• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 154
  • 119
  • 52
  • 10
  • 10
  • 8
  • 5
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 411
  • 411
  • 108
  • 107
  • 70
  • 70
  • 66
  • 41
  • 38
  • 32
  • 31
  • 30
  • 29
  • 28
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Structures and dynamics of optically confined matter

Dear, Richard D. January 2013 (has links)
This thesis explores the structures and dynamics of optically confined matter, ranging from single particle traps to complex optically bound colloidal arrays, investigating and quantifying the behaviour of each system. It begins with an introduction to optical manipulation techniques and a discussion of the development of the single beam gradient force trap, more commonly referred to as optical tweezers. Following this, the building of a single beam optical trap will be presented alongside a discussion of some of the key components in such a setup, before it is calibrated, allowing a demonstration of some of the techniques which are utilised later in the thesis. The optical trapping of aerosol droplets is an area of key importance in atmospheric chemistry, as optical tweezers provide a valuable and versatile tool for droplet manipulation and characterisation. Trapping single aerosol droplets is facilitated by using annular rather than conventional Gaussian beams, as will be demonstrated, with significant advantages in increasing the size range of trappable droplets, and improving their axial localisation. These improvements will be demonstrated experimentally with an in-depth comparison of Gaussian and annular beam trapping. These enhancements are also verified theoretically using a model developed by Burnham and McGloin, showing excellent agreement with experimental results. Ionic liquids, defined as organic salts with melting points below room temperature, are another area of great contemporary interest. They are highly tunable and so have been referred to as "designer solvents", and also have important applications as "green" solvents in organic chemistry. Trapping particles within these novel liquids allows a micro-rheological investigation of their properties to be conducted. This is demonstrated by determining the temperature dependent viscosity changes of these media, showing excellent agreement with previous macro-rheological studies. In addition, hydrodynamic effects such as Faxen's correction to viscous drag in proximity to a surface, and hydrodynamic coupling between pairs of colloids trapped in ionic liquids are demonstrated. Following these single and dual particle studies, this thesis continues with an investigation of the structures and dynamics of optically bound matter formed of larger numbers of particles. The behaviour of these optically bound structures is particularly sensitive to the number of particles involved, and so a counter-propagating evanescent field trap in conjunction with an inverted optical tweezers setup is utilised in order to controllably assemble these structures and study the factors affecting their behaviour. Initially one-dimensional chains of optically bound 3.5 um diameter silica particles are studied, allowing an implementation of Generalized Lorentz-Mie Theory (GLMT) to be developed through collaboration with Dr. Jonathan Taylor of The University of Glasgow. Experimental and theoretical insights allow further understanding of the processes involved in the formation of these structures. Having studied the behaviour of 3.5 um diameter silica particles in a counter-propagating evanescent wave trap, the effects of changing particle size and refractive index are presented by using smaller silica and melamine particles. These results are explained in terms of the increased importance of interference fringes in determining the arrangement of the optically bound structures of smaller particles, and due to the increased interaction of the melamine particles with the evanescent field as a result of the larger refractive index contrast between them and the trapping medium. The thesis then concludes with a study of the dynamics of the previously presented optically bound chains. Initially the diffusion of single particles in the evanescent field is compared to their freely-diffusing behaviour, quantifying the confining effect of the field. The addition of particles to the field then allows the diffusive behaviour to be studied as a function of particle number, and understood in terms of on-axis confinement by adjacent particles. The tilting of these optically bound chains relative to the inter-beam axis is also explored as a function of particle number, as is the rigidity of these chains. Finally a more complex, dynamic effect is presented, dubbed "Newton's Cradle", in which particles are ejected from the ends of the chains before returning and repeating this process. This behaviour is understood by utilising the previously developed GLMT simulations.
72

Novel chiral phosphonium ionic liquids as solvents and catalysts for cycloadditions : investigation of the Diels-Alder reaction of a series of dienes and dienophiles in novel chiral phosphonium ionic liquids

