• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 68
  • 19
  • 14
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 272
  • 154
  • 135
  • 97
  • 81
  • 71
  • 68
  • 63
  • 62
  • 57
  • 50
  • 49
  • 49
  • 38
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

The pancreatic renin-angiotensin system: its roles in pancreatic islets and in type 2 diabetes. / CUHK electronic theses & dissertations collection

January 2008 (has links)
In the first study, I aimed to compare the angiotensin II type 1 receptor (AT1R) expression levels of the isolated pancreatic islets from normal and mouse model of T2DM. In addition, 4-week-old diabetic mice were orally treated with AT1R antagonist losartan for 8 weeks. It is found that AT1R mRNA was upregulated markedly in diabetic islets and double-immunolabeling confirmed that AT1R was localized to beta-cells. Losartan selectively improved glucose-induced insulin release and (pro)insulin biosynthesis in diabetic islets. Oral losartan treatment delayed the onset of diabetes, and reduced hyperglycemia and glucose intolerance in diabetic mice. These data indicate that AT1R antagonism improves beta-cell function and glucose tolerance in young T2DM mice. / In the second study, I aimed to examine how the upregulated RAS could impair beta-cell function, where oxidative stress is the potential mediator. Meanwhile, T2DM results in oxidative stress-mediated activation of uncoupling protein 2 (UCP2), a negative regulator of islet function. Thus, it was postulated that some of the protective effects of AT1R antagonism might be mediated through interference with this pathway and tested this hypothesis in a mouse model of T2DM. In order to achieve this, losartan was given to 4-week-old diabetic mice for 8 weeks. UCP2-driven oxidative damage and apoptosis were analyzed in isolated islets. Results showed that losartan selectively inhibited oxidative stress via NADPH oxidase downregulation; this in turn suppressed UCP2 expression, thus improving beta-cell insulin secretion while decreasing apoptosis-induced beta-cell mass loss in diabetic mice islets. These data indicate that islet AT1R activation in young diabetic mice can lead to progressive islet beta-cell failure through UCP2-driven oxidative damage and apoptosis. / The mechanisms by which chronic hyperglycemia associated with glucotoxicity causes beta-cell dysfunction and apoptosis remain ambiguous. Voltage-gated outward potassium (Kv) current, which mediates beta-cell membrane potential and limits insulin secretion, could play a role in glucotoxicity. Meanwhile the RAS has been shown to be upregulated by prolonged exposure to high glucose. In the third part of my study, I therefore investigated the effects of prolonged exposure to high glucose and angiotensin II (Ang II) on the expression and activity of Kv channels in mouse pancreatic beta-cell. Dissociated mice beta-cells, incubated in 5.6 mM or 28 mM glucose for 3-5 days, were used for electrophysiological study; while isolated islets cultured for 1-7 days were proceeded for gene/protein expression analysis. Both Kv channel expression and current were markedly increased by prolonged glucose incubation. Simultaneously, Ang II reduced Kv current under normal glucose condition, while high glucose incubation abolished the effect of Ang II. Moreover, the ability of Ang II on Kv current reduction was eliminated by inhibiting AT2R but not AT1R. These data indicated that Ang II reduced Kv current via AT2R, which was abolished by prolonged high glucose incubation. On the other hand, high glucose increased Kv channel expression and current, which might alter the ability of insulin secretion in beta-cell. (Abstract shortened by UMI.) / Chu, Kwan Yi. / Adviser: P. S. Leung. / Source: Dissertation Abstracts International, Volume: 70-06, Section: B, page: 3246. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2008. / Includes bibliographical references (leaves 163-188). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
182

Autopsy study of islet amyloidosis and diabetic glomerulopathy in relation to candidate genetic markers. / 胰島淀粉样变性和糖尿病肾小球病的遗传标志研究 / CUHK electronic theses & dissertations collection / Yi dao dian fen yang bian xing he tang niao bing shen xiao qiu bing de yi chuan biao zhi yan jiu

