ion mobility mass spectrometry as an analytical technique for the study of complex mixtures and isomers separations

Lima, Maíra Fasciotti Pinto, 1987- 21 August 2018 (has links)
Orientador: Marcos Nogueira Eberlin / Dissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-21T09:34:26Z (GMT). No. of bitstreams: 1 Lima_MairaFasciottiPinto_M.pdf: 3076235 bytes, checksum: bc4b63f365634b0b6e2e36e84cb49537 (MD5) Previous issue date: 2012 / Resumo: Esta dissertação apresenta uma breve introdução sobre a técnica de mobilidade iônica acoplada a espectrometria de massas (Capítulo 1) e a discussão de resultados aplicados a três subprojetos distintos. A técnica de TWIM-MS é uma técnica de separação na qual a separação em dos íons ocorre em uma cela de mobilidade iônica e é baseada em parâmetros como a seção de choque, carga, polarizabilidade, que é a capacidade de um íon ter sua densidade eletrônica distorcida pela interação com o gás de mobilidade, além de, obviamente, da estrutura tridimensional dos íons em fase gasosa. Sobre o Capitulo 2, objetivo do trabalho em petroleômica foi desenvolver e otimizar um método para a identificação de compostos polares presentes em amostras de petróleo e seus derivados como diesel e gasolina, que fosse capaz de diferenciar amostras distintas com relação essas composições, verificando quais respostas esta técnica pode fornecer nos estudos petroleômicos. Puderam ser identificadas as classes N, O2 e NO, com excelente resolução com a técnica de TWIM-MS. Entretanto, acredita-se que algumas outras classes ainda podem ser elucidadas. O CO2 se mostrou ser o melhor gás de mobilidade a ser utilizado para a resolução destas classes. A técnica de TWIM-MS também se mostrou adequada para a caracterização de gasolina e seus aditivos, entretanto mais amostras de diesel aditivado devem ser investigadas, para se descobrir porque os aditivos não puderam ser detectados através da técnica de ESI-TWIM-MS. Com relação ao estudo das estruturas em fase gasosa dos isômeros do Corrol (Capítulo 3), podese observar que o corrorin tem a estrutura tridimensional mais compacta entre todos os isômeros, enquanto NCC4 e corrol são os isômeros com maiores seções de choque e maiores drift times. Mesmo que o norrole tenha os maiores valores previstos de CCS, seu menor momento de dipolo resulta em interações mais fracas com o gás de mobilidade, e um drift time menor do que o esperado é obtido. Uma melhor resolução entre os isômeros de corrol foi alcançada usando CO2 como gás de mobilidade. Além disso, estes isômeros podem ser diferenciados monitorando íons característicos resultantes de suas fragmentações. Em conclusão, mostrou-se que a diferenciação por TWIM-MS destas estruturas pode ser conseguida através do monitoramento das diferenças entre as suas mobilidades relativas e também pelos espectros distintos de MS/MS obtidos para cada isômero. Já o Capítulo 4, visou avaliar a separação de 4 dissacarídeos isoméricos, em que se observou que a utilização de mais gases polarizáveis, tais como o CO2 na análise realizada com o Synapt G2 permite uma resolução quase na linha de base, o que não foi possível utilizando N2 como gás de mobilidade e nem na primeira geração do equipamento comercial Synapt, mesmo usando CO2 como gás de mobilidade / Abstract: This dissertation presents a brief introduction of the technique of Ion Mobility Mass Spectrometry (Chapter 1) and also the discussion of results applied to three distinct subprojects. The technique of Traveling Wave Ion Mobility Mass Spectrometry, is a separation technique in which the separation of the ions occurs in a mobility cell and is based on parameters such as collision cross-section, charge, polarizability (the capacity of an ion to have its electronic density distorted by interaction with the drift gas) and the three dimensional structure (shape) of ions in the gaseous phase. The main goal of the work performed in petroleomics (Chapter 2), was to develop and optimize a method for the identification of polar compounds present in oil samples and its derivatives, such as diesel and gasoline. The applied method was able to differentiate oil samples based on some polar components. Classes N, O2 and NO could be identified with proper resolution with TWIM-MS technique. However, it is believed that some other classes may be elucidated. CO2 was shown to be the best drift gas to be used for the separation of these classes. The technique of TWIM-MS also proved to be suitable for the characterization of gasoline and its additives, however, more samples of additive diesel must be investigated to find out why the additives could not be detected by the technique of ESI-TWIM-MS. During the study of tridimensional structures in the gaseous phase of five Corrole isomers (Chapter 3), it was observed that significant differences in shape and charge distributions for the protonated molecules lead to contrasting gas phase mobilities, most particularly for corroin, the most "confused¿ isomer. Accordingly, corroin was predicted by DFT and collisional cross section calculations to display the most compact tridimensional structure. NCC4 and corrole, on the other hand were found to be the most planar isomers. Better resolution between the corrole isomers was achieved using the more polarizable and massive CO2 as the drift gas and contrasting labilities towards CID, allowed the prompt differentiation of some isomers. Chapter 4 aimed to evaluate the separation of four isomeric disaccharides, where it was observed that the use of more polarizable gases, such as CO2, in the analysis performed with a Synapt G2 allows almost a baseline resolution for some isomeric pairs. This was not possible using N2 as drift gas with the Synapt G2, and not with the Synapt G1 using either N2 or CO2 / Mestrado / Quimica Analitica / Mestra em Química
92