Yu, Jianguo January 2009 (has links)
The use of ionic liquids (ILs) as both reagents and solvents is widely recognised. ILs offer a number of advantages compared to regular molecular solvents. These advantages include: chemical and thermal stability, no measurable vapour pressure, no or lower toxicity, non-flammability, catalytic ability, high polarity and they can be recycled. There are a number of research groups investigating the various applications of this reaction medium and most studies have focused on solvents derived from the imidazolium cation. The use of the imidazolium-based ILs in the Diels-Alder reaction has been studied in detail and higher yields compared to conventional methods have been reported. The IL affects the rate and interesting selectivities have been observed. However, not much attention has been paid to the scope and limitations of phosphonium ILs (PILs). Therefore the focus of this thesis is the synthesis and application of novel chiral PILs as environmentally benign, task-specific solvents for the Diels-Alder reaction. In addition, this research seeks alternative ways to eliminate the use of toxic heavy metal catalysts and to exploit methodologies which reduce the energy consumption of the Diels-Alder reaction. A series of CILs were synthesised from the chiral pool and they were characterised by thermogravimetric analysis, differential scanning calorimetry and spectroscopy. They were then investigated as solvents and catalysts in the Diels-Alder reactions of a series of dienes (cyclopentadiene, isoprene, 2,3-dimethylbuta-1,3-diene, furan, pyrrole, N-methyl pyrrole) and dienophiles (methyl acrylate, methyl vinyl ketone, acrylonitrile, dimethyl maleate, acrolein, dimethylacetylene dicarboxylate, maleic anhydride and maleimide). Investigation of the effect of PILs in the presence of three heterogeneous catalysts Al2O3, SiO2 and K-10 montmorillonite were studied. Ultrasound and microwave-assisted Diels-Alder reactions in the PILs, in the absence and presence of the catalysts, were also studied. The reactions of these prototypical substrates illustrated that the solvents are indeed task-specific.
73

The electrochemistry of hydrogen sulfide in room temperature ionic liquids

O'Mahony, Aoife Maria January 2010 (has links)
The work presented in this thesis involves the use of room temperature ionic liquids (RTILs) as solvents in electrochemical experiments for the detection of hydrogen sulfide. The fundamentals of electrochemistry are presented, followed by an overview of RTILs in terms of their properties, applications and their behaviour as electrochemical solvents compared to conventional solvents. This is followed by an outline of electrochemical detection of various gases in aqueous, organic and ionic solvents. The results of 8 original studies are then presented as follows: <ul><li>The study of the electrochemical window of twelve different room temperature ionic liquids using cyclic voltammetry vs. an internal redox couple for two defined current densities, and observation of water uptake of different ionic liquids under different conditions using a Karl Fischer titrator.</li><li>The reduction of hydrogen sulfide in various room temperature ionic liquids at a platinum electrode, measured using cyclic voltammetry. Also, solubilities and diffusion coefficients of hydrogen sulfide determined by potential step chronoamperometry.</li><li>The oxidation of hydrogen sulfide in various room temperature ionic liquids at a platinum electrode measured using cyclic voltammetry and the simulation of the electrochemical signal using experimentally defined parameters.</li><li>The disproportionation of N,N-dimethyl-p-phenylenediamine (DMPD) in room temperature ionic liquids using cyclic voltammetry, and computational simulation of the voltammetry of DMPD using experimentally defined parameters to elucidate kinetic and thermodynamic data. DMPD was examined as a mediating species for hydrogen sulfide detection.</li><li>The oxidation of catechol and dopamine in ionic liquids using cyclic voltammetry and observing adsorption effects when varying solvent anion. Catechol was examined as a mediating species for hydrogen sulfide detection.</li><li>The electrochemical oxidation of NADH in ionic liquids using cyclic voltammetry and observing the ”switching on or off” of the electrochemical signal when varying the solvent anion. NADH was examined as a mediating species for hydrogen sulfide detection.</li><li>The mediated detection of hydrogen sulfide utilizing various mediating species in several ionic liquids using cyclic voltammetry, and the elucidation of the mediating mechanism of hydrogen sulfide in 3,5-tert-butyl-o-benzoquinone.</li><li>The observation of the diffusion of ferrocene in an ionic liquid at ring-recessed disc microelectrode arrays in generator-collector mode using potential step chronoamperometry.</li><ul> The results presented show that room temperature ionic liquids perform well as solvents in gas sensors, and could be viable alternatives to traditional organic solvents. Ionic liquids have also been observed to be tuneable in their reactions with analytes depending on the constituent cations and, in particular, anions. This tuneability is advantageous as specific combinations of cations and anions can be chosen to suit particular experiments.
74

The electrodeposition of tin coatings from deep eutectic solvents and their subsequent whisker growth