January 2010 (has links)
BACKGROUND AND OBJECTIVES: Type 2 diabetes mellitus (T2DM) is a complex disease with genetic predisposition and histopathological characterization. Pancreatic islet amyloidosis, hyaline arteriolosclerosis, and diabetic glomerulopathy are histopathological hallmarks of T2DM at autopsy examination. The associations of genetic variants with diabetic amyloidosis, arteriosclerosis and glomerulopathy have not been fully elucidated. Several candidate genes including apolipoprotein E (ApoE), insulin degrading-enzyme (IDE) and glucose transporter-1 ( GLUT1) have been reported to increase risk of T2DM in human studies although results are not always consistent. Capitalizing on the pathological hallmarks of T2DM, I used autopsy specimens to investigate the risk associations of polymorphisms of ApoE (rs429358 and rs7412), IDE (rs6583813) and GLUT1 (rs710218) genes with clinical features and specific pathological changes in diabetic kidney and pancreas. I further explored the mechanisms of these associations by evaluating the histopathological changes and protein expression in pancreas and kidney. / CONCLUSIONS: These findings suggest that genetic factors have important effects in the development of tissue-specific changes and chronic complications in T2DM. Islet amyloidosis, arteriosclerosis and glomerulosclerosis in T2DM may share common pathogenetic processes as suggested by the coexistence of chaperone proteins, amyloid P and ApoE. Genetic--pathologic correlation studies are useful in advancing our understanding of the mechanisms of complex diseases such as T2DM. / METHODS AND MATERIALS: Genomic DNA was extracted from white blood cell-concentrated paraffin embedded formalin fixed spleen tissues. Genotyping for ApoE, IDE and GLUT1 polymorphisms was determined by polymerase chain reaction (PCR) and ligase detection reaction (LDR). The pathological changes were blindly assessed in pancreatic and kidney tissues of autopsy specimens. Protein expression of these genes was examined by immunostaining and quantified by using Metamorph image analysis system. / RESULTS: In a consecutive study population of 3693 autopsy specimens containing 328 T2DM and 209 control cases, the respective frequencies of genotypes were as follows: 1) TT of GLUT1 rs710218: 11.2% vs. 11.3%; 2) ApoE epsilon2: 19.4% vs. 10.9%; 3) ApoE epsilon4: 12.1% vs. 9.1% and 4) C carriers of IDE rs6583813: 51.2% vs. 47.9%. The key genotype-phenotype correlations were as follows. 1) In the T2DM cases, GLUT1 rs710218 IT genotype carriers (0% in TT genotype vs. 59.1% in AA genotype, P=0.0407) were less likely but ApoE epsilon 2 allele carriers (57.1% in epsilon2 allele carriers vs. 23.5% in epsilon3 allele carriers P=0.0382) were more likely to have diabetic glomerular hypertrophy than referential group. ApoE epsilon2 carriers showed increased glomerular ApoE protein expression with the immunoreactivity found mainly in the mesangial regions and nodular lesions. On the other hand, ApoE epsilon 3/epsilon4 cases had diffuse ApoE expression in glomerular capillaries. 2) ApoE epsilon4 carriers were more likely to have islet amyloidosis than non-carriers (62.5% in epsilon4 allele carriers vs. 23.6% in epsilon 3 allele carriers P=0.0232). There was immunolocalization of the chaperone proteins, amyloid P and ApoE in both islet amyloid deposits and arterial walls with hyaline arteriolosclerosis. 3) In T2DM cases, IDE rs6583813 C allele carriers had higher prevalence of vascular disorders [hypertension (67.4% vs. 43.6%, P=0.0332), death due to cardiovascular disease (58.1% vs. 25.6%, P=0.0479) and cerebral vascular accident (CVA) (20.9% vs. 2.4%, P=0.0412)1 than T allele carriers. / Guan, Jing. / Adviser: Chan Chung Ngor Juliana. / Source: Dissertation Abstracts International, Volume: 73-02, Section: B, page: . / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 175-192). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [201-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese.
183

Ecologie et conservation du puffin d'Audubon (Puffinus lherminieri lherminieri) de la réserve naturelle des îlets de Sainte-Anne(Martinique) / Ecology and conservervation of Audubon's shearwater (Puffinus therminieri) from the nature reserve of Sainte-Anne islet (Martinique)

