• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 84
  • 37
  • 14
  • 7
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 146
  • 146
  • 69
  • 51
  • 43
  • 40
  • 35
  • 34
  • 32
  • 26
  • 22
  • 22
  • 21
  • 20
  • 20
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

A expressão e atividade da NAD(P)H oxidase em ilhotas pancreáticas de ratos tratados com dieta hiperlipídica. / NAD(P)H oxidase expression and activity in pancreatic islets from rats treated with high fat diet.

Valle, Maíra Mello Rezende 28 August 2009 (has links)
O uso de dieta hiperlipídica com banha de porco em roedores induz obesidade, resistência à insulina e disfunção das células beta do pâncreas. Em diversos tecidos de animais tratados com dieta hiperlipídica já se observou aumento de expressão e/ou atividade da NAD(P)H oxidase, que pode estar envolvida em processos fisiopatológicos. O objetivo deste trabalho foi avaliar se a dieta hiperlipídica altera a expressão e/ou a atividade da NAD(P)H oxidase em ilhotas pancreáticas e se este fato pode estar associado às disfunções das células beta relatadas na literatura para este modelo animal. As ilhotas pancreáticas dos animais tratados com dieta apresentam maior secreção de insulina em alta glicose, maior metabolização da glicose, menos apoptose, menor expressão protéica de subunidades da enzima, menor produção de superóxido e não apresentam estresse oxidativo. O papel da enzima provavelmente se relaciona ao processo de secreção de insulina. A regulação de sua expressão e atividade deve estar relacionada à adaptação das ilhotas aos efeitos deletérios da dieta. / Feeding animals with high fat diet containing lard causes obesity, insulin resistance and dysfunction of pancreatic beta cells. High fat diet induces oxidative stress and modulates NAD(P)H oxidase expression and activity in many tissues. This enzyme may be involved in many pathophysiological processes. The objective of this study was to evaluate the action of high fat diet on NAD(P)H oxidase activity and expression and if this fact can be connected to the beta cell dysfunction reported in the literature on this animal model. In pancreatic islets of rats fed the high fat diet apoptosis was reduced, glucose metabolism increased, insulin secretion elevated at high glucose, protein expression of NAD(P)H oxidase subunits reduced and the superoxide production was diminished. There was no difference between the groups for oxidative stress markers. It is possible that the enzyme has a role in the process of insulin secretion. Probably the islets are regulating their activity and function to compensate the deleterious effect of lard.
122

O efeito pró-apoptótico de oligômeros da amilina humana não é potencializado pela lipotoxicidade em ilhotas pancreáticas de rato em cultura / The pro-apoptotic effect of human amylin oligomers is not potentiated by lipotoxicity in rat pancreatic islets in culture

Oliveira, Érika Rodrigues de 25 July 2012 (has links)
O depósito de amilina é um achado histopatológico frequente em pacientes portadores de diabetes mellitus tipo 2 (DM 2) e parece estar relacionado à disfunção da célula beta pancreática característica desta doença. Um estudo previamente desenvolvido em nosso laboratório verificou que oligômeros de amilina humana provocam diminuição na expressão do mRNA do gene que codifica o receptor do hormônio incretínico peptídeo insulinotrópico dependente de glicose (Gipr) e aumento do índice de apoptose em ilhotas pancreáticas de rato mantidas em cultura. Considerando o importante papel do depósito amilóide e das incretinas na fisiopatologia do DM 2, os objetivos deste trabalho foram investigar (1) o efeito da amilina humana sobre a expressão dos receptores de incretinas e (2) a modulação de seu efeito tóxico por outras condições concomitantes presentes no DM, como a lipotoxicidade e os produtos finais de glicação avançada (AGEs). Para isto, foi realizada a avaliação da expressão do mRNA dos genes Gipr e Glp1r (receptor do peptídeo semelhante ao glucagon) por PCR em tempo real em ilhotas expostas apenas aos oligômeros de amilina humana (10 M) por 4 e 8 h e em ilhotas expostas aos oligômeros e ao palmitato (0,5 mM) por 24 e 48 h; avaliação da expressão das proteínas GIPR e GLP1R por Western blot em ilhotas tratadas com oligômeros de amilina por 12 h; e avaliação do índice de apoptose pela