Aplicações de mobilidade iônica acoplada a espectrometria de massas para separação e caracterização de isômeros / Ion mobility mass spectrometry applications to isomer separation and characterization

Lalli, Priscila Micaroni 09 November 2012 (has links)
Orientador: Marcos Nogueira Eberlin / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Química / Made available in DSpace on 2018-08-21T09:31:28Z (GMT). No. of bitstreams: 1 Lalli_PriscilaMicaroni_D.pdf: 7058193 bytes, checksum: bda550a8e643bbf3d082b69bfd94c04e (MD5) Previous issue date: 2012 / Resumo: A espectrometria de mobilidade iônica separa íons de diferentes tamanhos ou formatos (seção de choque) em fase gasosa de acordo com o tempo que levam para atravessar uma câmara preenchida com gás sob a influência de um campo elétrico fraco. O acoplamento dessa técnica à espectrometria de massas (IM-MS) resulta em uma ferramenta extremamente versátil, pois adiciona uma nova dimensão aos dados de MS com informação sobre a estrutura tridimensional das espécies. Assim, a IM-MS tem sido muito utilizada para o estudo conformacional de proteínas, separação de isômeros e análise de misturas complexas. Neste trabalho, investigamos novas aplicações da IMMS, focando na separação de isômeros. Na primeira parte, mostramos que a IM-MS é capaz de separar isômeros posicionais de piridil porfirina mono ou multi substituída com [Ru(bpy)2Cl]+. Os isômeros substituídos em meta mostraram ser mais compactos do que os substituídos em para. Entretanto, os isômeros di-substituídos em cis e trans possuem seção de choque muito parecida e não puderam ser separados. Na segunda parte, mostramos a separação e caracterização de protômeros (espécies protonadas ou desprotonadas em sítios distintos). Apesar da protonação (ou desprotonação) em sítios diferentes não alterar significativamente a seção de choque da espécie, ela pode resultar em íons com distribuição de cargas contrastantes, o que leva a formação de heterodímeros entre os íons e as moléculas do gás (CO2) com forças e tempo de vidas contrastantes, assim assegurando a resolução desses protômeros por IM-MS. Na terceira parte do trabalho, investigamos o potencial da técnica para o detalhamento composicional e estrutural de compostos presentes em petróleo através da análise de cortes de destilação de alto ponto de ebulição / Abstract: Ion mobility mass spectrometry separates ions with different size or shape (collision cross section) in the gas phase according to the time they take to travel through a cell filled with gas under the influence of a low electric field. The coupling of this technique to mass spectrometry (IM-MS) results in an extremely versatile tool, since it adds a new dimension to MS data with information about the species¿ threedimensional structure. Therefore, IM-MS has been extensively used for protein conformation studies, isomer separations and analysis of complex mixtures. In this work, we investigate new applications of IM-MS, focusing on isomer separation. In the first part, we show that IM-MS is able to separate positional isomers of pyridilporhyrins mono or multi-substituted wih [Ru(bpy)2Cl]+. The meta substituted isomers were shown to be more compact than the para substituted isomers. On the other hand, cis and trans di-substituted isomers display very similar collision cross sections and could not be separated. In the second part of this work, we show the separation and characterization of protomers (species protonated or deprotonated in different sites). Although protonation (or deprotonation) in different sites does not change significatly the species collision cross section, it may result in ions with contrasting charge distribution, which leads to the formation of heterodimers between ions and gas molecules (CO2) with contrasting strengths and life times, therefore allowing the resolution of these protomers by IM-MS. In the third part of this work, we investigate the potencial of this technique for the compositional and structural detailing of compounds present in crude oil by the analysis of high boiling point distillation cuts / Doutorado / Quimica Analitica / Doutora em Ciências
93