Precheur, Carine 17 December 2015 (has links)
Dans l’optique de la gestion de population du puffin d’Audubon de Martinique, cette thèse a permis d’établir un diagnostic démographique et d’apporter des connaissances indispensables sur l’écologie marine de cette espèce. La population a connu une croissance assez marquée les dernières années, correspondant à une période où les rats ont été exterminés et le suivi de la colonie réduit pour limiter le dérangement. Cependant, le principal facteur ayant expliqué cette augmentation de la population, a été une amélioration des conditions marines favorisant une disponibilité des proies plus importante, particulièrement hors reproduction. L’augmentation de la survie des adultes a été alors expliquée en grande partie par un effet positif des variations de température d’eau de surface de l’océan (SST) hors reproduction et un effet positif du débit de l’Amazone avec un décalage d’un an. En mer, on remarque que le puffin d’Audubon de Martinique a un comportement sédentaire avec une distribution très régionale limitée aux Petites Antilles et proche des côtes du nord de l’Amérique du Sud. Sa niche alimentaire est sous la forte influence d’apports fluviaux de l’Amazone et de l’Orénoque, milieux à faible salinité et à SST élevée. De plus, les zones d’alimentation de la population de Martinique diffèrent de celle de Bahamas et cela suggère une double problématique de gestion de la sous-espèce de la Caraïbe. Ces nouvelles connaissances permettront de mieux orienter les mesures de conservation mais soulignent également le besoin de clarifier la taxonomie de cette espèce à l’échelle de la Caraïbe, la dynamique de la population et d’évaluer plus précisément les menaces en mer. / In the context of management of Audubon’s shearwater population from Martinique, this thesis has established a demographic diagnosis and provided essential knowledge on the marine ecology of this species. The population has experienced a fairly marked growth in recent years, corresponding to a period where the rats were exterminated and monitoring of colony was limited to reduce the disturbance. However, the main factor that explained the increase in population was improved marine conditions favoring greater availability of prey, especially outside reproduction. The increase in adult survival was then explained in large part by a positive effect of changes in ocean surface water temperature (SST) out of reproduction and a positive effect of the flow of the Amazon with a lag one year. At sea, we notice that the puffin Audubon Martinique has sedentary behavior with very limited regional distribution and the Lesser Antilles near the northern coast of South America. Its food niche is under the strong influence of riverine inputs of the Amazon and Orinoco, low salinity and high SST environments. In addition, foraging areas of Audubon's Shearwater from Martinique differ from that of the Bahamas and this suggests a double subspecies of the Caribbean management problematic. This new knowledge will help guide conservation measures but also underline the need to clarify the taxonomy of this species throughout the Caribbean, the dynamics of the population and to more accurately assess its threats at sea.
184

Modulação da enzima NAD(P)H oxidase pela glicose, palmitato e interleucina - 1? e sua participação no processo de secreção de insulina induzido pela glicose. / NAD(P)H oxidase modulation by glucose, palmitate and interleukin 1? and the participation on the process of glucose-induced insulin secretion.

Mendes, Daniela Morgan 09 November 2007 (has links)
Neste projeto, demonstramos a modulação da enzima NAD(P)H oxidase pela glicose, palmitato e interleucina - 1? através da análise da expressão protéica do componente p47PHOX e pela atividade dessa enzima via produção de superóxido e peróxido de hidrogênio. Demonstramos também a participação da enzima NAD(P)H oxidase no processo de secreção de insulina induzido pela glicose pois a inibição da enzima pelo DPI e oligonucleotídeo anti p47PHOX promoveu uma diminuição da secreção do hormônio. A partir desse dado passamos a avaliar o mecanismo de ação da enzima no processo secretório e demonstramos que a inibição dessa enzima promove uma inibição de genes essenciais no processo de secreção de insulina como GLUT-2 e glicocinase.Assim podemos concluir que a enzima NAD(P)H oxidase é modulada pela glicose, palmitato e interleucina 1? e que essa enzima participa do processo de secreção insulina modulando genes essenciais para o processo secretório como GLUT-2 e glicocinase. / The expression and activity of the componenents of NAD(P)H oxidase in pancreatic islets were described for the first time in our laboratory (OLIVEIRA, HR et ai, 2003). It was shown the gene and protein expression of the components of this enzyme in Seta cells and that enzyme activation is mediated by glucose. Glucose induced insulin secretion was followed by increase in EROS generation and this increase was in part mediated by NAD(P)H oxidase activation (the same mechanism observed in phagocytes). In this study, the modulation of NAD(P)H oxidase activity by glucose, palmitate and interleukin 1ß as investigated through protein expression of p47phox vity of this enzyme through superoxide and hydrogen peroxide production. To determinate the role of NAD(P)H oxidase in the process of glucoseinduced insulin secretion the enzyme was inhibited by DPI and oligonucleotide anti p47phox, in the both cases the enzyme inhibition produced a decrease on insulin secretion. In order to investigated NAD(P)H oxidase mechanism of action in insulin secretion, we shown that the inhibition enzyme by DPI reduced the GLUT-2 and glucokinase gene expression. We can concluded hat NAD(P)H oxidase was modulated by glucose, palmitate and interleukin 1ß and that enzyme participed in process of glucoseinduced insulin secretion through modulation of GLUT-2 and glucokinase gene expression.
185