Stuttle, Christopher January 2014 (has links)
Tin electrodeposits produced from aqueous electrolytes are frequently used within the electronics industry due to their high solderability and corrosion protection. One limitation to using these deposits is their spontaneous formation of long conductive filament whiskers. These whiskers grow post-electrodeposition and increase the risk of unwanted electrical shorts within electronic devices. In this thesis, tin electrodeposits produced from a proprietary bright acid Tinmac electrolyte, currently used in industry, were studied. Electrodeposits were produced using a range of current densities with and without agitation and were characterised with respect to crystallographic orientation, topography and surface finish. Moreover, the intermetallic compound (IMC) growth produced at the copper substrate-tin coating interface was assessed over a period of time as its growth is considered to be a significant driving force behind whisker formation. In addition, a technique for the electrochemical anodic oxidation of tin electrodeposits on copper substrates was developed. This technique was used throughout this project for the study of IMC growth from tin electrodeposits as it was able to effectively remove the tin whilst leaving the IMCs and substrate unaffected. Ionic liquids exhibit promising electrochemical characteristics for electrodeposition but are still not widely utilised in industry. Their ability to deposit tin coatings has been studied in the present investigation. Trials concentrated on process optimisation to produce uniform electrodeposits by varying current density, SnCl2.2H2O concentration, and electrolyte composition. These deposits were then characterised and compared to tin coatings of similar thickness produced from Tinmac with respect to topography, surface finish, crystallographic orientation, IMC growth, and whisker propensity. Electrodeposits produced from the ionic liquid electrolyte exhibited a different crystallographic texture, topography, and IMC growth compared to those produced from Tinmac. Moreover, the deposit produced from the ionic liquid featured increased whisker growth compared to those produced from Tinmac, but in a wider context, far less growth than conventional tin electrodeposits in the literature. In addition, by exploiting other electrochemical characteristics of ionic liquids, such as their large potential window, future work may be able to produce novel tin or tin alloy electrodeposits which may further reduce the whisker propensity of deposits produced in this investigation.
75

Capteurs fluorescents à base de liquides ioniques à tâche spécifique pour la quantification de traces de métaux lourds dans l’eau / Fluorescent sensors based on task specific ionic liquids for the quantification of traces of heavy metals ions in water

Bell, Jérémy 20 September 2012 (has links)
Cette thèse a pour but la réalisation de capteurs fluorescents à base de liquides ioniques à tâche spécifique pour la quantification de traces de métaux lourds dans l’eau. Dans un premier temps, des sondes moléculaires fluorescentes efficaces pour la détection du mercure, du plomb et du cadmium ont été ciblées. Une première famille de molécules d’éthers lariat d’oxyde de phosphine a montré de bonnes affinités pour le plomb et le cadmium. Tandis qu’un dérivé de séléniure de phosphine s’est révélé être un très bon chemodosimètre pour le mercure avec une limite de détection basse de 3,4 nmol.L-1. Des sondes moléculaires fluorescentes dérivées de la 8-hydroxyquinoléine comportant un groupement phosphinate ou thiophosphinate capables de complexer le mercure en milieu aqueux ont permis d’atteindre une limite de détection exceptionnelle de 0,1 nmol.L-1. Enfin, un composé dérivé de la phénantroline capable de complexer très efficacement le cadmium avec la possibilité de détecter des traces de ce cation est présenté. Après indentification des sondes spécifiques pour les métaux lourds d’intérêt pour le projet, celles-ci ont étés fonctionnalisées afin de les incorporer dans un liquide ionique hydrophobe pour former des liquides ioniques à tâche spécifique pour l’extraction et la détection de métaux lourds. En parallèle du travail concernant les sondes moléculaires, un dispositif d’analyseur de métaux lourds portatif a été mis au point, notamment un nouveau module de détection optique développé. Ce dispositif permet là aussi de détecter des traces de mercure sub-nanomolaire. / The aim of this PhD is the realization of fluorescent sensors based on task specific ionic liquids for the extraction and the quantification of trace of heavy metals ions in water. As a first step, efficient fluorescent molecular probes for the detection of mercury, lead and cadmium were targeted. Two lariat ethers derivated from phosphine oxide show good affinity for lead and cadmium, while a phosphine selenide derivative has proven to be a very good chemodosimeter for mercury with a low detection limit of 3.4 nmol.L-1. Secondly, fluorescent molecular probes derived from 8-hydroxyquinoline having a phosphinate or thiophosphinate group are described. These molecules are able to coordinate mercury in aqueous medium and allow to detect a concentration of mercury in water of 0.1 nmol.L-1. Finally, a phenanthroline derivative for detection of cadmium in aqueous medium is described. With this compound, traces of cadmium can be detected. After identification of the most efficient probes for targeted heavy metals ions, they have been functionalized to be incorporated in a hydrophobic ionic liquid to form task specific ionic liquids for the extraction and detection of heavy metals ions. In parallel of this work on molecular probes, an portable analyzer of heavy metals ions has been developed, including a new optical detection module. This device can also detect sub-nanomolar traces of mercury.
76

