• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 68
  • 19
  • 14
  • 7
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 272
  • 154
  • 135
  • 97
  • 81
  • 71
  • 68
  • 63
  • 62
  • 57
  • 50
  • 49
  • 49
  • 38
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Rôle du facteur de transcription RFX6 dans la différenciation et la fonction des cellules β sécrétrices d'insuline : identification et étude de gènes cibles / Role of the RFX6 transcription factor in insulin secreting beta cells differenciation and function : identification and study of target genes

Strasser, Perrine 28 September 2015 (has links)
La régulation de l’homéostasie du glucose dans l’organisme est la fonction principale des cellules beta sécrétrices d’insuline dans le pancréas endocrine. Le facteur de transcription à domaine « winged helix », RFX6, a récemment, été identifié comme un nouveau régulateur de la différenciation endocrine pancréatique en aval de Ngn3 chez le poisson zèbre, la souris et l’homme. De plus, diverses mutations de Rfx6 chez l’homme ont été identifiées et reliées au syndrome de Mitchell Riley notamment caractérisé par un diabète néonatal, une atrésie de l’intestin grêle et une malabsorption intestinale. Lors de mes travaux de thèse, une approche combinée de transcriptomique chez la souris et la recherche des sites de fixation de RFX6 dans une lignée cellulaire beta et dans les ilots pancréatiques a permis de démontrer son importance dans le maintien de l’identité et de la fonction de la cellule beta. Pour la première fois, l’identification des cibles directes de RFX6 in vivo a été réalisée et a permis l’identification de l’ensemble du répertoire des gènes régulés directement par RFX6 dans les cellules beta qui n’ont pas été révélés dans le système cellulaire. Cette étude aura également permis d’identifier Mlxipl comme principale cible directement régulée par Rfx6 à la fois chez la souris et l’homme. Les expériences réalisées ont ainsi permis de déterminer les gènes cibles directs de RFX6 et contribué à élucider le rôle de ce facteur de transcription dans la différenciation et la fonction des cellules beta sécrétrices d’insuline. / Glucose homeostasis regulation in the body is the main function of insulin secreting beta cells in the endocrine pancreas. The winged-helix transcription factor RFX6 has recently been identified as a new pancreatic endocrine differentiation regulator, downstream of Ngn3,in zebra fish, mouse and human. Moreover, several Rfx6 mutations in humans were discovered and linked to the Mitchell Riley syndrome, which is characterized by neonatal diabetes, intestinal atresia and malabsorption. My thesis consisted of using an approach combining transcriptomic analysis in mouse and the identification of RFX6 target genes in a beta cell line as well as in pancreatic islets. This work has demonstrated the crucial role of RFX6 in maintaining beta cell identity and function. For the first time, RFX6 target genes were identified in vivo as well as the whole repertoire of directly regulated RFX6 target genesin beta cells, which were previously unidentified in the beta cell line. These studies have also shown that Mlxipl is a main RFX6 regulated target gene in mice and human. Overall, this work has allowed the clear identification of RFX6 target genes, thus contributing inunderstanding the role of this crucial transcription factor in the differentiation and function of insulin secreting beta cells.
212

Auxiliary Cells for the Vascularization and Function of Endogenous and Transplanted Islets of Langerhans

Grapensparr, Liza January 2017 (has links)
Type 1 diabetes develops through the progressive destruction of the insulin-producing beta-cells. Regeneration or replacement of beta-cells is therefore needed to restore normal glucose homeostasis. Presently, normoglycemia can be achieved by the transplantation of whole pancreas or isolated islets of Langerhans. Islet transplantation can be performed through a simple laparoscopic procedure, but the long-term graft survival is low due to poor revascularization and early cell death. This thesis examined the possibility of using different auxiliary cells (Schwann cells, endothelial progenitor cells, and neural crest stem cells) to improve the engraftment and function of endogenous and transplanted islets. Co-transplantation of Schwann cells with islets improved islet graft function early after transplantation, and caused an increased islet mass at one month posttransplantation. However, the vascular densities of these grafts were decreased, which also related to an impaired graft function. Islet grafts containing endothelial progenitor cells had a superior vascular density, with functional chimeric blood vessels and substantially higher blood perfusion and oxygen tension than control transplants. By culturing and transplanting islets together with neural crest stem cells it was found that islets exposed to these cells had a higher beta-cell proliferation compared with control islets. At one month posttransplantation, the grafts with neural crest stem cells also had a superior vascular- and neural density. The potential of intracardially injected neural crest stem cells to home to the pancreas and ameliorate hyperglycemia in diabetic mice was investigated. During a three-week period after such cell treatment blood glucose concentrations decreased, but were not fully normalized. Neural crest stem cells were present in more than 10% of the pancreatic islets at two days postinjection, at which time the beta-cell proliferation was markedly increased when compared with islets of saline-treated diabetic animals. Three weeks later, a doubled beta-cell mass was observed in animals receiving neural crest stem cells. In summary, islets can easily be transplanted together with different auxiliary cells. Some of these cells provide the possibility of improving vascular- and neural engraftment, as well as beta-cell growth and survival. Systemic administration of neural crest stem cells holds the potential of regenerating the endogenous beta-cells.
213