Implication of GSK3β in Islet Inflammation During Diabetes / Implication de GSK3β dans l'inflammation des îlots au cours du diabète

Pitasi, Caterina Luana 27 November 2017 (has links)
Le diabète est une maladie chronique avec une progression alarmante. L’insuline-résistance et la diminution de la masse fonctionnelle des cellules beta, associée à l'inflammation des îlots, sont les principaux défauts impliqués dans la pathogenèse du diabète de type 2 (DT2). La compréhension des mécanismes impliqués dans l'inflammation des îlots pancréatiques, et l'identification de cibles moléculaires à visée anti-inflammatoire, sont des approches intéressantes pour le traitement du diabète. La glycogène synthase kinase 3 (GSK3), est une sérine-thréonine kinase qui régule des fonctions cellulaires essentielles. Cette enzyme a été récemment décrite comme un régulateur important de l'inflammation dans différentes conditions pathologiques. Cependant, l'implication potentielle de GSK3beta dans l'inflammation des îlots au cours du diabète reste inexplorée. Le but de ce travail était d'étudier l'implication de GSK3beta dans l'inflammation des îlots pancréatiques et d'évaluer l'impact de l'inhibition de GSK3beta dans l’amélioration de l’hyperglycémie du rat diabétique Goto-Kakizaki. Le rat Goto-Kakizaki (GK) est un modèle spontané de DT2, avec une hyperglycémie chronique apparaissant au sevrage, une masse beta cellulaire réduite et une altération profonde de la sécrétion d'insuline en réponse au glucose. Peu après le sevrage, l'inflammation se développe dans les îlots du rat GK et participe au dysfonctionnement des cellules beta. Nous avons traité les rat GK mâles avec du chlorure de lithium (LiCl), un inhibiteur de GSK3. Le traitement chronique de jeunes rats GK a permis d’éviter l’installation de l’hyperglycémie chronique qui se développe normalement dans ce modèle chez les adultes. A la fin du traitement, la glycémie basale des rats GK traités par le LiCl était fortement réduite, en comparaison avec celle des rats GK non traités. Ces améliorations étaient associées à une réduction de l'expression des cytokines et des chimiokines pro-inflammatoires dans les îlots. L’inhibition de GSK3 a également diminué la fibrose des îlots et rétabli partiellement la sensibilité à l’insuline et la sécrétion d'insuline induite par le glucose chez les rats GK. De plus, des études ex vivo sur des îlots humains et des îlots de rats Wistar, exposés à un environnement inflammatoire en culture, ont révélé l'implication directe de GSK3 dans la réponse inflammatoire autonome des îlots. Ceci était entre autres associée à l’activation du facteur de transcription STAT3. En conclusion, nous montrons pour la première fois que GSK3beta est impliquée dans l’inflammation des îlots pancréatiques humains et de rongeurs. L’inhibition de GSK3beta atténue fortement l’inflammation insulaire, et prévient l’installation de l’hyperglycémie chronique chez le rat GK. L’ensemble des résultats de ce travail nous permet de proposer GSK3beta comme une cible potentielle pour le développement de traitements anti-inflammatoires dans le contexte du diabète de type 2 / Diabetes Mellitus (DM) is a chronic disabling disease with epidemic dimension. It is now established that islet inflammation is associated with defective functional beta cell mass in type 2 diabetes. The understanding of the mechanisms that govern diabetes-associated inflammation in pancreatic islets, and the identification of molecular targets to dampen inflammation are important steps to address this pathological condition. GK rat is a spontaneous model of type 2 diabetes with impaired beta cell function and mass, closely associated with islet inflammation. Glycogen Synthase Kinase 3 (GSK3) is a multi-tasking serine-threonine kinase which regulates crucial cellular functions. In recent years, GSK3beta has been found to be an important regulator of inflammation in different diseased conditions. However, the potential role of GSK3beta in the context of islet inflammation remains unexplored. In this study, we tested the potential of lithium, an inhibitor of GSK3, in improving islet inflammation and glucose metabolism in the GK rat. In vivo, treatment of young GK rats prevented the development of overt diabetes which normally occurs in adult individuals. Lithium improved the glycemic status of the GK rats after few weeks of treatment. At the end of the protocol, GK rats treated with lithium had a blood glucose levels that were significantly lower than that of age-matched untreated GK rats, which were overtly diabetic at this stage. Lithium treatment resulted in reduced expression of pro-inflammatory cytokines and chemokines, decreased fibrosis and reduced macrophage infiltration in the islets. Lithium partially restored the pancreatic insulin content, the insulin sensitivity and the glucose induced insulin secretion in the GK rats. Moreover, ex vivo studies in non-diabetic human and rat islets exposed to inflammatory environment in culture, revealed the direct implication of GSK3 in the islet autonomous inflammatory response. Moreover, we showed that GSK3 controls the islet inflammatory response at least in part by regulating the activity of the pro-inflammatory transcription factor STAT3. Taken together, our results identified GSK3 as a viable target to treat diabetes-associated inflammation, and could have potential clinical application in the treatment of diabetes and metabolic syndrome
186