Use of Ionic Liquids for the Treatment of Biomass Materials and Biofuel Production / Utilisation des liquide ioniques pour le traitment de la biomasse et la production de biocarburant

Hassan, El Sayed Rabie El Sayed 10 June 2014 (has links)
Le remplacement des solvants organiques classiques par une nouvelle génération de solvants moins toxiques et moins polluants est un défi majeur pour l'industrie chimique. Les liquides ioniques (LIs) ont été largement identifiés comme substituts intéressants aux solvants traditionnels. Le but de ce travail est d'étudier la solubilité des sucres ou des constituants issus de la biomasse dans les liquides ioniques afin de pallier au manque de données expérimentales sur les équilibres de phases de systèmes {sucres + LIs} ou {biomasse + LIs}. Les données de solubilité ont été corrélées avec succès en utilisant les modèles thermodynamiques NRTL et UNIQUAC. Cette étude démontre que la méthode de l'antisolvant est une bonne technique pour l'extraction des sucres des LIs. Par conséquent, les liquides ioniques peuvent être facilement recyclés pour être réutilisés. Les natures fondamentales des interactions entre les sucres et les liquides ioniques ont été définies en utilisant le calcul ab initio. Les résultats obtenus par simulation sont en accord avec les données expérimentales et indiquent que les liquides ioniques interagissent avec les sucres par liaisons hydrogène. La seconde partie de ce travail met en évidence que le prétraitement du miscanthus avec les liquides ioniques permet d'obtenir une bonne production d'éthanol (jusqu'à 150 g d'éthanol par kg de miscanthus). Les résultats montrent que les liquides ioniques sont des solvants performants dans le domaine de la conversion des matières premières issues de la biomasse en biocarburant. Ainsi, l'application à l'échelle industrielle de ces procédés d'extraction de la cellulose pourrait être d'un grand intérêt / The replacement of conventional organic solvents by a new generation of solvents less toxic, less flammable and less polluting is a major challenge for the chemical industry. Ionic liquids have been widely promoted as interesting substitutes for traditional solvents. The purpose of this work is to study the solubility of carbohydrates or biomass based materials in ionic liquids in order to overcome the lack of experimental data on phase equilibria of {biomass or carbohydrate-ILs} mixtures. Solubility data were successfully correlated using NRTL and UNIQUAC thermodynamic models. It was found that the antisolvent method is a good technique for the extraction of carbohydrates from ILs. Ionic liquids could be then recycled successfully for reuse. The fundamental natures of the interaction between carbohydrates and ionic liquids were investigated using ab initio calculations. The theoretical results are in good agreement with experimental data. It was concluded that ionic liquids mainly interact with carbohydrates via hydrogen bonding formation. This confirms that the process of dissolution and regeneration of cellulose in ionic liquids is accompanied only with a physical change. The preatreatment of miscanthus with ionic liquids resulted in the regeneration of amorphous, porous cellulose almost free of lignin, which is suitable for enzymatic hydrolysis and fermentation processes. A successful ethanol production was obtained with an overall ethanol yield reached up to 150 g ethanol kg-1 miscanthus. This indicates the high performance of ionic liquids in converting biomass feedstocks into biofuel. Indeed, applying the cellulose extraction processes on the industrial scale could be of great interest
77

Oligomérisation enzymatique d'alcools p-hydroxycinnamiques : production de synthons et additifs pour la chimie des polymères / Enzymatic oligomerisation of p-hydroxy cinnamic alcohols for the production of monomers and additives for polymer chemistry