The Impact of Pancreatic Islet Vascular Heterogeneity on Beta Cell Function and Disease

Ullsten, Sara January 2017 (has links)
Diabetes Mellitus is a group of complex and heterogeneous metabolic disorders characterized by hyperglycemia. Even though the condition has been extensively studied, its causes and complex pathologies are still not fully understood. The occurring damage to the pancreatic islets is strikingly heterogeneous. In type 1 diabetes, the insulin producing beta cells are all destroyed within some islets, and similarly in type 2 diabetes, some islets may be severely affected by amyloid. At the same time other islets, in the near vicinity of the ones that are affected by disease, may appear fully normal in both diseases. Little is known about this heterogeneity in susceptibility to disease between pancreatic islets. This thesis examines the physiological and pathophysiological characteristics of islet subpopulations. Two subpopulations of islets were studied; one constituting highly vascularized islets with superior beta cell functionality, and one of low-oxygenated islets with low metabolic activity. The highly functional islets were found to be more susceptible to cellular stress both in vitro and in vivo, and developed more islet amyloid when metabolically challenged. Highly functional islets preferentially had a direct venous drainage, facilitating the distribution of islet hormones to the peripheral tissues. Further, these islets had an increased capacity for insulin secretion at low glucose levels, a response that was observed abolished in patients with recent onset type 1 diabetes.  The second investigated islet subpopulation, low-oxygenated islets, was found to be an over time stable subpopulation of islets with low vascular density and beta cell proliferation. In summary, two subpopulations of islets can be identified in the pancreas based on dissimilarities in vascular support and blood flow. These subpopulations appear to have different physiological functions of importance for the maintenance of glucose homeostasis. However, they also seem to differ in vulnerability, and a preferential death of the highly functional islets may accelerate the progression of both type 1 and type 2 diabetes.
214

Gene expression and cell cycle regulation in human pancreas development and congenital hyperinsulinism

Salisbury, Rachel January 2015 (has links)
The dynamics of β-cell mass are at the focus of an extensive international effort to develop β-cell replacement therapies for type 1 diabetes. During normal fetal development endocrine cells emerge from a pool of PDX1+/SOX9+ multipotent progenitors that transiently express the proendocrine gene NGN3. These cells become hormone-positive and are seen to bud from the ductal structures and aggregate into islet clusters. Congenital hyperinsulinism in its diffuse form (CHI-D) is characterised by an increase in hormone-positive cells associated with ducts and diffuse patterns of insulin expression. CHI-D arises from mutations inactivating the KATP channel and is diagnosed following persistent episodes of hypoglycaemia caused by an inappropriate secretion of insulin. Whilst existing knowledge has focused on the β-cell, we have explored the histology of CHI-D across multiple pancreatic cell lineages. The starting hypothesis considered CHI-D as an over-exuberance of endocrine differentiation with a progenitor population underlying this process. We suggest CHI-D is not simply an excessive proliferation of pre-existing β-cells. Expression of many transcription factors involved in endocrine differentiation were unchanged in CHI-D, NKX2.2 was increased and persisted in δ-cells. The incidence of nucleomegaly was also confirmed in CHI-D samples, predominantly in the β- and δ-cell lineages. Whilst increases in endocrine cell proliferation were subtle, the ductal and acinar cell lineages had significantly elevated proliferation correlating with changes in cell cycle regulation. The expression of NGN3 was profiled in a range of human fetal samples to determine whether a competence window for endocrine differentiation exists during development. Peak expression was observed between 10-17 wpc whilst protein and transcript expression were both reduced by birth and postnatally. Combined with the data in CHI-D and postnatal controls, it is likely that endocrine commitment ceases in human towards the end of gestation and that further increases in β-cell mass rely on proliferation or NGN3-independent pathways. These data provide new clues for the pathological mechanisms of CHI-D and the establishment and maintenance of the β-cell mass in the human pancreas. We have shown an altered potential for cell proliferation in CHI-D in previously unappreciated ways and provide a rationale for studying molecular components of the β-cell to help unlock β-cell proliferation as a therapeutic option in diabetes.
215

Caracterização molecular e funcional da enzina glutamato desidrogenase (GDH) em Ilhotas de ratos submetidos à restrição protéica e suplementados com leucina / Molecular and functional characterization of glutamate dehydrogenase (GDH) enzyme in irats islets submitted to protein restriction and supplemented with leucine