Signaux électriques des îlots pancréatiques enregistrés sur matrices de microélectrodes : caractérisation et application au phénotypage d'animaux transgéniques / Electrical signals from pancreatic islets recorded on multielectrode arrays : characterization and application to the phenotyping of transgenic animals

Lebreton, Fanny 17 December 2014 (has links)
Les cellules β des îlots de Langerhans jouent un rôle central dans l’homéostasie glucidique car elles seules sécrètent l’insuline, unique hormone hypoglycémiante de l’organisme. La cellule β est un détecteur du glucose qui couple sa réponse sécrétoire et son expression génique aux niveaux ambiants de glucose. Le couplage entre le métabolisme du glucose et l’exocytose des granules d’insuline implique la génération d’une activité électrique. Son étude est importante pour déchiffrer la façon dont la cellule β encode la demande en insuline de l’organisme. Afin de contourner les limites des approches électrophysiologiques classiques incompatibles avec les études à long-terme, les enregistrements extracellulaires par matrice de microélectrodes (MEA) ont été mis en place.L’objectif de ma thèse était de mieux comprendre les signaux complexes enregistrés par MEAs. Cette étude a révélé l’existence d’une nouvelle signature électrique des cellules des îlots, les slow potentials (SP), qui reflète la fonction de couplage des cellules β. Les SP jouent un rôle important dans l’homéostasie du glucose et représentent un biomarqueur de la fonction normale des îlots. La réponse en hystérèse des îlots au glucose suggère l’existence d’un algorithme d’encodage de la demande en insuline intégrée au niveau du micro-organe. De plus, ce nouveau signal a été exploité pour le phénotypage d’îlots de souris invalidées pour le gène GluK2, que nous avons utilisées comme modèle d’interaction entre les cellules α et β. La caractérisation de ce nouveau type de signal constitue aussi une avancée importante pour le développement d’un biocapteur destiné à être intégré dans le futur à un pancréas artificiel. / Pancreatic β cells are central to glucose homeostasis because they are the only cell that secretes insulin, the sole hypoglycemic hormone in the organism. The β cell is a glucose sensor that regulates its secretory response and gene expression according to ambient glucose levels. The coupling between glucose metabolism and insulin granule exocytosis involves the generation of electrical activity. An investigation of this activity is important to decipher how β cells encode the organism’s insulin demand. In order to overcome the limits of classically used electrophysiological approaches that are not compatible with long-term studies, extracellular recordings using multielectrode arrays (MEA) have been set-up.My thesis aim was to better understand the complex signals recorded with MEA. This study revealed the existence of a new electrical signature of islet cells: slow potentials (SP) that reflect the coupling function of β cells. SP play an important role in glucose homeostasis and represent a biomarker of normal functioning of islets. The observed hysteretic response of islets to glucose suggests the existence of an algorithm encoding the insulin demand embedded at the microorgan level. Moreover, this new signal was used for the phenotyping of GluK2 deficient mouse islets that were employed as an α-to-β cell interaction model. The characterization of this new signal is an important progress in the development of a biosensor intended to be integrated in an artificial pancreas in the future.
187