Jaufurally, Abdus Samad 12 December 2016 (has links)
Le but des travaux de cette thèse a été de mettre en place des protocoles de synthèse et de polymérisation de composés phénoliques. Le premier objectif a été de développer et optimiser des modes opératoires robustes et reproductibles permettant de polymériser de manière contrôlée ces derniers en présence d’oxydases, et particulièrement de laccase. Les études mécanistiques menées dans le cadre de ces nouveaux procédés ont mené à une meilleure compréhension de la réactivité des phénols (oxydation, dismutation) et à de nouveaux modes de valorisation de ces composés. Ainsi, ces procédés nous ont permis d’accéder sélectivement à des composés phénoliques de complexité structurale et fonctionnalité variées (dimères, trimères ou oligomères peu polydisperses) pouvant être utilisés en tant qu’antioxydants ou encore monomères/synthons pour la chimie des polymères. Pour illustrer le potentiel de ces composés phénoliques dans le domaine des polymères, ils ont été mis en jeu dans des réactions de polymérisation par métathèse (ADMET) et polymérisation radicalaire (thiol-ène). / The purpose of this thesis was to develop experimental protocols for the polymerization of phenoliccompounds.The first objective was to develop and optimize robust and reproducible procedures to control thepolymerization of phenolic compounds in the presence of oxidases, such as laccase. Mechanisticstudies were conducted during these new processes in order to have a better understanding of thereactivity of phenols (oxidation, dismutation) and find new ways of valorization of such compounds.Thus, these methods have enabled us to selectively access phenolic compounds of structuralcomplexity and variable functionalities (dimers, trimers or oligomers) that can be used asantioxidants or monomers for the polymer chemistry. To illustrate the potential of these phenoliccompounds in the field of polymers, they have been involved in polymerization reactions such asADMET and radical polymerizations (thiol-ene).
78

Líquidos iônicos como eletrólitos para baterias: comportamento eletroquímico de metais e propriedades físico-químicas dos líquidos / Ionic liquids as electrolytes for batteries: electrochemical behavior of metals and the liquids physicochemical properties

Martins, Vitor Leite 18 February 2014 (has links)
O armazenamento de energia em larga escala é um dos maiores desafios que temos que sanar em médio prazo para que tenhamos um impacto importante na matriz energética. As baterias aparecem como fortes candidatas para esta função, porém, é preciso melhorar todos os componentes das baterias, como eletrodos e eletrólitos, para aplicação em larga escala. Líquidos Iônicos (LIs) são interessantes alternativas para a utilização como eletrólito em bateria, pois abrem ampla possibilidades, como a utilização de ânodos metálicos e operação em alta temperatura. Sendo assim, este trabalho apresenta o estudo do uso do LI bis(trifluorometanosulfonil)imideto de N-n-butil-N-metilpiperidínio ([BMP][Tf2N]) na eletrodeposição de Mg utilizando vários procedimentos eletroquímicos e analíticos. A deposição/dissolução de Mg é irreversível quando há água (50 mmol L-1) no sistema, e uma reversibilidade de apenas 7,4 % em sistemas mais secos (5 mmol L-1). Imagens de MEV e espectros de EDS mostram que há Mg na superfície do eletrodo, porém é indicada a formação de um filme passivador. Além disso, também foi estudado o comportamento eletroquímico de Cu no LI [BMP][Tf2N], que apresenta um ânion com boa capacidade de coordenação e no LI tetracianoborato de N-n-butil-N-metilpiperidínio ([BMP][B(CN)4]), que apresenta um ânion com baixa capacidade de coordenação. A propriedade de coordenação tem grande influência na oxidação e corrosão do metal, enquanto que no [Tf2N] há corrosão por pitting e não há passivação do metal, o uso do [B(CN)4] leva a precipitação do sal Cu[B(CN)4], causando a passivação do metal. Além disso, mesmo em baixa concentração de água, há formação de óxido durante a oxidação do metal nos dois LIs. Como a água afeta o comportamento eletroquímico dos LIs, foi realizado um estudo das propriedades físico-químicas do LI bis(trifluorometanosulfonil)imideto de 1-n-butil-2,3-dimetilimidazólio ([BMMI][Tf2N]) e sua mistura com Li+ com diferentes quantidades de água. A presença de Li+ causa um grande aumento na capacidade do LI hidrofóbico em absorver água. Experimentos sugerem que há uma quebra nos agregados Li+-ânion, que foi confirmado por dinâmica molecular (DM). Ainda, a água apresenta grande modificação nas propriedades como densidade, viscosidade e condutividade iônica, sem contar que os resultados experimentais sugerem uma quebra na regra de Walden em altas temperaturas. Por fim, foi avaliado a estrutura local do LI tetracianoborato de 1-n-butil-2,3-dimetilimidazólio ([BMMI][B(CN)4]), para entender como é a interação entre o ânion de baixa capacidade de coordenação e o Li+. A distância entre os ânions e o Li+ é maior do que no caso do [Tf2N], indicando assim uma menor interação entre estes dois. A utilização de LIs como eletrólitos para baterias se apresenta como alternativa promissora, porém ainda demanda estudos para encontrar o melhor sistema. / Energy storage at large scale is one of the most important challenges that needs to be solved in medium term to have an important impact in the electrical grid. Batteries seem to be strong candidates for this function, however, it is needed to improve all battery components, as electrodes and electrolytes, to be applied in large scale. Ionic Liquids (ILs) are interesting alternatives to be used as electrolyte in a battery, since they open a wide range of possibilities, as the use of metallic anodes and operation at high temperature. This work presents the study of electrodeposition of Mg using the IL N-butyl,methyl-piperidinium bis((trifluoromethyl)sulfonyl)imide ([BMP][Tf2N]) by several electrochemical and analytical techniques. The deposition/dissolution is irreversible in presence of high water concentration (50 mmol L-1), and a small reversibility of 7.4 % in dryer system (5 mmol L-1). EDS spectra show Mg presence in the electrode surface, however it is also observed the formation of passivating film. Besides this, it was also studied the electrochemical behavior of Cu in the IL [BMP][Tf2N], which presents a strong coordinating anion and in the IL N-butyl,methyl-piperidinium tetracyanoborate ([BMP][B(CN)4]), which presents a weak coordinating anion. It was observed that the oxidation and corrosion of Cu depends strongly on the anions coordinating properties, while on [Tf2N] it was observed pitting corrosion and no metal passivation, the use of [B(CN)4] leads to salt (Cu[B(CN)4]) precipitation, causing the metal passivation. It was also observed that even at low water concentration there is the formation of oxide in both ILs. As the water affects the electrochemical behavior of the ILs, it was realized a study of the physicochemical properties of the IL 1-Butyl-2,3-dimethylimidazolium bis((trifluoromethyl)sulfonyl)imide ([BMMI][Tf2N]) and its mixture with Li+ with different amounts of water. The Li+ presence provokes a huge increase in the water absorption ability of the hydrophobic IL. Experiments suggest that there is a break in the Li+-anion aggregates, which was confirmed by molecular dynamics (MD) simulations. In addition, water causes important changes in properties as density, viscosity and ionic conductivity; moreover, the experimental results suggest a break in the Walden\'s rule at high temperatures, due to aggregates modification. Lastly, it was evaluated the local structure of the IL 1-Butyl-2,3-dimethylimidazolium tetracyanoborate ([BMMI][B(CN)4]), to understand how a weak coordinating anion and the Li+ interact. It was showed by MD simulations that this property results in a bigger distance between anion and Li+ than in the case of [Tf2N], indicating a lower interaction between both. The use of ILs as electrolytes for batteries is a promising alternative, however it is needed more studies to find the best system.
79