quantificação da atividade de caspase 3 em ilhotas tratadas com oligômeros de amilina isoladamente, ou na presença de palmitato (0,5mM) por 48 h ou 5 mg/ml de albumina glicada (AlbGAD) por 72 h. A amilina não provocou alteração na expressão dos genes Gipr e Glp1r após 4 h de exposição. Após 8 e 24 h de tratamento, os oligômeros modularam negativamente a expressão destes genes. Entretanto, o tratamento das ilhotas com amilina por 48 h resultou no aumento da expressão do mRNA dos receptores de incretinas. O tratamento simultâneo com palmitato não alterou o efeito modulatório da amilina sobre a expressão dos genes Gipr e Glp1r após 24 e 48 h. A exposição das ilhotas aos oligômeros de amilina por 12 h não causou alteração na expressão das proteínas GIPR e GLP1R. A lipotoxicidade e a albumina glicada não aumentaram o efeito pró-apoptótico da amilina sobre as ilhotas pancreáticas. Em conclusão, a redução na expressão gênica dos receptores de incretinas em ilhotas pancreáticas de rato expostas aos oligômeros de amilina, que poderia indicar um mecanismo adicional pelo qual a amilina exerceria seu efeito deletério sobre células beta, diminuindo o efeito insulinotrópico induzido pelas incretinas em pacientes com DM 2, não foi constatada em relação à expressão protéica de GIPR e GLP1R no período de tempo estudado. O aumento na expressão do mRNA destes receptores provocado pela amilina após 48 horas de incubação poderia ser um mecanismo de compensação das células frente aos efeitos tóxicos dos oligômeros de amilina. O efeito próapoptótico da amilina humana sobre as células beta não parece ser potencializado pela lipotoxicidade ou por AGEs / The amyloid deposit is a common histopathological feature in patients with type 2 diabetes mellitus (T2DM) and it seems to be related to the pancreatic beta cell dysfunction characteristic of this disease. A study previously developed in our laboratory found that human amylin oligomers decrease mRNA expression of the glucose-dependent insulinotropic polypeptide receptor (Gipr) and increase apoptosis rate in rat pancreatic islets maintained in culture. Considering the important role of the amyloid deposition and of incretins in the pathophysiology of T2DM, the aims of the present study were to investigate (1) the effect of human amylin on the expression of incretin receptors and (2) the modulation of amylin toxicity by other concomitant conditions present in T2DM, as lipotoxicity and advanced glycation end products (AGEs). The evaluation of mRNA expression of Gipr and Glp1r (glucagonlike peptide -1 receptor) was performed by real time PCR in islets exposed only to human amylin oligomers (10 M) for 4 and 8 h, and in islets exposed to human amylin and palmitate (0,5 mM) for 24 and 48 h; GIPR and GLP1R protein expression was assessed by Western blot in islets treated with amylin oligomers by 12 h; apoptosis rate was evaluated by measuring caspase 3 activity in islets treated with amylin alone or combined to palmitate (0,5 mM) for 48 h or 5 mg/mL of glycated albumin (AlbGAD) for 72 h. Amylin did not affect the expression of Gipr and Glp1r mRNA following 4 h of exposure. Eight and 24 h after treatment, amylin negatively modulated the expression of these genes. However, treatment of the islets for 48 h with amylin elicited an increase in mRNA expression of both incretin receptors. The simultaneous treatment with palmitate did not change the effects of amylin on the expression of Gipr and Glp1r mRNA after 24 and 48 h. Exposure of islets to amylin for 12 h caused no change in GIPR and GLP1R protein expression. Lipotoxocity and glycated albumin did not increase the pro-apoptotic effect of amylin on pancreatic islets. In conclusion, the reduction in mRNA expression of the incretin receptors on rat pancreatic islets exposed to amylin, which could indicate an additional mechanism whereby amylin exert its deleterious effect on beta cells, reducing the insulinotropic effects of incretins in patients with T2DM was not confirm regarding GIPR and GLP1R protein expression at the time period studied. The increased mRNA expression of these receptors caused by amylin after 48 h of incubation could be a compensation mechanism against the toxic effects of amylin oligomers. The pro-apoptotic effect of amylin on human beta cells does not appear to be potentiated by lipotoxicity or by advanced glycation end products
123