Role of Inducible Nitric Oxide Synthase and Melatonin in Regulation of β-cell Sensitivity to Cytokines

Andersson, Annika K. January 2003 (has links)
<p>The mechanisms of β-cell destruction leading to type 1 diabetes are complex and not yet fully understood, but infiltration of the islets of Langerhans by autoreactive immune cells is believed to be important. Activated macrophages and T-cells may then secrete cytokines and free radicals, which could selectively damage the β-cells. Among the cytokines, IL-1β, IFN-γ and TNF-α can induce expression of inducible nitric synthase (iNOS) and cyclooxygenase-2. Subsequent nitric oxide (NO) and prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) formation may impair islet function.</p><p>In the present study, the ability of melatonin (an antioxidative and immunoregulatory hormone) to protect against β-cell damage induced by streptozotocin (STZ; a diabetogenic and free radical generating substance) or IL-1β exposure was examined. <i>In vitro</i>, melatonin counteracted STZ- but not IL-1β-induced islet suppression, indicating that the protective effect of melatonin is related to interference with free radical generation and DNA damage, rather than NO synthesis. <i>In vivo</i>, non-immune mediated diabetes induced by a single dose of STZ was prevented by melatonin.</p><p>Furthermore, the effects of proinflammatory cytokines were examined in islets obtained from mice with a targeted deletion of the iNOS gene (iNOS -/- mice) and wild-type controls. The <i>in vitro</i> data obtained show that exposure to IL-1β or (IL-1β + IFN-γ) induce disturbances in the insulin secretory pathway, which were independent of NO or PGE<sub>2</sub> production and cell death. Initially after addition, in particular IL-1β seems to be stimulatory for the insulin secretory machinery of iNOS –/- islets, whereas IL-1β acts inhibitory after a prolonged period. Separate experiments suggest that the stimulatory effect of IL-1β involves an increased gene expression of phospholipase D1a/b. In addition, the formation of new insulin molecules appears to be affected, since IL-1β and (IL-1β + IFN-γ) suppressed mRNA expression of both insulin convertase enzymes and insulin itself.</p>
188

Experimental Studies on the Vasculature of Endogenous and Transplanted Islets of Langerhans

Mattsson, Göran January 2003 (has links)
<p>The blood vessels of the pancreatic islets are of crucial importance for oxygen and metabolite supply as well as dispersal of secreted hormones. In addition to this, endothelial cells have an important role in the revascularization process after islet transplantation. Previous studies have reported signs of poor engraftment of transplanted islets, presumably due to impaired revascularization. The aims of this thesis were to investigate the revascularization process of transplanted islets and to examine the role of islet endothelial cells. In this context, the lectin Bandeiraea simplicifolia was found to stain endothelium of both endogenous and transplanted pancreatic islets. By using this lectin we investigated the vascular density of both endogenous and islets transplanted syngeneically beneath the renal capsule, into the spleen or intraportally into the liver of normoglycemic C57BL/6 mice. One month post-transplantation, a time point when the grafts are assumed to be completely revascularized, the vascular density was decreased at all three implantation sites when compared to endogenous islets. Furthermore, most of the blood vessels were located in the graft connective tissue stroma. Similar results were obtained when islet transplant vascular density was determined six months post-transplantation and in cured diabetic animals after one month. In order to evaluate the function of intraportally transplanted islets, we developed a method to retrieve such islets. We treated the implantation organ (liver) first enzymatically (collagenase) and then mechanically, thereafter we could re-isolate the transplanted islets for further in vitro studies. The retrieved islets had a decreased insulin relase, insulin content and glucose oxidation rate when compared to non-transplanted control islets. To understand the role of islet endothelium in the revascularization of transplanted islets we performed angiogenesis GEArray studies on islet endothelial cells, from non-cultured, cultured and transplanted islets. We found that the islet endothelium expressed mRNA for both inhibitors and inducers of angiogenesis, and that this expression differed with time. The functional consequences of this remain to be determined. In summary, the results presented above provide a useful platform for future studies of the morphology and function of islet endothelial cells, especially with a view for elucidating changes induced by islet transplantation.</p>
189

