Spelling suggestions: "subject:"oon emobility"" "subject:"oon dmobility""
131 |
Fatty Acid Biomarker Detection for Breast Cancer Using Differential Mobility Spectrometry with Non-Radioactive Ion SourceAlberti, James Joseph 21 March 2017 (has links)
Differential Mobility Spectrometry (DMS) using a non-radioactive ion source (NRIS) is investigated as a possible medical diagnostic instrument for near real-time detection of breast cancer biomarkers. In previous clinical studies, concentrations of Linoleic, Palmitic and Stearic fatty acids have been observed at different levels in women with carcinoma breast cancer versus women with benign tumors or healthy women showing no signs of breast cancer. Present diagnostic methods require a biopsy of the suspect tissue and a microscopic lab analysis performed to determine its disease state. This process can take hours or days before the patient and doctor are informed of the results. Controlled volumetric samples of each fatty acid listed above were introduced into a DMS instrument, using a NRIS, to determine detectability of each acid. The results provide proof-of-concept that Linoleic, Palmitic and Stearic fatty acids can be uniquely identified by varying the sample temperature and scanning the ionized fatty acid molecules in both the negative and positive ion mode of the DMS instrument. Detection response times range from 2 to 6 seconds for initial detection up to 35 seconds for peak detection. The Limit of Detection for the DMS instrument is estimated in the low parts per billion.
|
132 |
The Utilization of Chiral Ion Mobility Spectrometry for the Detection of Enantiomeric Mixtures and Thermally Labile CompoundsHolness, Howard K. 06 November 2013 (has links)
This dissertation utilized electrospray ion mobility mass spectrometry (ESI-IMS-MS) to develop methods necessary for the separation of chiral compounds of forensic interest. The compounds separated included ephedrines and pseudoephedrines, that occur as impurities in confiscated amphetamine type substances (ATS) in an effort to determine the origin of these substances. The ESI-IMS-MS technique proved to be faster and more cost effective than traditional chromatographic methods currently used to conduct chiral separations such as gas and liquid chromatography. Both mass spectrometric and computational analysis revealed the separation mechanism of these chiral interactions allowing for further development to separate other chiral compounds by IMS. Successful separation of chiral compounds was achieved utilizing a variety of modifiers injected into the IMS drift tube. It was found that the modifiers themselves did not need to be chiral in nature and that achiral modifiers were sufficient in performing the required separations. The ESI-IMS-MS technique was also used to detect thermally labile compounds which are commonly found in explosive substances. The methods developed provided mass spectrometric identification of the type of ionic species being detected from explosive analytes as well as the appropriate solvent that enhances detection of these analytes in either the negative or positive ion mode. An application of the developed technique was applied to the analysis of a variety of low explosive smokeless powder samples. It was found that the developed ESI-IMS-MS technique not only detected the components of the smokeless powders, but also provided data that allowed the classification of the analyzed smokeless powders by manufacturer or make.
|
133 |
Studying the Dissociation Behaviour of Ionized Non-covalent Complexes with a Cohesive Energetic and Structure ApproachBeneteau Renaud, Justin January 2014 (has links)
This research explores the links between the structure and dissociation energetics of ionized non-covalent complexes.
In chapter 3, a large series of similar non-covalent complexes were probed using electrospray tandem mass spectrometry (ESI-MS/MS) and RRKM modelling in order to identify any trends in the dissociation energetics based on charge state, overall size of the complex, or size of the substrate. Ion mobility spectrometry (IMS) in conjunction with molecular mechanics/molecular dynamics (MM/MD) was used to study the conformations of these non-covalent complexes in order to determine if the same trends identified in the energetics could be corroborated independently based on structure. The system of study consisted of varying lengths of the synthetic polymer, polymethylmethacrylate (PMMA) complexed with singly or doubly protonated diaminoalkanes (DAA) of varying length. The critical energies of dissociation (E0) increased as the length of the polymer increased and was not significantly affected by the length of the singly protonated DAA substrates. The E0 of dissociation of doubly protonated complexes was strongly influenced by the length of the DAA; longer DAA substrates had greater separation of charge which decreased coulombic repulsion within the complex resulting in higher E0 values. MM/MD low energy structures of all complexes were validated with experimental IMS measurements and showed that the arrangement between the polymer and DAA were similar for different singly protonated DAAs. When doubly protonated, the length of DAA was the most important factor in determining the overall structure of the complex.