Silva, Priscilla Muniz Ribeiro da 18 August 2018 (has links)
Orientador: Everardo Magalhães Carneiro / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-18T10:36:45Z (GMT). No. of bitstreams: 1 Silva_PriscillaMunizRibeiroda_D.pdf: 2752788 bytes, checksum: a2b912ed65ab26f33708f44d094db90a (MD5) Previous issue date: 2011 / Resumo: A glutamato desidrogenase (GDH) é uma enzima mitochondrial que cataliza a reação reversível de glutamato a ?-cetoglutarato. Nas ilhotas pancreáticas, está associada com a secreção de insulina por aumentar a concentração de ATP. Ratos alimentados com dieta hipoprotéica apresentam secreção de insulina diminuída. A suplementação com leucina (LEU) aumenta a secreção de insulina em resposta a agentes insulinotrópicos. O presente estudo investigou a influência da suplementação com LEU na expressão da GDH e seu envolvimento com a secreção de insulina em ratos desnutridos e suplementados com LEU. Ratos machos foram alimentados com dietas normo- (17%, NP) ou hipoprotéicas (6%, LP) por oito semanas. Após, foram divididos e suplementados com LEU (1,5%) na água de beber (NPL e LPL) pelas quatro semanas seguintes. O conteúdo protéico de GDH no cérebro, fígado, rim e músculo esquelético não diferiu entre os grupos. Nas ilhotas LP, a expressão da GDH estava diminuída e a suplementação com LEU aumentou a expressão de RNAm restaurando o conteúdo protéico a valores similares a NP. A secreção de insulina estimulada por agentes insulinotrópicos ou inibidores, combinados ou não, estava diminuída em ilhotas LP comparada com NP. A suplementação com LEU aumentou a secreção de insulina a valores similares a NP, exceto quando as ilhotas LPL foram incubadas com EGCG. Ilhotas LP tiveram diminuição na [Ca2+]i quando expostas a GLN+BCH. A suplementação com LEU restaurou esses parâmetros aos valores de NP. Frente a esses resultados, podemos concluir que a diminuição na expressão da GDH induzida pela dieta LP foi central ao pâncreas endócrino e está associada à redução da secreção de insulina observada nas ilhotas LP. A suplementação com LEU foi capaz de restaurar a expressão da GDH, contribuindo para o aumento da secreção de insulina observado nas ilhotas LPL. Além disso, a GDH pode, ainda, estar associada com a secreção de insulina pelo acoplamento estímulo/secreção via regulação da [Ca2+]i / Abstract: Glutamate dehydrogenase (GDH) is a mitochondrial matrix enzyme that catalyzes the reversible reaction of glutamate to ?-ketoglutarate. In the pancreatic islets, this enzyme is associated with insulin secretion by augmenting ATP levels. Protein malnourished rats displayed reduced insulin secretion. Leucine (LEU) supplementation augments the insulin secretion response to insulinotropic agents. The present study investigated the influence of LEU supplementation on GDH expression and its involvement with insulin secretion in malnourished rats supplemented with LEU. Male rats were fed normal- (17%, NP) or low-protein diet (6%, LP) for eight weeks. Half of rats of each group were supplemented with LEU (1.5%) in drinking water for the following four weeks (NPL and LPL groups). GDH protein content in brain, liver, kidney and skeletal muscles was not different in any group. GDH RNAm and protein content was reduced in LP islets and LEU supplementation augmented RNAm expression restoring protein content similar to NP. Insulin secretion was reduced in LP islets compared with NP when stimulated by insulinotropics agents or inhybitors, combinaned or not. LEU supplementation augmented insulin secretion to similar values as NP, an effect that was blunted when LPL islets were incubated with EGCG. LP islets showed lower [Ca2+]i when exposed to GLN+BCH. LEU supplementation augmented these patterns similar to NP. Taken together, we may conclude that diminution in GDH expression induced by LP diet was central to endocrine pancreas and was associated with reduced insulin secretion observed in LP rats. LEU supplementation was able to restore GDH expression and it was capable to restore insulin secretion via GDH restoration. Yet, GDH may contribute to insulin secretion via Ca2+ regulation stimulus/secretion coupling / Doutorado / Fisiologia / Doutor em Biologia Funcional e Molecular
216

Potentiel cytoprotecteur des cellules souches mésenchymateuses sur les îlots exposés à des cytokines pro-inflammatoires ou encapsulés : identification de facteurs pouvant améliorer leur statut oxydatif et inflammatoire / Cytoprotective potential of mesenchymal stem cells on islets exposed to pro-inflammatory cytokines or encapsulation : identification of factors that can improve their oxidative and inflammatory status