Control and calibration of atmospheric pressure chemical ionisation processes in ion mobility spectrometry using piezoelectric dispensers

Moll, Victor January 2011 (has links)
If the analyses of trace components in complex organic samples are to be optimised, then these compounds must be isolated either physically or chemically from surrounding matrices. Ion mobility spectrometry (IMS) is an analytical technique used worldwide for the detection of on-site trace compounds. The technique can be optimised to isolate the target species from complex matrices through both physical separation, based on the mobility of the analyte ions at ambient pressure, and chemical discrimination through preferential ionisation of the target. Optimisation of the latter is commonly achieved through doping the spectrometer with a selective reagent gas, termed a dopant. The chemical processes required to optimise the responses of target analytes are dependent on the identity and concentration of the dopant. As such, a variety of dopants have been successfully implemented in ion mobility spectrometers. The technology for the deliverance of dopants in IMS is commonly through permeation sources, which provide a stable chemical environment in the ion mobility cell. Althoughrelatively inexpensive and durable, these devices are difficult to change and generally deliver a single dopant concentration. As a result, only one type of chemistry is possible and the responses cannot be optimised for a range of analytical applications. Such limitationsbecome increasingly significant when IMS is hyphenated to a chromatograph where a range of different dopant conditions may be sought over the course of a chromatographic run. This thesis sought to overcome these limitations through the development and implementation of piezoelectric dispensers, interfaced directly to the transport gas regions of IMS cells. The study demonstrates for the first time the ability to use piezoelectric dispensing as a dopant introduction methodology in IMS for controlling and calibrating a range of dopant chemistries. 2-butanol, acetone, dichloromethane, 1-chlorohexane, 4-heptanone and 1-bromohexane were the candidate dopants chosen for the studies, covering a wide range of physical and chemical properties. The novel technology was used to dispense the target dopants into IMS cells at concentration ranges over three orders of magnitude. Dopant chemistries were achieved within three seconds from the point of dispensing, administered in drop-ondemand formats, and could be delivered either transiently or at steady-state concentrations. The concept was validated through integrated spectral dopant responses. In transient control, dynamic linear relationships of R2 = 0.991 - 0.998 were achieved between dispensed dopant mass and peak area. Under continuous operation, the RSD of the dopant level was < 18% for all dopants. Clear out times for dopant responses were in the order of 3-5 seconds, indicating negligible hysteresis effects. The study also proved the concept of controlling monomer and dimer ion chemistries from 2-butanol actuations when interfaced to a differential mobility spectrometer at mass fluxes between 21 - 1230 ng m-3 , and the simultaneous control of dopants in negative and positive ionisation modes to RSDs <10%. This thesis describes the techniques used to optimise the piezoelectric dispensing of the full dopant range, as well as the full design protocols required to interface to mobility spectrometers. The outcomes from these studies provide a realisation for piezoelectric dispensers as a future mainstream dopant introduction technique for the analysis of complex samples.
94

Improved Dynamic Headspace Sampling and Detection using Capillary Microextraction of Volatiles Coupled to Gas Chromatography Mass Spectrometry