In chapter 4, a direct link is shown between the observed E0 dissociation energies and the molecular conformations for eight different peptide–saccharide complexes containing either a tri-saccharide (d-(+)-raffinose and d-panose) or tetra-saccharide (stachyose and maltotetraose) with a small peptide (FLEEL and FLEEV). The E0 values were highly related to the overall conformation adopted by the non-covalent complex in the gas phase. Complexes containing peptide FLEE(L/V) with the tri-saccharide raffinose or panose had similar E0 of dissociation (∼0.64 eV) and similar conformations based on MM/MD simulations and IMS drift times. Conversely, for complexes containing a FLEE(L/V) peptide with one of the isomeric tetra-saccharides; stachyose had a E0 ∼0.08 eV greater than maltotetraose. This difference of intermolecular interaction was also reflected by the IMS drift times; maltotetraose in complex with FLEEV or FLEEL had a 5.9% and 2.3% faster IMS drift time than stachyose respectively. This indicated that the molecular arrangement between maltotetraose and the peptides was more compact than the stachyose-peptide complexes.
In chapter 5, RRKM modelling of breakdown diagrams is not possible when the reactant ion signal is overlapped by other isobaric species. Trimeric, non-covalent complexes that contained two PMMA molecules and a doubly protonated DAA, [(PMMAa)(DAA+2H)(PMMAb)]+2, have m/z signals that contain multiple different complexes having the same total number of polymer repeat units but differ in the length of the each polymer. In this situation, the applicability of using the simple kinetic method to gain insight into relative binding energies was explored. The major factors which determined the suitability of the kinetic method for this system were identified as the structural arrangement of the reactant ion complex, possible reverse activation barriers, and the evaluations of Δ(ΔS‡). MM/MD simulations coupled with IMS suggests that within the reactant ion, the DAA is almost equally shared between two PMMA oligomers and that the two PMMA oligomers interact predominately with the DAA, and not with each other. MS/MS of the trimeric reactant complexes proceeds by neutral loss of one polymer and is suggested to proceed with little or no reverse activation barrier based on the low coulombic repulsion factors. The IMS drift times of [(PMMAa)(DAA+2H)]+2 complexes that were generated directly by ESI-MS or by dissociation of a trimeric, [(PMMAa)(DAA+2H)(PMMAb)]+2 complex were found to be identical. This provides some evidence that Δ(ΔS‡) ≈ Δ(ΔS) and using a statistical mechanics approach, Δ(ΔS) ≈ 0. The effective temperature (Teff) variable in the kinetic method expression was found to decrease as a function of the size of the trimeric complex, suggesting that the population distribution of the dissociating ensemble of complexes narrows as size increases. Overall, when RRKM fitting is not possible, the simple kinetic method could provide relative energetic ranking of competing dissociations reactions however the Teff term contributed to the greatest uncertainty in obtaining absolute quantities.
Fitting MS/MS breakdown diagrams of non-covalent complexes with multiple dissociation channels is difficult due to the number of total fitting variables. Building from the simple kinetic method, chapter 6 shows that the relationship between the natural logarithm of competing fragment ions and reciprocal collision energy yields a branching relationship that allows for the sign of Δ(ΔS‡) and Δ(E0) between the channels to be obtained. Furthermore, the relationships between the fitting variables of RRKM modelling are empirically related to the theoretical branching relationship characteristics. This allowed for the fitting variables of all dissociation channels to be expressed as a function of a single channel so that the theoretical branching relationship matches the experimental branching relationship. Using this method, RRKM fitting of a MS/MS breakdown diagram for APCI ionized anthracene determined the E0 and ∆S‡ was 4.69 ± 0.29 eV and -3 ± 17 J K-1; 4.21 ±0.29 eV and -19 ±15 J K-1; and 4.81 ± 0.29 eV and 36 ±22 J K-1 for hydrogen loss, acetylene loss and diacetylene loss respectively. With one exception, these values are within experimental error of the iPEPICO derived energetic values.