Laporte, Camille 25 May 2018 (has links)
Bien que les résultats métaboliques de la transplantation d’îlots chez le patient diabétique de type 1 soient désormais bien démontrés, ils sont contrebalancés par les effets indésirables des traitements immunosuppresseurs et la perte de fonctionnalité du greffon à long terme.Au cours de cette thèse, nous avons étudié deux approches complémentaires offrant la perspective de s’affranchir du traitement immunosuppresseur tout en protégeant les îlots de l’apoptose et de la perte de fonctionnalité du greffon induites par les mécanismes d’isolement, de culture et de transplantation : l’immunoisolation des îlots dans des capsules de biomatériaux et la co-transplantation avec des cellules souches mésenchymateuses (CSM).Au sein du projet européen de pancréas artificiel BIOCAPAN, nous avons évalué in vitro, la biocompatibilité de différents biomatériaux et mis en évidence un effet combiné de la présence de CSM et des tripeptides RGD sur le maintien de la viabilité et de la fonctionnalité des îlots encapsulés. L’évaluation ultérieure de la biocompatibilité et de l’effet ajouté de la capsule BIOCAPAN sur des animaux diabétiques permettra la validation de la capsule qui sera proposée à des tests d’essais cliniques.Nous avons également démontré, dans un modèle de co-culture d’îlots avec des CSM dans des conditions de culture classiques et exposées à des cytokines pro-inflammatoires, que les CSM régulaient les capacités sécrétrices des îlots probablement via la régulation de l’hème oxygénase 1 (HO-1). L’identification des facteurs de transcription régulant HO-1 ainsi que des médiateurs permettant la communication entre les deux types cellulaires sont des perspectives de développement.Ce travail a souligné l’intérêt, au sein d’une approche immuno-isolante, de la reconstitution d’un environnement favorable au sein de la capsule permettant la préservation de l’îlot notamment via l’utilisation de CSM. / Although, the metabolic results of islets transplantation for patient with type 1 diabetes are now well documented, they are counteracted by the adverse effects of immunosuppressive therapies and the long-term loss in graft functionality.During this thesis, we worked on two complementary approaches offering the perspective of avoiding immunosuppressive treatment while protecting islets from apoptosis and loss of functionality induced by the mechanisms of isolation, culture and transplantation. These two tools are islet immunoisolation in capsules composed of specific biomaterials and islets co-transplantation with mesenchymal stem cells (MSCs) described for their immunomodulatory, proangiogenic and cytoprotective properties.In the european project of bioartificial pancreas BIOCAPAN, we have evaluated in vitro the biocompatibility of several biomaterials and we have highlight a combined effect of the presence of MSCs and tripeptides RGD on the viability and the functionality maintenance of the encapsulated islets. Subsequent in vivo validation of the biocompatibility and the added effect of the BIOCAPAN capsule on diabetic animals will allow the final validation of the capsule to be proposed for clinical trials.We also demonstrated, in an islet co-culture model with MSCs under conventional culture conditions and exposed to pro-inflammatory cytokines, that MSCs regulate the secretory capacity of islets probably via the regulation of heme oxygenase 1 (HO-1) described for its antioxidant and anti-inflammatory properties. The identification of transcription factors regulating HO-1 as well as mediators, allowing communication between the two cell types, are development perspectives.This work underlined the interest, within an immuno-isolation approach, of the reconstitution of a favorable environment within the capsule allowing the preservation of islet physiology thanks to the use of MSCs.
217

ER Stress and ATF6alpha potently induce S-Phase in Old Mouse Beta Cells Cultured Ex-Vivo in High Glucose

Snyder, Jarin T. 11 December 2020 (has links)
Aging is associated with a loss of proliferation of the insulin-secreting beta cell, a possible contributing factor to the greatly increased rate of type-2 diabetes in the elderly. A landmark study from our lab previously illustrated that mild endoplasmic reticulum (ER) stress drives beta cell proliferation specifically through ATF6α, one arm of the tripartite Unfolded Protein Response (UPR). It is unknown if old beta cells differ from young beta cells in UPR signaling or proliferative response to ER stress or ATF6α activation. To investigate, young and old mouse islets were cultured ex vivo in high glucose, and beta cell proliferation was quantified by BrdU incorporation after treatment with low dose thapsigargin or activation of overexpressed ATF6α. In addition, levels of UPR signaling were compared by semi-quantitative Xbp1 splicing assay. Interestingly, although old beta cells displayed reduced proliferation in glucose compared to young beta cells, their proliferative response to low-dose thapsigargin and ATF6α activation were nearly identical, and no difference was found in Xbp1 splicing under high glucose or high ER stress conditions. These results suggest that the aged mouse beta cell does not have impaired UPR-responsive proliferation or aberrant UPR signaling when cultured ex vivo
218

Vliv NADPH oxidázy na architekturu a funkci β buněk a Langerhansových ostrůvků / The role of NADPH oxidase in architecture and function of β cells and Langerhans Islets

Tučková, Štěpánka January 2020 (has links)
Local production of reactive oxygen species (ROS) and changes in the redox environment influence the metabolism and function of β cells of the Langerhans islets (LO). Changing the ratio between NAD(P)H / NAD(P)+ redox partners significantly affects sensitive proteins and ROS production. ROS are able to reversibly modify some amino acid residues (eg Cys, Met) of antioxidant enzymes and their interaction partners. Such a signaling cascade allows the transmission of a signal over longer distances and can also interfere with the influence of gene expression. The unique enzyme NADPH oxidase 4 (NOX4) is present on membranes within β cells and constitutively produces H2O2 depending on the presence of NAD(P)H. After glucose stimulation, both NAD(P)H and Nox4 mRNA levels increase. As previously observed in our laboratory, C57BL/6J mice with a specific Nox4 deletion in β cells have a disrupted biphasic insulin release and exhibit insulin resistance in fat and muscle tissue. We found that the absence of NOX4 in C57BL/6J mice affects LO architecture. Wildtype (WT) mice on a normal, predominantly carbohydrate diet (ND) have the majority of small LO with an area of up to 5 000 μm2 (measured on histological sections). High-fat diet (HFD) feeding of WT for 8 weeks leads to the development of diabetic phenotype and...
219