Islet Xenotransplantation : An Experimental Study of Barriers to Clinical Transplantation / Xenotransplantation av Langerhanska öar : Experimentiella studier av hinder för klinisk tillämpning

Schmidt, Peter January 2004 (has links)
<p>In the field of transplantation, the increasing deficit of human donors have lead to an interest in animals as an alternative source of organs and tissues. </p><p>Different <i>in vitro </i>systems and rodent models of xenotransplantation were used to examine the most significant barriers that have to be overcome, before isolated islets of Langerhans from pigs can be used as a cure for insulin-dependent diabetes mellitus in humans.</p><p>In clinical transplantation, islets are infused into the liver through the portal vein. During this procedure the islets are susceptible to harmful innate reactions triggered in blood. Adenoviral vectors generating transgenic expression of human complement regulatory proteins were evaluated in pig islets and shown to confer protection against acute complement-mediated damage. </p><p>Transplanted islets escaping this immediate destruction will be targets of a cellular immune response. Using a new mouse model of islet xenograft rejection, it was demonstrated that macrophages, effector cells in the rejection, were part of an MHC-restricted xenospecific immune response mediated by T cells. In a strain of knockout mice it was further shown that this process can proceed in the absence of an important signalling system, mediated by Toll-like receptors, between cells in innate and adaptive immunity. These findings illustrate some of the mechanistic differences compared to cellular islet allograft rejection which partly explain why immunosuppressive drugs used in clinical allotransplantation is not sufficient for preventing xenograft rejection. </p><p>Porcine endogenous retroviruses (PERV) remain a safety concern in xenotransplantation. Characterization of PERV in pig islets indicated that virus expression is low <i>in vitro </i>but increases during the immediate time period following transplantation. This suggests that antiviral therapies administered at the time of transplantation could be used for preventing the risk of PERV transmission after xenotransplantation.</p>
190

Pulsatile insulin release from single islets of Langerhans

Westerlund, Johanna January 2000 (has links)
<p>Insulin release from single islets of Langerhans is pulsatile. The secretory activities of the islets in the pancreas are coordinated resulting in plasma insulin oscillations. Nutrients amplitude-regulate the insulin pulses without influencing their frequency. Diabetic patients show an abnormal plasma insulin pattern, but the cause of the disturbance remains to be elucidated. Ithe present thesis the influence of the cytoplasmic calcium concentratio([Ca<sup>2+</sup>]<sub>i</sub>) and cell metabolism on pulsatile insulin release was examined in single islets of Langerhans from <i>ob/ob</i>-mice. Glucose stimulation of insulin release involves closure of ATP-sensitive K<sup>+</sup> channels (K<sub>ATP</sub> channels), depolarization, and Ca<sup>2+</sup> influx in β-cells. In the presence of 11 mM glucose, pulsatile insulin secretion occurs in synchrony with oscillations i[Ca<sup>2+</sup>]<sub>i</sub>. When [Ca<sup>2+</sup>]<sub>i</sub> is low and stable, e.g. under basal conditions, low amplitude insulin pulses are still observed. When [Ca<sup>2+</sup>]<sub>i</sub> is elevated and non-oscillating, e.g. when the β-cells are depolarized by potassium, high amplitude insulin pulses are observed. The frequency of the insulin pulses under these conditions is similar to that observed when [Ca<sup>2+</sup>]<sub>i</sub> oscillations are present. By permanently opening or closing the K<sub>ATP</sub> channels with diazoxide or tolbutamide, respectively, it was investigated if glucose can modulate pulsatile insulin secretion when it does not influence the channel activity. Under these conditions, [Ca<sup>2+</sup>]<sub>i</sub> remained stable whereas the amplitude of the insulin pulses increased with sugar stimulation without change in the frequency. Metabolic inhibition blunted but did not prevent the insulin pulses. The results indicate that oscillations in metabolism can generate pulsatile insulin release when [Ca<sup>2+</sup>]<sub>i</sub> is stable. However, under physiological conditions, pulsatile secretion is driven by oscillations in metabolism and [Ca<sup>2+</sup>]<sub>i</sub>, acting in synergy.</p>

Page generated in 0.0474 seconds