In chapter 7, MS/MS of ammoniated triacylglycerides at multiple collision energies and computational analysis are used to explain the cause of uneven dissociation rates of the FAs from different positions on the glycerol backbone. The loss of sn-1 and sn-3 FAs are found to have lower activation energies than the loss of the sn-2 position FA, however the loss of the FA from the sn-2 position is more entropically favourable. Theoretical MS/MS breakdown curves were fit to experimental values using RRKM theory to estimate the E0 of dissociation of FAs from the three glycerol positions. The E0 values for cleavage from the sn-1 and sn-3 positions were found to be approximately 1.52 eV, while that for the sn-2 position was highly dependent on the identity of the FA at that position. Computational structures and energy analysis suggest that an important step in the dissociation of [TAG+NH4]+ is the loss of ammonia. In a model system, glyceryl tributyrate, the loss of NH3 produced two distinct [TAG+H]+ product structures sitting 148 kJ and 160 kJ in energy above the ammoniated structure. The [TAG+H]+ structure that leads to the loss of the sn-1(3) is 12 kJ lower than the [TAG+H]+ structure that leads to the loss of the sn-2 FA. From this, the loss of a neutral FA that follows sits only an additional 35–48 kJ above the [TAG+H]+ structures.
In Chapter 8, singly deprotonated β-cyclodextrin monomers, [(β-CD-H+]-1, and doubly deprotonated dimers, [(β-CD)2-2H+]-2, are both present following ESI-MS and have the same monoisotopic m/z. Similar to chapter 5, this makes it difficult to generate an MS/MS breakdown diagrams that can be modelled with RRKM theory. IMS was used to mobility separate [(β-CD-H+]-1 and [(β-CD)2-2H+]-2 and was followed by MS/MS of the [(β-CycD)2-2H+]-2 ion. A second problem when generating a MS/MS breakdown diagram of non-covalent complexes that contain identical components is that the fragment ions could have an identical monoisotopic m/z as the reactant ion. MS/MS of [(β-CycD)2-2H+]-2 results in two [(β-CD-H+]-1 fragments. To overcome this, breakdown diagrams were then generated by monitoring the changes in the isotopic profile. The RRKM derived E0 for dissociation of [(β-CycD)2-H+]-1 and [(β-CycD)2-2H+]-2 were 1.85 ± 0.11eV and 1.79 ± 0.09eV, respectively, corresponding to a slight decrease in complex stability due to increased charge-charge repulsion in the dianion.
|
134 |
Analyse par spectrométrie de masse des tubulines et de l'hormone de croissance / Analysis of tubulins and growth hormone by mass spectrometryDadi, Hala 20 December 2018 (has links)
Les tubulines sont des protéines impliquées dans des processus biologiques essentiels à la vie cellulaire. Elles sont polymodifiées en leurs extrémités C-terminales. Différentes techniques ont été utilisées pour caractériser les polymodifications des tubulines. Mais certaines difficultés persistent concernant l’indentification fine de plusieurs structures. Le couplage de spectrométrie de masse à la mobilité ionique représente une avancée technique plus pertinente pour la séparation d’isomères de structures. En effet, la mobilité ionique peut séparer des ions de même rapport m/z en fonction de leur conformation. Dans la première partie de cette thèse, une analyse par mobilité ionique et spectrométrie de masse en tandem a permis la séparation de deux peptides de synthèse mimant des peptides C-terminaux de tubuline α diglycylés. L’hormone de croissance (GH) est une hormone anabolique et un agent dopant pour les sportifs. La disponibilité de la hGH recombinante (rhGH) dans le marché noir a augmenté la fréquence du dopage à la GH. Les tests antidopage approuvés par l’agence mondiale d’antidopage sont confrontés à certaines limites. Dans la deuxième partie de ma thèse, des analyses comparatives de la hGH naturelle et la rhGH ont été réalisées par spectrométrie de masse couplée à la chromatographie liquide en phase inverse pour trouver une différence chimique entre la hGH naturelle et la rhGH. La hGH naturelle extraite des glandes pituitaires de cadavres est glycosylée alors que la rhGH n’est pas modifiée. De manière intéressante, cette glycosylation se trouve sur un peptide protéospécifique de la hGH. Ce travail ouvre une piste pour le développement d’une nouvelle méthodologie pour les tests anti-dopage à la GH. / The tubulins are proteins involved in cellular processes that are essential for cell life. The tubulins are polymodified at their C-terminal extremities. Different techniques have been used to characterize the polymodifications of tubulins. However, some challenges remain in the fine identification of some structures. In fact, mass spectrometry ion mobility can separate ions of the same m/z ratio depending on their conformations. In the first part of this thesis, an ion mobility mass spectrometry analysis allowed the separation of two synthetic peptides that mimic the structure of C-terminal peptides of biglycylated α-tubulins. In order to extrapolate this type of experiment to the C-terminal peptides purified from biological tubulins, we employed an analytical process to analyze these peptides from purified brain tubulins. Growth hormone (GH) is an anabolic hormone and a doping agent used by athletes. The availability of rhGH in the black-market has continuously increased because of doping in sports. The natural and the biosynthetic hGH have identical peptidic sequences. So far, the valid hGH anti-doping tests by the world antidoping agency are based on immunological recognition. However, Immunoassays have their own limitations. Therefore, the next generation analysis of GH has to be more specific and accurate. In the second part of this thesis, mass spectrometry coupled to reversed phase chromatography was used to find chemical differences between the pituitary hGH and the rhGH. The pituitary extracted hGH is glycosylated whereas the biotech product is sugar free. The present work represents an opening towards a novel methodology for a novel hGH anti-doping test.