Uticaj tretmana akrilamidom na endokrini pankreas pacova / Effect of acrylamide treatment on endocrine pancreas of the rats

Stošić Milena 22 June 2018 (has links)
<p>Akrilamid&nbsp; je toksična hemijska supst anca koja je već dugi niz godina prisutna u životnoj sredini,&nbsp; jer se kao važan monomer koristi u različite industrijske i laboratorijske svrhe. U poslednjih petnaest godina, akrilamid je postao posebno zanimljiv za &scaron;ire naučne krugove jer&nbsp; se pokazalo da&nbsp; se&nbsp; nalazi&nbsp; i u&nbsp; hrani&nbsp; biljnog porekla, posebno hrani bogatoj skrobom, koja se priprema pečenjem ili prženjem na temperaturama vi&scaron;im od 120&deg;C.&nbsp; Do sada ustanovljeni negativni zdravstveni efekti akrilamida su veoma raznovrsni i mogu biti rezultat delovanja samog&nbsp; akrilamida ili delovanja njegovog metabolita glicidamida koji nastaje&nbsp; in vivo&nbsp; kada se jedan deo molekula akrilamida metaboli&scaron;e oksigenacijom dvostruke veze pomoću enzima citohrom P450 2E1 (CYP2E1). Akrilamid je supstanca koja ima dokazan negativan efekat&nbsp; na organske sisteme kod ljudi i životinja, i koja je svrstana u moguće humane karcinogene. Negativan efekat akrilamida na egzokrini pankreas je poznat, ali o mogućim efektima akrilamida na endokrini pankreas se i dalje veoma malo zna. Ima puno dokaza koji&nbsp; ukazuju na to da akrilamid ima citotoksični efekat koji se&nbsp; manifestuje kroz uticaj na redoks-status ćelija i dovodi do promena u vrednostima biomarkera oksidativnog i nitrozativnog stresa, kao i u aktivnosti antioksidativnih enzima. Pankreas&nbsp; je&nbsp; jedan od ciljnih&nbsp; organa za delovanje akrilamida te je&nbsp; glavni predmet istraživanja&nbsp; doktorske teze&nbsp; bio proučavanje potencijalnog efekta akrilamida na endokrini pankreas pacova.&nbsp; Ispitivanje je vr&scaron;eno na 3&nbsp; eksperimentalne grupe&nbsp; juvenilnih&nbsp; mužjaka pacova soja Wistar,&nbsp; od kojih je&nbsp; jedna grupa bila kontrolna, dok su dve bile tretirane&nbsp; sa akrilamidom u dozama od 25 mg/kg tm i 50 mg/kg tm,&nbsp; 5 dana nedeljno,&nbsp; tokom 3 nedelje. Po isteku tretmana,&nbsp; nakon dekapitacije, kompletno tkivo pankreasa&nbsp; je&nbsp; fiksirano u 10% rastvoru formalina&nbsp; tokom&nbsp; 24&nbsp; h i obrađeno prema&nbsp; standardnoj proceduri za kalupljenje u parafinu.&nbsp; Parafinski kalupi su sečeni na serijske preseke debljine 5 &micro;m, nakon čega su bojeni&nbsp; histohemijskom i imunohistohemijskim metodama.&nbsp; Kod eksperimentalnih grupa posmatrane&nbsp; su&nbsp; histolo&scaron;ke promene na endokrinom pankreasu, sa akcentom na &alpha;-&nbsp; i &beta;-ćelije.&nbsp; Takođe, posmatrana je&nbsp; i&nbsp; ekspresija&nbsp; hormona insulina i glukagona, enzima inducibilne azot -oksi d&nbsp; sintetaze (iNOS) i&nbsp; CYP2E1,&nbsp; kao&nbsp; i ekspresija&nbsp;&nbsp; antioksidativnih enzima&nbsp; katalaza&nbsp; (CAT) i superoksid dismut aza 1 i 2&nbsp; (SOD1 i SOD2)&nbsp; u ćelijama Langerhansovih ostrvaca. Potencijalna promena u funkcionalnosti &beta;-ćelija je ispitana i kroz analizu nivoa glukoze u serumu pacova tretiranih sa akrilamidom.<br />Budući da &beta;-ćelije čine 80% ćelija koje grade Langerhansova ostrvca pankreasa,&nbsp; pored in vivo&nbsp; eksperimenata, ispitana&nbsp; je&nbsp; i toksičnost akrilamida na&nbsp; Rin-5F ćelijsku liniju insulinoma &beta;-ćelija pacova u in vitro uslovima. Glavni cilj in vitro&nbsp; istraživanja je bio&nbsp; da se&nbsp; ispita&nbsp; uticaj&nbsp; rastućih&nbsp; koncentracija akrilamida na preživljavanje tretiranih&nbsp; Rin-5F&nbsp; ćelija, ali i efekat IC<sub>50</sub>&nbsp; koncentracije ove supstance primenjene&nbsp; tokom&nbsp; različitih vremenskih intervala&nbsp; (0,5, 1, 3, 6, 12 i 24 h)&nbsp; na pojavu oksidativnog i nitrozativnog stresa. Redoks-status Rin-5F ćelija tretiranih&nbsp; sa akrilamidom je ispitan preko analize prisustva biomarkera oksidativnog i nitrozativnog stresa, akrivnosti CAT i ukupne SOD, kao i promene u ekspresiji gena za CAT, SOD1, SOD2&nbsp;&nbsp; i iNOS.&nbsp; Pored toga, analiziran je i efekat istog tretmana na&nbsp; ekspresiju gena za insulin, CYP2E1, Bax i Bcl-2. U okviru teze je pokazano da akrilamid ne dovodi do&nbsp; značajnih promena u histolo&scaron;koj građi, dijametru i broju Langerhansovih ostrvaca&nbsp; kod&nbsp; tretiranih životinja.&nbsp; Primena stereolo&scaron;kih metoda&nbsp; je&nbsp; ukazala&nbsp; na mikrostrukturne promene na&nbsp; endokrinom pankreasu na nivou &alpha;-&nbsp; i &beta;-ćelija. U ovoj tezi je po prvi put pokazano da tretman akrilamidom negativno utiče na broj i povr&scaron;inu &beta;-ćelija pankreasa.&nbsp; U tezi je, takođe,&nbsp; pokazan&nbsp; značajan dozno-zavisni pad u prisustvu insulina u &beta;-ćelijama&nbsp;&nbsp; pankreasa. Uprkos&nbsp; tome, kod&nbsp; akrilamidom tretiranih&nbsp; životinja&nbsp; nije konstatovana&nbsp; promena&nbsp; u&nbsp; koncentraciji serumske glukoze.&nbsp; U&nbsp; ovoj tezi je pokazano da tretman akrilamidom dovodi do&nbsp;&nbsp; statistički značajnog porasta&nbsp; u broju &alpha;-ćelija&nbsp; kod životinja koje su primale nižu dozu tretmana, dok se&nbsp; broj &alpha;-ćelija&nbsp; kod životinja koje su primale vi&scaron;u dozu tretmana&nbsp; ne razlikuje značajno od kontrole.&nbsp; Tretman akrilamidom je doveo do značajnog&nbsp; porasta u količini&nbsp;&nbsp; prisutnog glukagona&nbsp; u &alpha;-ćelijama pankreasa.