Potential roles of angiotensin ii, glucagon like peptide-1 and vitamin D systems in pancreatic islet function. / CUHK electronic theses & dissertations collection

January 2010 (has links)
胰腺的胰島具有重要的生理功能,表現在系列的荷爾蒙,特別是能夠控制血糖穩態的胰島素的合成和分泌。胰島素的功能受到各種分子信號及環境的調節。在過去的十年裡,腎素血管緊張素系統(RAS)被發現除了調節血壓和體液穩態之外還具有局部性的生理功能。根據我們最近的發現,胰島存在自有的腎素血管緊張素系統並且可能在胰島生理作用和糖尿病方面發揮新穎的作用。同時,越來越多的研究發現一些與臨床相闊的調節因子在胰島的功能和糖尿病中起著關鍵的作用。這些調節因子促進胰島素分泌並且可以調節胰島細胞的生長和凋亡。其中一些調節因子顯示出極大的研究價值。胰高血糖素樣肽-1(GLP-1)能通過它在胰島上的受體改善胰島的功能和血糖的控制;另一方面, 維生素D 也可以通過它在胰島B細胞上的受體來起到調節胰島素分泌及控制糖尿病的作用。像胰島局部RAS一樣, GLP-1 和維生素D 都可以通過它們在同一個靶器官--胰島細胞上的受體來發揮它們的功能。因此,不難想象這三種調節因子之前具有潛在的聯系並且直接或間接地影響胰島功能。此研究可以分為三部分以闡述這三種調節因子在胰島上的新穎作用(1) GLP-l 和RAS 在胰島功能上的潛在協同作用; (2)維生素D 對於胰島RAS 表達的調節作用及對膜島功能的影響;(3) 維生素D 缺乏下的胰島RAS 表達以及胰島功能的改變。 / 在第一部分的研究裡,我們檢測了阻斷血管緊張素一型受體(纈沙坦)和增強GLP-l 作用(DPPIV 抑制劑LAF237) 的復合效應對二型糖尿病小鼠(db/db) 血糖控制和胰島功能方面的影響。我們比較了接受單一給藥和聯合給藥的db/db 小鼠的胰島功能。所有的藥物處理都改善了db/db 小鼠的血糖穩態,而聯合給藥組在增加胰島B細胞面積,減少細胞凋亡,促進增殖以及降低膜島氧化應激和膜島纖維化方面體現出復合效應。另外,短期的聯合給藥顯著促進分離出來的胰島細胞的胰島素分泌。這些結果顯示了血管緊張素型受體阻斷劑和DPPIV 抑制劑在改善胰島的結構與功能以及治療二型糖尿病方面具有復合效應。 / 據研究,維生素D 是種具有抗糖尿病和高血壓作用的荷爾蒙,而不適合的RAS活性能夠減少胰島功能和糖耐量。維生素D 對腎臟腎素的直接抑制作用表明維生素D 可能可以調節胰島得局部RAS 活性進而調節胰島的生理作用。因此第二部分的實驗旨在研究維生素D 是否能夠抑制分離培養的胰島中非正常表達的胰島局部RAS組分並且改善胰島且細胞功能。維生素D 受體存在於胰島且細胞的核與質中,計量依賴性地調節受體對活性維他命D-骨化三醇的反應。骨化三醇的刺激可以通過增加維生素D24羥化黣激發胰島局部維他命D 系統的反饋機制。在分離的胰島中,長期處於高糖的環境,胰島局部RAS 的異常表達可以一定濃度的骨化三醇治療和預防。然而,骨化三醇的送科治療效果,並沒有在生理正常糖濃度的情況下被發現。另外,在高糖環境下,骨化三醇增加胰島素前體合成以及葡萄糖刺激的服島素分泌。這些結果顯示骨化三醇能夠調節以及保護高糖環境引起的異常胰島RAS 組分表達並通過增加胰島素的合成與分泌來改善胰島的功能,為在高血糖和糖尿病情況下的維生素D 與胰島功能關系提供了新的機制。 / 循環中的維生素D 水平與血糖濃度以及糖尿病的患病風險成反比。第二部分的實驗結果現實了維生素D 具有潛在的調節胰島RAS 進而調節胰島功能的作用。因此,在第三部分的實驗裡,我們假設不充足的維生素D 水平可能引起異常的胰島RAS 表達進而引起胰島功能障薇。為了這個目的,我們使用了維生素D 受體缺失的基因敲除小鼠和維生素D 缺乏小鼠來檢測糖代謝,膜島形態以及局部RAS 組分的表達。結果顯示,在缺乏維生素D 以及正常的維生素D 作用的情況下,胰島局部RAS 組分異常表達。而這個維生素D 導致的RAS 異常表達的作用可能發生在高血糖現象之前,從而導致了胰島功能障礙,異常的糖代謝以及減弱的胰島且細胞本身的胰島素作用。這些結果為在生理情況下,維生素D 可以通過調節胰島局部RAS 的表達進而調節胰島功能提供了有力的支持。 / 總括來說,胰島局部RAS 在持續高糖環境下的胰島功能中有著關鍵的作用。GLP-l 和維生素D 都與胰島RAS 具有潛在的生物相關性並可以影響RAS 的表達,進而調節胰島功能和自細胞體積。我們的實驗數據顯示了這三種調節系統共同作用並調節目突島細胞功能以及血糖穩態,進一步提議了它們在二型糖尿病治療中的價值。 / Pancreatic islets perfonn critical biological activities by means of synthesizing and releasing islet peptide honnones, notably insulin that controls our glucose homeostasis. The insulin secretory function is, in turn, governed by various conditions and signaling molecules. In the past decade, it is recognized that the renin-angiotensin system (RAS) has local function rather than the maintenance of blood pressure and fluid homeostasis. With our recent recognition of an islet RAS, it is believed that it has novel roles in islet physiology and diabetes. Meanwhile, more and more clinically relevant regulators that have pivotal roles in islet function and diabetes have been well investigated; such regulators have positive action on insulin secretion, B-cell replication and cell apoptosis/proliferation balance. Of great interest in this context is the glucagon-like peptide I (GLP-I) that improves islet function and glycemic control via its islet specific receptors located on the islets. On the other hand,vitamin D also regulates islet insulin secretion and diabetes via its mediation of receptors on islet B-cells. Like islet RAS, GLPI and vitamin D exert their biological effects via mediation of respective receptors located on the common target, i.e. the islet beta-cells. As such, it is plausible to propose that all these three regulators have potential interactions so as to affect islet functions in a direct or an indirect manner. Accordingly, the primary objective of this study is to examine the potential roles oflocal RAS, GLP-I and vitamin D system in pancreatic islet function. The present study is thus divided into three main parts addressing the issues of these three novel regulators in islet function: (1) the potential synergism of GLP-I and RAS in islet function; (2) the modulatory effects of vitamin D on islet RAS expression and function; (3) The altered islet RAS and islet function under a hypovitaminosis D condition. / In the first part of our study, we examined the combined effect of blocking islet A Tl receptor (ATl receptor blocker: valsartan) and enhancing GLP-l actions (DPP IV inhibitor: LAF237) on islet function and glycemic control in a mouse model with type 2 diabetes, db/db mice. We compared the islet function in db/db mice with either valsartan or LAF237 mono treatment or combined treatment. Consistently, all these treatments improved glucose homeostasis in db/db mice while combined treatment resulted in a significant increase in islet B-cell area by decreasing cell apoptosis and increasing proliferation, together with marked decreases of islet oxidative stress and fibrosis. In addition, a short-term effect on stimulating insulin secretion was also observed in isolated islets with combined treatment. These results indicate that the combination treatments with ATl receptor blocker and DPP IV inhibitor has beneficial additive effects on islet structure and function in type 2 diabetes, compared with their monotherapeutic treatments. / It is reported that vitamin D is a hormone with anti-diabetic and anti-hypertension effects in human while inappropriate RAS activity has been known to reduce islet function and glucose tolerance. The direct suppressive effect of vitamin D on renal renin activity indicates vitamin D may acts as a regulator in RAS activity thus modulate