Fan, Wen 14 November 2013 (has links)
Sampling and preconcentration techniques play a critical role in headspace analysis in analytical chemistry. My dissertation presents a novel sampling design, capillary microextraction of volatiles (CMV), that improves the preconcentration of volatiles and semivolatiles in a headspace with high throughput, near quantitative analysis, high recovery and unambiguous identification of compounds when coupled to mass spectrometry. The CMV devices use sol-gel polydimethylsiloxane (PDMS) coated microglass fibers as the sampling/preconcentration sorbent when these fibers are stacked into open-ended capillary tubes. The design allows for dynamic headspace sampling by connecting the device to a hand-held vacuum pump. The inexpensive device can be fitted into a thermal desorption probe for thermal desorption of the extracted volatile compounds into a gas chromatography-mass spectrometer (GC-MS). The performance of the CMV devices was compared with two other existing preconcentration techniques, solid phase microextraction (SPME) and planar solid phase microextraction (PSPME). Compared to SPME fibers, the CMV devices have an improved surface area and phase volume of 5000 times and 80 times, respectively. One (1) minute dynamic CMV air sampling resulted in similar performance as a 30 min static extraction using a SPME fiber. The PSPME devices have been fashioned to easily interface with ion mobility spectrometers (IMS) for explosives or drugs detection. The CMV devices are shown to offer dynamic sampling and can now be coupled to COTS GC-MS instruments. Several compound classes representing explosives have been analyzed with minimum breakthrough even after a 60 min. sampling time. The extracted volatile compounds were retained in the CMV devices when preserved in aluminum foils after sampling. Finally, the CMV sampling device were used for several different headspace profiling applications which involved sampling a shipping facility, six illicit drugs, seven military explosives and eighteen different bacteria strains. Successful detection of the target analytes at ng levels of the target signature volatile compounds in these applications suggests that the CMV devices can provide high throughput qualitative and quantitative analysis with high recovery and unambiguous identification of analytes.
95

Synthesis and Characterization of Quasi-Stable Toxic Oligomer Models of Amyloid β / 準安定なアミロイドβの毒性オリゴマーモデルの合成と機能解析

Irie, Yumi 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22505号 / 農博第2409号 / 新制||農||1077(附属図書館) / 学位論文||R2||N5285(農学部図書室) / 京都大学大学院農学研究科食品生物科学専攻 / (主査)教授 保川 清, 教授 宮川 恒, 教授 入江 一浩 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DGAM
96

Study on Suspect and Non-Target Screening of Per- and Polyfluoroalkyl Substances (PFASs) by Ion Mobility Mass Spectrometry / イオンモビリティ質量分析によるペルおよびポリフルオロアルキル物質(PFASs)の Suspect and Non-Target Screening に関する研究

Yukioka, Satoru 23 March 2020 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(地球環境学) / 甲第22617号 / 地環博第196号 / 新制||地環||38(附属図書館) / 京都大学大学院地球環境学舎地球環境学専攻 / (主査)教授 藤井 滋穂, 教授 梶井 克純, 准教授 田中 周平 / 学位規則第4条第1項該当 / Doctor of Global Environmental Studies / Kyoto University / DFAM
97

Characterization of Peptides, Proteins, and Protein Complexes using Infrared Multiphoton Dissociation Spectroscopy, Ion Mobility Spectrometry, and Surface-induced Dissociation Mass Spectrometry

Panczyk, Erin Michelle 01 October 2021 (has links)
No description available.
98

Analytical techniques for reaction monitoring, mechanistic investigations, and metal complex discovery