<br />Tretman akrilamidom nije doveo do značajne promene u ekspresiji CAT, SOD1 i SOD2 u ćelijama Langerhansovih ostrvaca.&nbsp; Kod&nbsp; tretiranih životinja&nbsp; do&scaron;lo do značajnog dozno-zavisnog porasta&nbsp; u ekspresiji&nbsp; enzima iNOS,&nbsp; dok je ekspresija&nbsp; CYP2E1 značajno dozno-zavisno opala&nbsp; nakon tretmana. U&nbsp; tezi je pokazano da tretman akrilamidom negativno utiče na vijabilnost Rin-5F ćelija, i utvrđeno je da IC50&nbsp; koncentracija akrilamida za Rin-5F ćelije iznosi 10 mM.&nbsp; Rezultati teze pokazuju da tretman akrilamidom u IC<sub>50</sub>&nbsp; koncentraciji u Rin-5F ćelijskoj liniji značajno povećava nivo malondialdehida (MDA) nakon tretmana u trajanju od 1, 12 i 24 h.&nbsp; Isti tretman&nbsp; značajno smanjuje nivo redukovanog GSH nakon tretmana od 1, 3, 6, 12 i<br />24 h, kao i nivo slobodnih&nbsp; &ndash;SH grupa nakon tretmana od 3 i 6 h. Tretman akrilamidom u IC<sub>50&nbsp;</sub> koncentraciji signifikantno pojačava aktivnost CAT nakon tretmana od 1 h, dok tretman u trajanju od 12 h značajno smanjuje aktivnost ovog enzima. Ovaj tretman smanjuje aktivnost SOD nakon 1, 12 i 24 h, dok&nbsp; tretman u trajanju od 6 h značajno pojačava aktivnost enzima SOD.&nbsp; U tezi je, takođe, pokazan i veoma značajan porast&nbsp; u nivou prisutnih nitrita,&nbsp; koji&nbsp; je direktno proporcionalan&nbsp; sa nivoom azot-oksida i nivoom akivnosti enzima iNOS.&nbsp; Ovaj&nbsp; nalaz ukazuje na potencijalnu pojavu nitrozati vnog stresa u akrilamidom-tretiranim Rin-5F ćelijama.&nbsp; U&nbsp; tezi je po prvi put pokazano da tretman&nbsp; akrilamidom dovodi do&nbsp; značajnih&nbsp; varijacija&nbsp; u transkripciji gena za iNOS, SOD1, SOD2,&nbsp; CAT,&nbsp; CYP2E1,&nbsp; Bax i Bcl-2 u tretiranim Rin-5F ćelijama, dok isti tretman ne dovodi do&nbsp; promene nivoa&nbsp; transkripcije gena za insulin.&nbsp; Tretman akrilamidom u koncentraciji od 10<br />mM tokom rastućih vremenskih perioda dovodi do porasta u relativnoj količini iRNK<br />gena za iNOS u svim tačkama tretmana, do porasta&nbsp; nivoa&nbsp; iRNK za SOD1 i SOD2 nakon tretmana od 12 i 24 h, kao i do porasta&nbsp; količine&nbsp; iRNK za CAT nakon tretmana od 3 h.&nbsp; U&nbsp; tezi je pokazano&nbsp; i&nbsp; da akrilamid&nbsp; izaziva&nbsp; promene&nbsp; u sintezi&nbsp; iRNK&nbsp; za enzim&nbsp; CYP2E1&nbsp; koji je&nbsp; posebno značajan u kontekstu detoksikacije ove toksične supstance.&nbsp; Porast u transkripciji gena za&nbsp; CYP2E1&nbsp; je uočen&nbsp; nakon tretmana u trajanju od 0,5 i 1 h, dok je&nbsp; do smanjenja transkripcije&nbsp; do&scaron;lo&nbsp; nakon tretmana od 12&nbsp; i 24&nbsp; h.&nbsp; Tretman akrilamidom u koncentraciji od&nbsp; 10 mM tokom rastućih vremenskih perioda dovodi do porasta u relativnoj količini iRNK&nbsp; gena za Bax u svim tačkama tretmana, i do porasta u transkripciji gena za Bcl-2 nakon tretmana od 0,5, 1 i 3 h.<br />Sumirajući&nbsp; sve&nbsp; rezultate&nbsp; ove teze,&nbsp; moze se zaključiti&nbsp; da je endokrini pankreas&nbsp; jedno od&nbsp; ciljnih tkiva, na koje akrilamid ostvaruje vi&scaron;estruki negativni uticaj.</p> / <p>Acrylamide is a toxic chemical used as an important monomer for various industrial and laboratory purposes, which makes it highly present in the environment. In the last fifteen years, acrylamide has become especially interesting for wider scientific circles when it was found in staple foodstuff rich in starch, prepared at temperatures higher than 120&deg;C. The established negative health effects of acrylamide are very diverse and can be the result of the acrylamide action itself or the action of its metabolite glycidamide that occurs in vivo, when acrylamide molecule is metabolized via oxygenation of the double bond by the cytochrome P450 2E1 (CYP2E1). Acrylamide is a substance with a proven adverse effect on humans and animals, and it is classified as a possible human carcinogen. The negative effect of acrylamide on the exocrine pancreas has already been recognized, but the possible effects of acrylamide&nbsp; on endocrine pancreas are still mostly undetermined. There is a significant amount of evidence to suggest that acrylamide exerts a cytotoxic effect which manifests through the changes in level of oxidative and nitrosative stress biomarkers, as well as in the activity of antioxidant enzymes. Since, pancreas is one of the target organs for acrylamide, the main subject of doctoral thesis was to investigate the potential effect of acrylamide on the rat endocrine pancreas. The investigation was conducted on 3 experimental groups of juvenile male Wistar rats, of which one group was the control group, while two groups were treated with acrylamide at doses of 25 mg/kg bw and 50 mg/kg bw, 5 days a week, during 3 weeks. After termination of the treatment, decapitation was performed, and the complete pancreatic tissue was fixed in a 10% formalin solution for 24 h and treated according to the standard paraffin embedding procedure. Paraffin molds were cut into 5 &mu;m thick serial sections, after which they were stained with histochemical and immunohistochemical methods. Histological changes ofthe endocrine pancreas, with the emphasis on &alpha;- and &beta;-cells, were examined in three experimental groups of rats. In addition, the expression of insulin