islet physiology. In the second part of our study, it was aimed to study whether vitamin D vitamin D downregulation of abnormal islet RAS activity improves B-cell function using an isolated pancreatic islet model. VDR was localized in islet B-cell nuclei and cytoplasm, mediated responses to active form of vitamin D calcitriol in a dose-dependent manner. This islet local vitamin D system may have its own feedback system as a marked increase ofCYP24 transcription was triggered by calcitriol stimulation. In isolated islets exposed to prolonged high glucose environment, abnormal expressed islet RAS components could be reversed or protected by calcitriol at a specific concentration. However, the inhibition effect of calcitriol on islet RAS were not observed at physiological glucose concentrations. In additon, calcitriol increased islet proinsulin synthesis and insulin secretion with hyperglycemia. These results indicated that calcitriol modulate or protect the abnormal isolated islet RAS component expression against hyperglycemia and improve islet function via increasing insulin synthesis and secretion, which might provide an alternative mechanism by which vitamin D availability enhances islet function in hyperglycemia or diabetes. / The circulating vitamin D level is inversely related to blood glucose level and risks of diabetes. Results in the second part of experiments suggested the potential RAS modulatory effect of vitamin D in isolated islets Therefore, in the third part of our study, we hypothesize that the insufficient vitamin D levels may lead to the inappropriate regulation of islet RAS expression and thus result in islet dysfunction. To achieve this, we examined the potential islet RAS-mediated effect of vitamin D on islet function by accessmg glucose homeostasis, islet histomorphology, and local RAS expression and function by means of using a vitamin D receptor knockout and diet-induced vitamin D deficiency mouse models. Results showed that the islet RAS components were abnormally expressed when lacking a sufficient vitamin D level and normal vitamin D action. These observed effects of insufficient vitamin D might occur prior to onset of hyperglycemia thus modulating islet RAS expression, which in turn lead to islet failure and dysfunctional glucose homeostasis, together with decreased insulin actions in islet B-cells. These results provide supports for the view that vitamin D physiologically exerts modulatory effects on islet function by downregulating islet RAS expression and function. / In summary, islet local RAS may have a central role in islet function under prolonged hyperglycemic stress. GLP-l and vitamin D have biological interactions with the islet RAS by downregulation of its expression and function, thereby affecting islet cell function and cell mass. Our data indicate that all three regulators work together in the regulation of pancreatic islet B-cell functions and glucose homeostasis, further suggestive of their potential values in the treatment of type 2 diabetes. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Detailed summary in vernacular field only. / Cheng, Qianni. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves [205]-243). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstract also in Chinese. / Abstract --- p.i / 摘要 --- p.v / Acknowledgements --- p.viii / List of Publications --- p.x / Table of Contents --- p.xii / List of Abbreviations --- p.xvi / Chapter Chapter 1 --- General Introduction --- p.1 / Chapter 1.1 --- Endocrine Pancreas --- p.2 / Chapter 1.1.1 --- The structure and composition of endocrine pancreas --- p.3 / Chapter 1.1.2 --- Functions of endocrine pancreas --- p.4 / Chapter 1.1.3 --- Insulin structure and insulin receptors --- p.8 / Chapter 1.1.4 --- Mechanisms of insulin secretion --- p.11 / Chapter 1.1.5 --- Mechanisms of insulin actions --- p.18 / Chapter 1.1.6 --- Disorders of the endocrine pancreas --- p.22 / Chapter 1.2 --- Diabetes mellitus --- p.23 / Chapter 1.2.1 --- Type 1 diabetes mellitus (TlDM) --- p.24 / Chapter 1.2.2 --- Type 2 diabetes mellitus (T2DM) --- p.26 / Chapter 1.2.3 --- Other types of diabetes mellitus --- p.29 / Chapter 1.2.4 --- Islet dysfunction and T2DM --- p.30 / Chapter 1.3 --- Renin-angiotensin system (RAS) --- p.33 / Chapter 1.3.1 --- Components ofRAS --- p.33 / Chapter 1.3.2 --- Tissue local RAS --- p.42 / Chapter 1.3.3 --- Pancreatic local RAS --- p.43 / Chapter 1.4 --- Glucagon like peptide-l (GLP-l) and pancreatic islet function --- p.54 / Chapter 1.4.1 --- Gastrointestinal incretin honnones --- p.54 / Chapter 1.4.2 --- GLP-l and pancreatic islet function --- p.56 / Chapter 1.4.3 --- Incretin based therapies for T2DM --- p.59 / Chapter 1.4.4 --- GLP-lIRAS axis and pancreatic islet function --- p.62 / Chapter 1.5 --- Vitamin D and pancreatic islet function --- p.64 / Chapter 1.5.1 --- Vitamin D synthesis and metabolism --- p.65 / Chapter 1.5.2 --- Vitamin D physiological functions and pancreatic islets --- p.67 / Chapter 1.5.3 --- Vitamin D and diabetes mellitus --- p.68 / Chapter 1.5.4 --- Vitamin D and RAS --- p.70 / Chapter 1.6 --- Objectives --- p.71 / Chapter Chapter 2 --- Materials and Methods --- p.73 / Chapter 2.1 --- Experimental animal models --- p.74 / Chapter 2.1.1 --- Animal model ofT2DM --- p.74 / Chapter 2.1.2 --- Animal model for pancreatic islet isolation --- p.75 / Chapter 2.1.3 --- Vitamin D receptor knockout mice (VDRKO mice) --- p.75 / Chapter 2.1.4 --- Animal model for vitamin D deficiency --- p.76 / Chapter 2.2 --- Pancreatic islet isolation and culture --- p.76 / Chapter 2.2.1 --- Mice pancreatic islet and single B-cell isolation --- p.77 / Chapter 2.2.2 --- Primary culture of isolated pancreatic islets: --- p.78 / Chapter 2.3 --- Physiological assay for pancreatic islet function --- p.78 / Chapter 2.3.1 --- Measurement of blood glucose and glucose tolerance test --- p.78 / Chapter 2.3.2 --- Measurement of glucose-induced insulin secretion --- p.79 / Chapter 2.3.3 --- Measurement of (pro )insulin biosynthesis --- p.80 / Chapter 2.4 --- Detection ofmRNA expression --- p.80 / Chapter 2.4.1 --- Design of primers --- p.81 / Chapter 2.4.2 --- mRNA extraction and cDNA synthesis --- p.82 / Chapter 2.4.3 --- Detection of mRN A expression by conventional peR --- p.83 / Chapter 2.4.4 --- SYBR Green real-time peR --- p.83 / Chapter 2.4.5 --- Real-time peR analysis using the comparative eT method --- p.84 / Chapter 2.5 --- Detection of protein expression --- p.84 / Chapter 2.5.1 --- Western blot analysis --- p.84 / Chapter 2.5.2 --- Immunostaining assessment --- p.85 / Chapter 2.6 --- In situ detection of oxidative stress, proliferation and apoptosis --- p.88 / Chapter 2.6.1 --- Detection of islet reactive oxygen species --- p.88 / Chapter 2.6.2 --- Detection of cell proliferation --- p.89 / Chapter 2.6.3 --- Measurement of cell apoptosis --- p.90 / Chapter 2.7 --- Statistical data analysis --- p.90 / Chapter Chapter 3 --- Combination of DPP-IV Inhibitor LAF237 with ATl Receptor Antagonist Valsartan Enhances Pancreatic Islet Morphology and Function in a Mouse Model of Type 2 Diabetes (This work has been published in J Pharmacal Exp Ther, 327: PI-9) --- p.91 / Chapter 3.1 --- Abstract --- p.92 / Chapter 3.2 --- Introduction --- p.94 / Chapter 3.3 --- Materials and Methods --- p.96 / Chapter 3.4 --- Results --- p.103 / Chapter 3.4.1 --- Effects of acute treatment with GLP-I and valsartan on insulin secretion in isolated islets --- p.103 / Chapter 3.4.2 --- Effects of LAF237 and valsartan on pancreatic --- p.105 / Chapter 3.4.3 --- Effects of LAF237 and valsartan on --- p.107 / Chapter 3.4.4 --- Effects ofLAF237 and valsartan on islet apoptosis --- p.109 / Chapter 3.4.5 --- Effects of LAF237 and valsartan on islet fibrosis --- p.110 / Chapter 3.4.6 --- Effects of LAF237 and valsartan on pancreatic islet superoxide and nitrotyrosine expression --- p.113 / Chapter 3.4.7 --- Effects of LAF237 and valsartan on bood glucose concentration and glucose tolerance in db/db diabetic mice --- p.116 / Chapter 3.5 --- Discussion --- p.119 / Chapter Chapter 4 --- The Role of Calcitriol in Modulating the Expression and Function of Islet Renin-Angiotensin System in Isolated Mouse Pancreatic Islets --- p.124 / Chapter 4.1 --- Abstract --- p.125 / Chapter 4.2 --- Introduction --- p.127 / Chapter 4.3 --- Materials and Methods --- p.130 / Chapter 4.4 --- Results --- p.135 / Chapter 4.4.1 --- The expression of islet VDR under different glucose conditions and the effects of calcitriol --- p.135 / Chapter 4.4.2 --- The effect of calcitriol on high glucose-modulated islet RAS component expression --- p.140 / Chapter 4.4.3 --- The protective effect of calcitriol against high glucose on islet RAS component expression --- p.144 / Chapter 4.4.4 --- The effect of calcitriol on (pro )insulin biosynthesis and insulin release in isolated islets --- p.148 / Chapter 4.5 --- Discussion --- p.151 / Chapter Chapter 5 --- Altered Islet Local Renin-Angiotensin System and Islet Function in Mice with Hypovitaminosis D --- p.158 / Chapter 5.1 --- Abstract --- p.159 / Chapter 5.2 --- Introduction --- p.160 / Chapter 5.3 --- Materials and methods --- p.163 / Chapter 5.4 --- Results --- p.168 / Chapter 5.4.1 --- Glucose homeostasis and islet morphology in VDR KO mice --- p.168 / Chapter 5.4.2 --- Expression of vitamin D receptor and major RAS components in the pancreatic islets of WT and VDR KO mice --- p.170 / Chapter 5.4.3 --- Vitamin D deficiency in mice on a vitamin D deficient diet --- p.172 / Chapter 5.4.4 --- Altered glucose homeostasis in vitamin D deficient mice --- p.174 / Chapter 5.4.5 --- Islet histomorphology in vitamin D deficient mice --- p.176 / Chapter 5.4.6 --- Regulation of islet RAS components expression in vitamin D deficient mice --- p.179 / Chapter 5.4.7 --- Transcriptional regulation of islet insulin receptor and its substrates in vitamin D deficient mice --- p.181 / Chapter 5.4.8 --- Effect of calcitriol treatment on glucose tolerance in vitamin D deficient mice --- p.183 / Chapter 5.5 --- Discussion --- p.185 / Chapter Chapter 6 --- General Discussion --- p.191 / Chapter 6.1 --- Combination effects of blocking islet RAS components and enhancing incretin activity on improving islet function in type 2 diabetes --- p.193 / Chapter 6.2 --- Potential modulatory effect of vitamin D on islet RAS expression and action --- p.196 / Chapter 6.3 --- The role of vitamin D in modulating islet RAS in glucose homeostasis and islet function --- p.199 / Chapter 6.4 --- The significance ofRAS, GLP-l and vitamin D in the management of T2DM --- p.201 / Chapter 6.5 --- Conclusion --- p.202 / Chapter 6.6 --- Future studies --- p.202 / Chapter Chapter 7 --- Bibliography --- p.205
124