|
135 |
Vyhodnocení vlastností vzdušných iontů vytvářených různými zdroji iontů / Air ionts measurementLazorka, Martin January 2013 (has links)
The work is focused on the composition of the atmosphere, the processes that take place in it, especially on the formation of atmospheric ions and the energy that must be supplied to ionize the gas. The work examines the influence of aerosol particles on the concentration of ions and also how air ions influence the human health. Last but not least, there is mentioned a comparison of the possibilities of artificial air ionization for interiors.
|
136 |
DEVELOPMENTS IN AMBIENT MASS SPECTROMETRY IMAGING FOR IN-DEPTH SPATIALLY RESOLVED ANALYSIS OF COMPLEX BIOLOGICAL TISSUESDaisy Melina Unsihuay (12896366) 20 June 2022 (has links)
<p> </p>
<p>Ambient Mass Spectrometry Imaging (MSI) is a powerful analytical tool in biomedical research that enables simultaneous label-free spatial mapping of hundreds of molecules in biological samples under native conditions. Nanospray desorption electrospray ionization (nano-DESI) is an emergent ambient MSI technique developed in 2010 that uses localized liquid extraction of molecules directly from surfaces. Like other liquid-extraction based techniques, nano-DESI relies on gentle removal of molecules from surfaces and soft ionization. High sensitivity and spatial resolution, versatility of the solvent composition, which may be used to tailor the extraction and ionization of selected molecules, quantification capabilities at the single-pixel level as well as compensation for matrix effects by adding a known standard to the solvent, and online derivatization are key features of nano-DESI MSI that position it as a unique analytical tool for studying biological systems. </p>
<p>Despite the advantages that nano-DESI provides, there are still challenges associated with the structural characterization, extraction, and detection of certain molecular classes. Therefore, my dissertation research has focused on addressing these analytical challenges by developing innovative approaches that substantially enhance the performance of the nano-DESI technique in the study of complex biological systems. </p>
<p>In this thesis, a systematic study of the solvent composition is carried out to aid in the detection of neutral lipids such as triglycerides thereby expanding the molecular coverage of nano-DESI experiments. Taking advantage of the versatility of the solvent composition, I developed an approach for the online derivatization of unsaturated lipids into lipid hydroperoxides using the reaction of singlet oxygen with C=C bonds. This method further expands the specificity of nano-DESI MSI by enabling the detection and imaging of positional lipid isomers. To aid in the analysis of complex mixtures and provide additional structural information in the form of collision cross sections, coupling of nano-DESI with a drift-tube ion mobility spectrometry is also reported along with examples of the powerful capabilities of this platform. Lastly, nano-DESI MSI is used to address the complexity in the analysis of individual skeletal muscle fibers. This collaborative project involves the development of a robust image registration approach of immunofluorescence imaging and high-spatial resolution nano-DESI MSI to obtain accurate chemical maps specific to each fiber type. The developments described in this thesis are key to understanding the dynamic metabolic processes on a molecular level with an unprecedented specificity and sensitivity.</p>
<p> </p>
|
137 |
DIFFUSION CONSTRICTION OF IONS USING VARYING FIELDS FOR ENHANCED SEPARATION, TRANSMISSION AND SIZE RANGE IN ION MOBILITY SYSTEMSXi Chen (12456690) 26 April 2022 (has links)
<p> Drift tubes (DT) are prominent tools used in Ion Mobility Spectrometry (IMS) to separate ions in the gas phase due to their difference in mobility. While prominently used for small ions (< 10nm), their use for larger particles (up to 100nm) is limited and can only be attempted at atmospheric pressure due to diffusion. A system that specializes in high sensitivity larger particles (up to 1000nm) is the Differential Mobility Analyzer (DMA), but lacks in resolution (< 10 for particles 30-1000nm). The idea behind this work is to be able to design a new IMS system based on similar<br>