and glucagon hormone, the inducible nitric oxide synthase (iNOS) and CYP2E1 enzymes, and the expression of antioxidative enzymes catalase (CAT) and superoxide dismutases 1 and 2&nbsp; (SOD1 and SOD2) in the islets of Langerhans were also investigated. A potential change in the functionality of &beta;-cells was also examined by analyzing glucose level in the serum of rats treated with acrylamide. In pancreatic islets of Langerhans the majority of cells (&gt;80%) are &beta;-cells. Therefore, in addition to in vivo experiments, the toxicity of acrylamide was examined in vitro on rat insulinoma Rin-5F cell line.The main goal of in vitro research was to investigate the impact of increasing acrylamide concentrations on the viability of treated Rin-5F cells, and also to examine whether IC50 concentration of this substance, applied at different intervals of time (0.5, 1, 3, 6, 12 and 24 h), induce oxidative and nitrosative stress. Redox-status of Rin-5F cells treated with acrylamide was examined by analyzing oxidative and nitrosative stress biomarkers, CAT and total SOD activity, as well as changes in the expression of the CAT, SOD1, SOD2 and iNOS. In addition, the effect of the same treatment on the transcription of the insulin, CYP2E1, Bax and Bcl-2 gene was analyzed.The results of the thesis showed that acrylamide treatment does not lead to significant changes in the histological structure, diameter and number of islets of Langerhans of treated animals. Application of stereological methods indicated microstructural changes of &alpha;- and &beta;-cells ofendocrine pancreas. It has been shown for the first time that treatment with acrylamide negatively affects the number and surface area of pancreatic &beta;-cells. In addition, a significant dose-dependent decline in the amount of insulin in pancreatic &beta;-cells was also demonstrated. However, no change in serum glucose level was observed in treated animals. Acrylamide treatment led to a statistically significant increase in the number of &alpha;-cells in animals receiving a lower dose of treatment, while the number of &alpha;-cells in animals receiving a higher dose of treatment did not differ significantly from the control. Treatment with acrylamide led to a significant increase in the amount of the glucagon in &alpha;-cells. Treatment with acrylamide did not cause a significant change in the expression of CAT, SOD1 and SOD2 in islets of Langerhans. However, there was a significant dosedependent increase in the&nbsp; expression of iNOS enzyme, whereas expression of CYP2E1 significantly decreased in dose-dependent manner in treated animals. Results of the thesis showed that acrylamide exerts a negative effect on the viability of Rin-5F cell line. It has been established that the IC50 concentration of acrylamide for the Rin-5F cell line is 10 mM. The results of the thesis indicate that treatment of Rin-5F cell line with IC50 concentration of acrylamide for 1, 12, and 24 h significantly increased the level of malondialdehyde (MDA). Exposure to acrylamide for 1, 3, 6, 12 and 24 h significantly decreased the level of reduced GSH, while the level of free -SH groups was reduced after 3 and 6 h of acrylamide treatments. Treatment with IC50 concentration of acrylamide significantly enhanced CAT activity after 1 h of acrylamide exposure, while 12 h exposure significantly reduced the activity of this enzyme. Application of acrylamide reduced SOD activity after 1, 12, and 24 h exposure, while 6 h exposure significantly increased the activity of SOD enzymes. Results of the thesis also showed a very significant increase of the nitrite level, which is directly proportional to the level of nitrogen oxide (NO) and the level of the iNOS activity. This finding points to the potential occurrence of nitrosative stress in acrylamide-treated Rin-5F cells. It has been shown for the first time that acrylamide treatment leads to significant variations in transcription of iNOS, SOD1, SOD2, CAT, CYP2E1, Bax and Bcl-2 genes in treated Rin-5F cells, while the same treatment does not affect transcription of the insulin gene. Treatment with acrylamide at a concentration of 10 mM for increasing periods of time leads to an increase in the relative amount of the iNOS gene iRNA at all treatment points. Twelve and and 24 h of acrylamide exposure increased the transcription of the SOD1 and SOD2 genes. Transcription of CAT gene was increased after 3 h&nbsp; ofacrylamide exposure. Furthermore, it has been shown that acrylamide treatment leads to variations in the mRNA synthesis of CYP2E1 gene, which is particularly significant in the context of detoxification of this toxic substance. An increase in the transcription ofthe CYP2E1&nbsp; gene was observed after 0.5 and 1 h of acrylamide exposure, while the reduction of&nbsp; transcription occurred after 12 and 24 h of acrylamide exposure. The treatment with 10 mM acrylamide has led to an increase of the transcription of the Bax gene at all treatment points, and also to an increase of transcription of the Bcl-2 gene after of 0.5, 1, and 3 h of acrylamide exposure. Summarizing all the results of this thesis, it can be concluded that the endocrine pancreas&nbsp; is one of the target tissues of acrylamide, to which this substance exerts a multiple adverse effects.</p>
220