Benfotiamina e Mito Q protegem ilhotas pancreáticas de rato em cultura dos efeitos pró-apoptóticos dos produtos finais de glicação avançada (AGEs) / Benfotiamine and Mito Q protect rat pancreatic islets in culture from pro-apoptotic effects of advanced glycation end products

Costal, Flavia Soares Louro 13 March 2012 (has links)
A perda da função das células beta acelera a deterioração do controle metabólico em pessoas com diabetes tipo 2. Além da lipo- e da glicotoxicidade, os AGEs parecem contribuir para esse processo, promovendo a apoptose das ilhotas pancreáticas. Em outros tecidos, os AGEs interagem com seu receptor específico (RAGE), produzindo espécies reativas de oxigênio (ROS) e ativando o NF-kB. Para investigar o efeito temporal dos AGEs sobre a apoptose de ilhotas, bem como o potencial de compostos antioxidantes para diminuir danos causados pelos AGEs, ilhotas pancreáticas de ratos foram tratadas durante 24, 48, 72, 96 e 120 h com AGEs gerados a partir de co-incubação de albumina de soro bovino (BSA) com Dgliceraldeído (GAD, 5 mg/mL) ou tampão fostato (controle). A apoptose foi avaliada pela quantificação do DNA fragmentado (ELISA), atividade de caspase 3 e detecção da permeabilidade da membrana mitocondrial (MitoProbe JC-1). O estresse oxidativo foi avaliado pela detecção de espécies de oxigênio (Image-iT LIVE Green) e a atividade da NADPH oxidase foi mensurada pelo método de quimioluminescência da lucigenina. A expressão dos genes Bax, Bcl2 e Nfkb1 foi avaliada por reação em cadeia da polimerase quantitativa após transcrição reversa (RT-qPCR). Em um dos tempos em que foi detectado o aumento da apoptose, o efeito de dois compostos antioxidantes foi avaliado: benfotiamina (350 M), uma vitamina B1 lipossolúvel, e Mito Q (1 M), um derivado da ubiquinona com alvo seletivo para a mitocôndria. Em 24 e 48 h, os AGES promoveram um aumento do índice de apoptose em relação ao controle, concomitantemente com o aumento na expresssão do gene Bcl2 (gene anti-apoptótico) e uma redução na expressão do gene Nfkb1. Em contraste, após 72, 96 h e 120 h, os AGEs promoveram um aumento do índice de apoptose em comparação com a condição de controle, concomitantemente com uma diminuição na expressão do gene Bcl2 e um aumento na expressão do gene Nfkb1. Em 24 h, os AGEs promoveram uma diminuição do conteúdo de ROS nas ilhotas, enquanto que nos tempos de 48 e 72 h, os AGEs promoveram um efeito oposto. A benfotiamina e o Mito Q foram capazes de diminuir o índice de apoptose e o estresse oxidativo de ilhotas expostas aos AGEs por 72 h. Em conclusão, os AGEs exerceram um duplo efeito em cultura de ilhotas pancreáticas, sendo de proteção contra a apoptose após exposição curta, mas pró-apoptótica após exposição prolongada. O Mito Q e e a benfotiamina merecem ser adicionalmente estudados como drogas com o potencial de oferecer proteção às ilhotas pancreáticas em condições de hiperglicemia crônica / Loss of beta cell function hastens the deterioration of metabolic control in people with type 2 diabetes. Besides lipo- and glucotoxicity, AGEs seem to contribute to this process by promoting islet apoptosis. In other tissues, AGEs interact with their specific receptors (RAGE) and elicit reactive oxygen species (ROS) generation and NF-kB activation. In order to investigate the temporal effect of AGEs on islet apoptosis as well as the potential of antioxidant compounds to decrease islet damage caused by AGEs, rat pancreatic islets were treated for 24, 48, 72, 96 and 120 h with either AGEs generated from co-incubation of bovine serum albumin (BSA) with D-glyceraldehyde (GAD, 5 mg/mL) or phosphate-buffered saline (PBS, control). Apoptosis was evaluated by quantification of DNA fragmentation (ELISA), caspase-3 enzyme activity and detection of mitochondrial permeability transition (MitoProbe JC-1). Oxidative stress was evaluated by oxygen species detection (Image-iT LIVE Green) and the activity of NADPH oxidase was measured by the lucigenin-enhanced chemiluminescence method. The expression of the genes Bax, Bcl2 and Nfkb1 was evaluated by reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR). In one of the time points at which increased apoptosis was detected, the effect of two antioxidant compounds was evaluated: benfotiamine (350 M), a liposoluble vitamin B1, and Mito Q (1 M), a derivative of ubiquinone targeted to mitochondria. In 24 and 48 h, AGEs elicited a significant decrease in the apoptosis rate in comparison to the control condition concomitantly with a significant increase in the RNA expression of the antiapoptotic gene Bcl2 and a significant decrease in the Nfkb1 RNA expression. In contrast, after 72 and 96 h, AGEs promoted a significant increase in the apoptosis rate in comparison to the control condition concomitantly with a significant decrease in Bcl2 RNA expression and a significant increase in Nfkb1 RNA expression. In 24 h, AGEs elicited a significant decrease in the islet content of ROS while after 48 and 72 h, AGEs promoted an opposite effect. Benfotiamine and Mito Q were able to decrease the apoptosis rate and the ROS content in islets exposed to AGEs for 72 h. In conclusion, AGEs exerted a dual effect in cultured pancreatic islets, being protective against apoptosis after short exposition but proapoptotic after prolonged exposition. Mito Q and benfotiamine deserve further evaluation as drugs that could offer islet protection in conditions of chronic hyperglycemia
125