Derivatização de celulose sob condições homogêneas: cinética e mecanismo de acilação do biopolímero em LiCI/DMAC e liquídos iônicos/solventes apróticos dipolares / Cellulose derivatization under homogeneous conditions: kinetics and mechanism of biopolymer acylation in LiCl/DMAC and ionic liquids-dipolar aprotic solvents

Nawaz, Haq 05 February 2014 (has links)
O objetivo deste trabalho é estudar a reatividade de acilação de celulose por anidridos de ácidos carboxílicos sob condições homogêneas em solventes apróticos dipolares (SAD), incluindo LiCl/N,N-dimetilacetamida (DMAC) e líquidos iônicos (LIs)/SAD. Os factores que contribuem para a reatividade foram quantificados através do estudo da dependência das constantes de velocidade e parâmetros de ativação sobre a composição do solvente. Após estabelecer que a condutividade é uma técnica experimental adequada para calcular as constantes de velocidade, foi estudada a acilação não catalisada e catalisada de celulose microcristalina, MCC. Foram empregados anidridos de ácidos carboxílicos com diferentes grupos acila (acetil a hexanoil; Nc = 2 a 6) nos seguintes sistemas de solventes: LiCl/DMAC, misturas de LI cloreto de 1-alil-3-metilimidazólio ( AlMeImCl ) e acetonitrila (MeCN), DMAC , dimetilsulfóxido (DMSO ) e sulfolano. Na celulose, a unidade anidra de glucose possui um grupo hidroxila primário e dois hidroxilas secundários. Usamos ciclohexilmetanol, CHM, e trans-1 ,2- ciclo-hexanodiol, CHD , como compostos modelo para os grupos (OH) primário e secundários, respectivamente. As razões das constantes de velocidade de acilação dos compostos modelo (CHM; Prim-OH) e (CHD; SEC-OH) foram empregados, após correção, a fim de dividir as constantes de velocidade global da reação de MCC em contribuições dos grupos (OH) presentes. Para os compostos modelo, verificou-se que k3 (Prim-OH) /k3 (Sec-OH) > 1, semelhante as reações de celulose sob condições heterogéneas; esta relação aumenta como uma função do aumento da Nc. As constantes de velocidade globais e parciais de acilação de MCC diminuim de anidrido etanóico a butanóico e, em seguida, aumentam para anidrido pentanóico e hexanóico, devido a mudanças sutis em - e compensações da entalpia e entropia de ativação. As constantes de velocidade para a acetilação de MCC, por anidrido etanóico na presença de concentrações crescentes do LI em DMAC, MeCN, DMSO e sulfolano foram calculados a partir de dados de condutividade. As constantes de velocidade de terceira ordem mostraram dependência linear sobre [LI]. Estes resultados foram explicados assumindo que o reagente é celulose ligado ao LI por ligação de hidrogénio. Isto foi confirmado pelos dados cinéticos da acetilação de CHM, espectroscopia de IV do último composto, e de celobiose nas misturas de LI/SAD e condutividade das misturas de solventes binários, na ausência e presença de MCC. A acetilação de celulose é mais rápida nas misturas de em LI com DMAC e DMSO do que com MeCN e sulfolano. Esta diferença é explicada, em parte, com base na alta viscosidade das soluções de biopolímeros em LI/sulfolano. Obteve-se mais informações sobre os efeitos do solvente molecular a prtir das propriedades microscópicas dos solventes e simulações por dinâmica molecular, DM. Os dados solvatocrômicos (polaridade empírica e basicidade) têm mostrado a importância da basicidade do solvente; solventes mais básicos formam ligações de hidrogênio mais fortes com os grupos (OH) da celulose, aumentando sua acessibilidade e, consequentemente sua reatividade. Este é o caso de DMAC e DMSO. Os resultados das simulações por DM indicaram a formação de ligações de hidrogénio, entre os grupos (OH) da unidade de glucose anidra do MCC, (Cl-) de LI, e o dipolo do DMAC e DMSO . Observamos que a acilação de celulose em LiCl/DMAC é eficientemente catalisada por imidazol, mas não pelo cloreto de tosila. Resultados de IV de FT e RMN de 1H indicaram a formação de N-acilimidazol que é o agente de acilação. As constantes globais e parciais de