principles to the DT but that allows high resolution and sensitivity for a large range of sizes if possible. The primary idea revolves around the principle of non-constant linear fields to try and control the width of the ion packet as it travels through the system. The first attempt was an Inverted Drift Tube (IDT) which lacked sufficient<br>
sensitivity. This was followed by the development of the Varying Field Drift Tube (VFDT) which was the first of such systems to perform better than a regular DT, but only marginally. Finally, the last version of the system included a secondary pulse and labeled High Voltage Pulse - Varying Field Drift Tube (HVP-VFDT), which solved<br>
some of the issues of the VFDT and was able to achieve resolving powers of 250, 3-5 times higher than regular DT.</p>
<p><br>
In the IDT system, a gas flow is used to drive the packet of ions through the drift region while a linearly increasing electric field which is in the opposite direction of the flow is used to slow down the ions and separate them. In this regime it is the largest ions that arrive at the detector first, hence the name Inverted Drift Tube.This technique would allow larger ions and particles to be detected. At the same time, the linear field can be shown to have diffusion constriction (auto-correction) properties, where the broad distributions may be narrowed in the axial direction. However, the gas flow is difficult to control well and the parabolic velocity profile of the gas flow in the tube is a unfavorable factor for the system. </p>
<p><br></p>
<p> To avoid the issue of the parabolic velocity but still take into account the VFDT takes the advantage of the diffusion auto-correction, the gas flow is suppressed and a linearly decreasing field is used to drive the ions. By solving the Nernst-Planck equation, we show that the VFDT has a spatial resolving power that is much higher than that of the regular DT. A DT was built and tested using a mixture of tetraalkylammonium salts. The transformation from the raw variable arrival time distribution to collision cross section or mobility diameter is derived and the linear relationship<br>
makes it simple for calibration and transformation. A resolving power of over 90 is achieved experimentally although higher resolving powers were expected theory. <br>
<br>
It turns out that the difference between theory and experiments had to do with the fact that in the VFDT, the spatial and time resolving powers are different.This<br>
is due to the low drift velocity at the end of the drift tube. To increase this velocity, a high voltage pulse is applied at a certain time depending on the ion/s of interest with a new system, HVP-VFDT. The system was tested numerically and experimentally where several parameters where tested resulting in a higher resolving powers when compared with DT and VFDT systems.The simulation results showed that the transmission efficiency and resolving power can be controlled by raising or lowering the field. Overall, the experimental setup tested reached resolving powers of 250 with moderate gate pulses. The HVP-VFDT system also shows that the distribution may be narrowed over the initial one, something impossible with a real drift tube and<br>
opens a myriad of possibilities, including resolving powers of several thousands under low pressure and RF fields. <br>
<br>
The next step will be to couple the system to a Mass Spectrometer which is expected to be completed in the near future. To understand how a DT works with RF fields and low pressure, a collaboration was done with David Clemmer’s lab and his 4 meter drift tube that can achieve resolutions of 150 in Helium at 4torr. Here, we tested a set of polymers and compared the results to those acquired in Nitrogen with a DMA. The shape and structure of the polymers in the gas phase was studied showing<br>
self-similar assemblies that corresponds to a globule with an appendix sticking out. <br>
<br>
</p>
|
138 |
Characterization of RNA and RNA-Protein Complexes by Native Mass SpectrometrySarni, Samantha H. January 2020 (has links)
No description available.
|
139 |
Structural Characterization and Quantitative Analysis by Interfacing Liquid Chromatography and/or Ion Mobility Separation with Multi-Dimensional Mass SpectrometrySolak, Nilüfer 21 May 2010 (has links)
No description available.
|
140 |
Multidimensional Mass Spectrometry Analysis and Imaging of Macromolecules and Material SurfacesWilliams-Pavlantos, Kayla 27 April 2023 (has links)
No description available.
|
Page generated in 0.0674 seconds