Oscillatory Ca<sup>2+</sup> signaling in glucose-stimulated murine pancreatic β-cells : Modulation by amino acids, glucagon, caffeine and ryanodine

Ahmed, Meftun January 2001 (has links)
<p>Oscillations in cytoplasmic Ca<sup>2+</sup> concentration ([Ca<sup>2+</sup>]<sub>i</sub>) is the key signal in glucose-stimulated β-cells governing pulsatile insulin release. The glucose response of mouse β-cells is often manifested as slow oscillations and rapid transients of [Ca<sup>2+</sup>]<sub> i</sub>. In the present study, microfluorometric technique was used to evaluate the role of amino acids, glucagon, ryanodine and caffeine on the generation and maintenance of [Ca<sup>2+</sup>]<sub> i</sub> oscillations and transients in individual murine β-cells and isolated mouse pancreatic islets. The amino acids glycine, alanine and arginine, at around their physiological concentrations, transformed the glucose-induced slow oscillations of [Ca<sup>2+</sup>]<sub> i</sub> in isolated mouse β-cells into sustained elevation. Increased Ca<sup>2+</sup> entry promoted the reappearance of the slow [Ca<sup>2+</sup>]<sub> i</sub> oscillations. The [Ca<sup>2+</sup>]<sub> i</sub> oscillations were more resistant to amino acid transformation in intact islets, supporting the idea that cellular interactions are important for maintaining the oscillatory activity. Individual rat β-cells responded to glucose stimulation with slow [Ca<sup>2+</sup>]<sub> i</sub> oscillations due to periodic entry of Ca<sup>2+</sup> as well as with transients evoked by mobilization of intracellular stores. The [Ca<sup>2+</sup>]<sub> i</sub> oscillations in rat β-cells had a slightly lower frequency than those in mouse β-cells and were more easily transformed into sustained elevation in the presence of glucagon or caffeine. The transients of [Ca<sup>2+</sup>]<sub> i</sub> were more common in rat than in mouse β-cells and often appeared in synchrony also in cells lacking physical contact. Depolarization enhanced the generation of [Ca<sup>2+</sup>]<sub> i</sub> transients. In accordance with the idea that β-cells have functionally active ryanodine receptors, it was found that ryanodine sometimes restored oscillatory activity abolished by caffeine. However, the IP3 receptors are the major Ca<sup>2+</sup> release channels both in β-cells from rats and mice. Single β-cells from ob/ob mice did not differ from those of lean controls with regard to frequency, amplitudes and half-widths of the slow [Ca<sup>2+</sup>]<sub> i</sub> oscillations. Nevertheless, there was an excessive firing of [Ca<sup>2+</sup>]<sub> i</sub> transients in the β-cells from the ob/ob mice, which was suppressed by leptin at close to physiological concentrations. The enhanced firing of [Ca<sup>2+</sup>]<sub> i</sub> transients in ob/ob mouse β-cells may be due to the absence of leptin and mediated by activation of the phospholipase C signaling pathway.</p>
126

Oscillatory Ca2+ signaling in glucose-stimulated murine pancreatic β-cells : Modulation by amino acids, glucagon, caffeine and ryanodine

Ahmed, Meftun January 2001 (has links)
Oscillations in cytoplasmic Ca2+ concentration ([Ca2+]i) is the key signal in glucose-stimulated β-cells governing pulsatile insulin release. The glucose response of mouse β-cells is often manifested as slow oscillations and rapid transients of [Ca2+] i. In the present study, microfluorometric technique was used to evaluate the role of amino acids, glucagon, ryanodine and caffeine on the generation and maintenance of [Ca2+] i oscillations and transients in individual murine β-cells and isolated mouse pancreatic islets. The amino acids glycine, alanine and arginine, at around their physiological concentrations, transformed the glucose-induced slow oscillations of [Ca2+] i in isolated mouse β-cells into sustained elevation. Increased Ca2+ entry promoted the reappearance of the slow [Ca2+] i oscillations. The [Ca2+] i oscillations were more resistant to amino acid transformation in intact islets, supporting the idea that cellular interactions are important for maintaining the oscillatory activity. Individual rat β-cells responded to glucose stimulation with slow [Ca2+] i oscillations due to periodic entry of Ca2+ as well as with transients evoked by mobilization of intracellular stores. The [Ca2+] i oscillations in rat β-cells had a slightly lower frequency than those in mouse β-cells and were more easily transformed into sustained elevation in the presence of glucagon or caffeine. The transients of [Ca2+] i were more common in rat than in mouse β-cells and often appeared in synchrony also in cells lacking physical contact. Depolarization enhanced the generation of [Ca2+] i transients. In accordance with the idea that β-cells have functionally active ryanodine receptors, it was found that ryanodine sometimes restored oscillatory activity abolished by caffeine. However, the IP3 receptors are the major Ca2+ release channels both in β-cells from rats and mice. Single β-cells from ob/ob mice did not differ from those of lean controls with regard to frequency, amplitudes and half-widths of the slow [Ca2+] i oscillations. Nevertheless, there was an excessive firing of [Ca2+] i transients in the β-cells from the ob/ob mice, which was suppressed by leptin at close to physiological concentrations. The enhanced firing of [Ca2+] i transients in ob/ob mouse β-cells may be due to the absence of leptin and mediated by activation of the phospholipase C signaling pathway.
127

Optical projection tomography based 3D-spatial and quantitative assessments of the diabetic pancreas /

Alanentalo, Tomas, January 2008 (has links)
Diss. (sammanfattning) Umeå : Umeå universitet, 2008. / Härtill 4 uppsatser.
128