velocidade de acilação do MCC diminuiram de anidirido etanóico a butanóico e depois aumentou para anidrido pentanóico e hexanóico, devido a mudanças sutis em- e compensações da entalpia e entropia de ativação. / The objective of this work is to study the reactivity in cellulose acylation by carboxylic acid anhydrides under homogeneous conditions in dipolar aprotic solvents (DAS), including LiCl/ N,N-dimethylacetamide (DMAC) and ionic liquids (ILs)/DAS. Factors that contribute to reactivity were quantified by studying the dependence of reaction rates on temperature and solvent composition. After establishing that conductivity is an appropriate experimental technique to calculate the rate constants, we studied the kinetics of the homogeneous uncatalyzed and catalyzed acylation of microcrystalline cellulose, MCC, with carboxylic acid anhydrides with different acyl chain-length (Nc; ethanoic to hexanoic) in the following solvent systems: LiCl/DMAC; mixtures of the IL, 1-allyl-3-methylimidazolium chloride, (AlMeImCl) and acetonitrile (MeCN), DMAC, dimethyl sulfoxide (DMSO) and sulfolane. The anhydroglucose unit of cellulose carries one primary- and two secondary hydroxyl groups. We used cyclohexylmethanol, CHM, and trans-1,2-cyclohexanediol, CHD, as model compounds for the hydroxyl groups of the anhydroglucose unit of cellulose. The ratios of rate constants of acylation of primary (CHM; Prim-OH) and secondary (CHD; Sec-OH) groups were employed, after correction, in order to split the overall rate constants of the reaction of MCC into contributions from the discrete OH groups. For the model compounds, we have found that k3 (Prim-OH)/k3 (Sec-OH) > 1, akin to reactions of cellulose under heterogeneous conditions; this ratio increases as a function of increasing Nc. The overall and partial rate constants of the acylation of MCC decrease from ethanoic- to butanoic anhydride and then increase for pentanoic- and hexanoic anhydride, due to subtle changes in- and compensations of the enthalpy and entropy of activation. Rate constants for the acetylation of MCC, by ethanoic anhydride in the presence of increasing concentrations of the ionic liquid, IL, 1-allyl-3-methylimidazolium chloride in dipolar aprotic solvents, DAS, N,N-dimethylacetamide, DMAC, acetonitrile, MeCN, dimethylsulfoxide, DMSO and sulfolane, have been calculated from conductivity data. The third order rate constants showed a linear dependence on [IL]. These results have been explained by assuming that the reactant is cellulose hydrogen-bonded to the IL. This is corroborated by kinetic data of the acetylation of cyclohexyl methanol, FTIR spectroscopy of the latter compound, and cellobiose in mixtures of IL/DAS, and conductivity of the binary solvent mixtures in absence, and presence of MCC. Cellulose acetylation is faster in IL/DMAC and IL/DMSO than in IL/MeCN and IL/Sulfolane. This difference is explained, in part, based the high viscosity of the biopolymer solutions in IL-Sulfolane. Additional explanation came from microscopic solvents properties and molecular dynamics, MD simulations. The solvatochromic data (empirical polarity and basicity) have shown the importance of solvent basicity; basic solvents hydrogen-bond to the hydroxyl groups of cellulose increasing its accessibility, hence its reactivity. This is the case of DMAC and DMSO. Results of MD simulations indicated hydrogen-bond formation between the hydroxyl groups of the anhydroglucose unit of MCC, (Cl-) of the IL, and the dipole of the DMAC and DMSO. It has been observed that cellulose acylation in LiCl/DMAC is efficiently catalyzed by imidazole, but not by p-tosyl chloride. FTIR and 1H NMR have indicated the formation of N-acylimidazole which is the acylating agent. The overall and partial rate constants of the acylation of MCC decreased from ethanoic- to butanoic-anhydride and then increased for pentanoic- and hexanoic anhydride, due to subtle changes in- and compensations of the enthalpy and entropy of activation.
80