Thomas, Gilian T. 19 November 2021 (has links)
A variety of analytical techniques are showcased for their ability to provide insights into reaction mechanisms as well as active intermediate speciation. Pressurized Sample Infusion-Mass Spectrometry (PSI-ESI-MS), ion mobility-mass spectrometry (IMS-MS), and Nuclear Magnetic Resonance (NMR) spectroscopy are powerful analytical techniques capable of reaction monitoring. Contamination from vulcanized rubber was an issue with the PSI-ESI-MS technique as ions unrelated to the reaction were convoluting the mass spectrum. This was resolved by re-designing the PSI flask such that the septum was positioned above a condenser, preventing heat degradation of the septum and subsequent leaching of contam- inants into the reaction solution. The technique was then used to analyze the Buchwald-Hartwig amination reaction in real-time. The innovative use of Multiple Reaction Monitoring (MRM) scans facilitated observation of all catalytic intermediates, and elucidation of relative reaction rates for each step of the catalytic cycle. PSI-ESI-MS and NMR are complementary methods whereby catalytic intermediates are monitored via PSI-ESI-MS, and the rate of product formation is monitored via NMR spectroscopy. This combination of analytical methods was employed in the investigation of the Barluenga cross-coupling reaction between N-tosylhydrazones and aryl halides. A reaction screen revealed optimized homogeneous conditions, and the turnover limiting step was found to be off-cycle. IMS separates gaseous ions based on their size and shape immediately prior to MS analysis. Upon investigation of [PtCl3(C2H4)], and [PtCl3(CO)], it was found that residual [PtCl3] was forming [PtCl3(N2)] in the source of the instrument. Ion mobility was able to separate these isobaric ions, and DFT calculations and collision-induced dissociation experiments confirmed the existence of the gaseous [PtCl3(N2)] complex. NMR spectroscopy may also be employed as a strong reaction monitoring technique. The mechanism of C–H silylation by trimethyl(trifluoromethyl)silane and tetrabutylammonium difluorotriphenylsilicate was investigated using 19F-NMR. All intermediates and reaction byproducts were quantitatively observed, and the reaction conditions were optimized. A stopped-flow NMR system was used to gather data points in the first 0.2 seconds of the reaction. / Graduate
99

X-Ray Absorption Spectroscopy in the Study of Ion Mobility

Chadwick, Alan V. 11 September 2018 (has links)
No description available.
100

Integrated approaches for comprehensive de novo sequencing of N-linked, O-linked and free oligosaccharides

Tang, Yang 06 October 2020 (has links)
This dissertation focuses on the development of analytical methods based on Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and their applications for separation and structural characterization of oligosaccharides. Porous graphitized carbon liquid chromatography (PGC-LC), gated-trapped ion mobility spectrometry (Gated-TIMS), and electronic excitation dissociation tandem mass spectrometry (EED MS/MS) are three essential techniques employed here. First, the EED method was optimized to generate more informative glycan tandem mass spectra for accurate structural analysis. Glycans were reduced and permethylated or labeled with a reducing-end fixed charge to increase sensitivity, avoid gas-phase structural rearrangement, and facilitate spectral interpretation. EED of glycans produced nearly complete series of Z-, Y- and 1,5X-ions, that appear in the spectra as triplets with characteristic spacing, thus facilitating accurate determination of the glycan topology. Additional radical-driven dissociation pathways were identified, from which different types of linkage-diagnostic ions (cross-ring, secondary, or internal fragments) were generated. The results demonstrated that linkage analysis can be accomplished by utilizing one or a combination of several linkage-diagnostic fragments. EED MS/MS was then implemented, in conjunction with PGC-LC or Gated-TIMS, for on-line separation and characterization of complex mixtures of glycans. These two methods were successfully applied for high-throughput and detailed structural analysis of N-glycans released from human serum, O-glycans released from bovine submaxillary mucin and free oligosaccharides. The performance of these methods was tested and improved through analysis of different types of glycans from a variety of biological sources. Finally, in collaboration with bioinformaticians, a spectral interpretation algorithm, GlycoDeNovo, has been developed for automated and de novo glycan topology reconstruction from their tandem mass spectra. A large number of EED tandem spectra of glycan standards generated in house were used as the training dataset to establish appropriate IonClassifiers for candidate ranking. GlycoDeNovo is capable of identifying correct topologies from MS/MS spectra of glycans in different derivatized forms. Several aspects of this collaborative project were covered in this thesis, including glycan derivatization, data acquisition and manual spectral interpretation to guide the development and evaluate the performance of the automated approach. In this thesis research, integrated approaches utilizing PGC-LC–EED-MS/MS and Gated-TIMS–EED-MS/MS, and the appropriate bioinformatics software, have been established for structural analysis of glycan mixtures. They hold great potential for comprehensive, automated, and de novo glycome characterization.

Page generated in 0.0517 seconds