Gene Expression and Profiling of Human Islet Cell Subtypes: A Master’s Thesis

Blodgett, David M. 25 July 2012 (has links)
Background: The endocrine pancreas contains multiple cell types co-localized into clusters called the Islets of Langerhans. The predominant cell types include alpha and beta cells, which produce glucagon and insulin, respectively. The regulated release of these hormones maintains whole body glucose homeostasis, essential for normal metabolism and to prevent diabetes and complications from the disease. Given the heterogeneous nature of islet composition and absence of unique surface markers, many previous studies have focused on the whole islet. Sorting islet cells by intracellular hormone expression overcomes this limitation and provides pure populations of individual islet cell subsets, specifically alpha and beta cells. This technique provides the framework for characterizing human islet composition and will work towards identifying the genetic changes alpha and beta cells undergo during development, growth, and proliferation. Methods: Human islets obtained from cadaveric donors are dissociated into a single cell suspension, fixed, permeabilized, and labeled with antibodies specific to glucagon, insulin, and somatostatin. Individual alpha, beta, and delta cell populations are simultaneously isolated using fluorescence activated cell sorting. Candidate gene expression and microRNA profiles have been obtained for alpha and beta cell populations using a quantitative nuclease protection assay. Thus far, RNA has been extracted from whole islets and beta cells and subjected to next generation sequencing analysis. Results: The ratio of beta to alpha cells significantly increases with donor age and trends higher in female donors; BMI does not appear to significantly alter the ratio. Further, we have begun to investigate the unique gene expression profiles of alpha and beta cells versus whole islets, and have characterized the microRNA profiles of the two cell subsets. Conclusions: By establishing methods to profile multiple characteristics of alpha and beta cells, we hope to determine how gene, miRNA, and protein expression patterns change under environmental conditions that lead to beta cell failure or promote beta cell development, growth, and proliferation.
129

The Genetic Basis of Resistance to Transplantation Tolerance Induced by Costimulation Blockade in NOD Mice: a Dissertation

Pearson, Todd 17 March 2003 (has links)
The NOD mouse is a widely studied model of type 1 diabetes. The loss of self-tolerance leading to autoimmune diabetes in NOD mice involves at least 27 genetic loci. Curing type I diabetes in mice and humans by islet transplantation requires overcoming both allorejection and recurrent autoimmunity. This has been achieved with systemic immunosuppression, but tolerance induction would be preferable. In addition to their genetic defects in self-tolerance, NOD mice resist peripheral transplantation tolerance induced by costimulation blockade using donor-specific transfusion and anti-CDl54 antibody. Failure has been attributed to the underlying autoimmunity, assuming that autoimmunity and resistance to transplantation tolerance have a common basis. Hypothesizing that these two abnormalities might be related, we investigated whether they had a common genetic basis. Diabetes-resistant NOD and C57BL/6 stocks congenic for various reciprocally introduced Idd loci were assessed for their ability to be tolerized. Surprisingly, in NOD congenic mice that are almost completely protected from diabetes, costimulation blockade failed to prolong skin allograft survival. In reciprocal C57BL/6 congenic mice with NOD-derived Idd loci, skin allograft survival was readily prolonged by costimulation blockade. Unexpectedly, we observed that (NOD x C57BL/6)F1 mice, which have no diabetes, nonetheless resist induction of tolerance to skin allografts. Further analyses revealed that the F1 mice shared the dendritic cell maturation defects and abnormal CD4+ T cell responses of the NOD but had lost its defects in macrophage maturation and NK cell activity. Finally, using a genome wide scan approach, we have identified four suggestive markers in the mouse genome that control the survival of skin allografts following DST and anti-CD154 mAb therapy. We suggest that mechanisms controlling autoimmunity and transplantation tolerance in NOD mice are not completely overlapping and are potentially distinct, or that the genetic threshold for normalizing the transplantation tolerance defect is higher than that for preventing autoimmune diabetes. We conclude that resistance to allograft tolerance induction in the NOD mouse is not a direct consequence of overt autoimmunity and that autoimmunity and resistance to costimulation blockade-induced transplantation tolerance phenotypes in NOD mice are not under identical genetic control.
130

A expressão e atividade da NAD(P)H oxidase em ilhotas pancreáticas de ratos tratados com dieta hiperlipídica. / NAD(P)H oxidase expression and activity in pancreatic islets from rats treated with high fat diet.

Maíra Mello Rezende Valle 28 August 2009 (has links)
O uso de dieta hiperlipídica com banha de porco em roedores induz obesidade, resistência à insulina e disfunção das células beta do pâncreas. Em diversos tecidos de animais tratados com dieta hiperlipídica já se observou aumento de expressão e/ou atividade da NAD(P)H oxidase, que pode estar envolvida em processos fisiopatológicos. O objetivo deste trabalho foi avaliar se a dieta hiperlipídica altera a expressão e/ou a atividade da NAD(P)H oxidase em ilhotas pancreáticas e se este fato pode estar associado às disfunções das células beta relatadas na literatura para este modelo animal. As ilhotas pancreáticas dos animais tratados com dieta apresentam maior secreção de insulina em alta glicose, maior metabolização da glicose, menos apoptose, menor expressão protéica de subunidades da enzima, menor produção de superóxido e não apresentam estresse oxidativo. O papel da enzima provavelmente se relaciona ao processo de secreção de insulina. A regulação de sua expressão e atividade deve estar relacionada à adaptação das ilhotas aos efeitos deletérios da dieta. / Feeding animals with high fat diet containing lard causes obesity, insulin resistance and dysfunction of pancreatic beta cells. High fat diet induces oxidative stress and modulates NAD(P)H oxidase expression and activity in many tissues. This enzyme may be involved in many pathophysiological processes. The objective of this study was to evaluate the action of high fat diet on NAD(P)H oxidase activity and expression and if this fact can be connected to the beta cell dysfunction reported in the literature on this animal model. In pancreatic islets of rats fed the high fat diet apoptosis was reduced, glucose metabolism increased, insulin secretion elevated at high glucose, protein expression of NAD(P)H oxidase subunits reduced and the superoxide production was diminished. There was no difference between the groups for oxidative stress markers. It is possible that the enzyme has a role in the process of insulin secretion. Probably the islets are regulating their activity and function to compensate the deleterious effect of lard.

Page generated in 0.0753 seconds