Construção de biossensores baseados em biomoléculas e líquidos iônicos / Construction of biosensors based on biomolecules and ionic liquids

Galhardo, Kelly Suely 10 June 2010 (has links)
Este trabalho consiste em estudar o comportamento eletroquímico de biomoléculas imobilizadas sobre o eletrodo de carbono vítreo, utilizando materiais biocompatíveis como meios imobilizadores para detecções em meios aquosos. Foram utilizados inicialmente compósitos de hidrogéis capazes de auxiliar a permanência da enzima sobre a superfície do eletrodo e beneficiar a transferência de carga entre a enzima e o eletrodo de trabalho. Para melhorar a resposta eletroquímica do biossensor, também foram estudados métodos que utilizam líquidos iônicos no processo de imobilização da enzima. Deste modo a eletroatividade da enzima foi inicialmente estudada por voltametria cíclica, a fim de evidenciar tal eletroatividade no meio totalmente iônico, como também avaliar o melhor método de imobilização, para futuras aplicações em detecções de analitos. Os líquidos iônicos utilizados são compostos por cátions alquil-imidazol com ânions de natureza orgânica ou inorgânica. Como se sabe os íons que compõem o líquido iônico podem distinguir sua funcionalidade, pois é o tamanho desses íons que influencia na maioria das suas propriedades físico-químicas, tais como hidrofobicidade e viscosidade. / The aim of this work is to study the electrochemical behavior of biomolecules immobilized on a glassy carbon electrode, using biocompatible materials as a way for immobilizing detection in aqueous media. Initially, hydrogels composite were used because they are able to assist the permanence of the enzyme on the electrode surface and they are benefit to the charge transfer between enzyme and electrode surface. To improve the electrochemical response of the biosensor, methods using ionic liquids in the process of immobilization of the enzyme were also studied. Thus the electroactivity of the enzyme was initially analyzed by cyclic voltammetry in order to show that the electroactivity remains in an entirely ionic media, as well as evaluating the best method of immobilization, for future applications in biosensors. The ionic liquids used are composed of imidazole-alkyl cations with anions of organic or inorganic nature. As it is well known, the ions in the ionic liquid can distinguish its functionality, due to the fact that it is the size of these ions that influences most on their physicochemical properties such as hydrophobicity and viscosity.

Page generated in 0.0836 seconds