Preparation of Pancreatic EndoCβH1 cells alone and together with Boundary Cap Neural Crest Stem cells for a microgravity experiment

RANGASWAMY, SRINIVASAPRASAD January 2022 (has links)
Migrating to Mars is the next exploration of human space missions and adapting to the extreme environment for a long period of time needs to be studied in-prior. Studies on cells in space may promote advancements in our understanding of the human body. The aim of this study is to optimize the protocol for the preparation of EndoCβH1 cells alone in the space chamber and co-culturing EndoCβH1 cells and BCs for microgravity experiments. We analyzed the cell survival and biocompatibility of β- cells with different parameters and the best concentration was used for the co-culture test. A 1:1 ratio of β-cells and BCs were cultured in the space chamber for viability and survival test. Co-culture experiment showed a significant increase in β-cell viability in the space chamber relative to in vitro tests. The effects of mitochondrial health of the cell inside the chamber was evaluated using the mitochondrial membrane test using the fluorescent probe 5,5,6,6’- tetrachloro-1,1’,3,3’ tetraethylbenzimi-dazoylcarbocyanine iodide (JC-1). We determined that the β-cell fitness inside the chamber was two times higher than the 24-well plate. To assess the viability of β-cells in a bioprinted gelatin scaffold we used the Live-dead fluorescence microscopy assay. Scaffolds were stained with Calcein AM (CAM) and propidium iodide (PI) and checked for survival. The result of scaffold staining showed that β- cells in gelatin and BCs in the media had more living cells compared to β-cells without BCs. Thus, space flight (SF) exposure to this culture system can be a platform for further studies in the treatment of diabetes.

Page generated in 0.0357 seconds