• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 64
  • 40
  • 12
  • Tagged with
  • 83
  • 83
  • 83
  • 17
  • 13
  • 12
  • 12
  • 12
  • 10
  • 9
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Expression and characterization of SARS spike and nucleocapsid proteins and their fragments in baculovirus and E.coli. / Expression & characterization of SARS spike and nucleocapsid proteins and their fragments in baculovirus and E.coli

January 2005 (has links)
Wang Ying. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 124-135). / Abstracts in English and Chinese. / Acknowledgements / Abstract / 摘要 / Table of contents / List of figures / List of tables / List of abbreviations / CHAPTER / Chapter 1. --- Introduction / Chapter 1.1 --- Background of SARS and epidemiology / Chapter 1.2 --- SARS symptoms and infected regions / Chapter 1.3 --- SARS virus / Chapter 1.4 --- Treatment for SARS at present / Chapter 1.5 --- Vaccine development is a more effective way to fight against SARS / Chapter 1.6 --- Vaccine candidates / Chapter 1.6.1 --- Truncated S protein as a vaccine candidate / Chapter 1.6.2 --- Full-length N protein as a vaccine candidate / Chapter 1.7 --- E.coli expression system / Chapter 1.8 --- Baculovirus expression system / Chapter 1.8.1 --- Characteristics of baculovirus / Chapter 1.8.2 --- Infection cycle of baculovirus / Chapter 1.8.3 --- Control of viral gene expression in virus-infected cells / Chapter 1.8.4 --- Merits of baculovirus expression system / Chapter 1.9 --- Aim of study / Chapter 2. --- "Bacterial expression and purification of rS1-1000(E), rS401-1000(E) and rN(E)" / Chapter 2.1 --- Introduction / Chapter 2.2 --- Materials / Chapter 2.2.1 --- Reagents for bacterial culture / Chapter 2.2.2 --- Reagents for agarose gel electrophoresis / Chapter 2.2.3 --- 2'-deoxyribonucleoside 5'-triphosphate (dNTP) mix for polymerase chain reaction (PCR) / Chapter 2.2.4 --- Sonication buffer / Chapter 2.2.5 --- Reagents for immobilized metal affinity chromatography (IMAC) purification / Chapter 2.2.6 --- Reagents for gel filtration chromatography / Chapter 2.2.7 --- Reagents for sodium dodecylsulphate polyacrylamide gel electrophoresis (SDS-PAGE) / Chapter 2.2.8 --- Reagents for Western blotting / Chapter 2.3 --- Methods / Chapter 2.3.1 --- General techniques in molecular cloning / Chapter 2.3.2 --- "PCR amplification of the S1-400,S401-1000" / Chapter 2.3.3 --- Construction of clone pET-S 1-400 and PET-s401-1000 / Chapter 2.3.4 --- Construction of clone pAC-N / Chapter 2.3.5 --- Expression / Chapter 2.3.6 --- Inclusion bodies preparation / Chapter 2.3.7 --- Inclusion bodies solubilization using urea / Chapter 2.3.8 --- Protein refolding by rapid dilution and dialysis / Chapter 2.3.9 --- Purification of recombinant protein by nickel ion chelating Sepharose fast flow column (IMAC) / Chapter 2.3.10 --- Gel filtration chromatography for further purification / Chapter 2.3.11 --- Bradford assay for the protein concentration analysis / Chapter 2.3.12 --- Protein analysis / Chapter 2.4 --- Results / Chapter 2.4.1 --- SDS-PAGE analysis of the expressed proteins / Chapter 2.4.2 --- Western blot analysis of the bacterial cell lysate / Chapter 2.4.3 --- Protein purification by IMAC / Chapter 2.4.4 --- Purification of rS401-1000(E) by gel filtration / Chapter 2.4.5 --- Determination of production yield of recombinant fusion proteins / Chapter 2.5 --- Discussion / Chapter 2.5.1 --- Expression vector selected for rS1-400(E) and rS401-1000(E) expression / Chapter 2.5.2 --- Protein expression in E.coli / Chapter 2.5.3 --- Purification process / Chapter 3. --- Baculovirus expression and purification of rS401-1000(ACN) and rN(BMN) protein / Chapter 3.1 --- Introduction / Chapter 3.2 --- Materials / Chapter 3.2.1 --- Reagents for insect cell culture and virus work / Chapter 3.3 --- Methods / Chapter 3.3.1 --- "PCR amplification of N and cloning of S401-1000, N genes into the transfer vector pVL1393" / Chapter 3.3.2 --- Cloning of S401-1000 into transfer vector pFastBac HT B / Chapter 3.3.3 --- Virus works / Chapter 3.3.4 --- Identification of recombinant BmNPV or AcMNPV / Chapter 3.3.5 --- Manipulation of silkworm / Chapter 3.3.6 --- Mouse immunization for polyclonal antibody against rN(E) protein / Chapter 3.4 --- Results / Chapter 3.4.1 --- Expression of rN(BMN) in baculovirus / Chapter 3.4.2 --- Expression of rS401-1000(BMN) and rS401-1000(ACN) in baculovirus / Chapter 3.5 --- Discussion / Chapter 3.5.1 --- The expression level of rN(BMN) in both in vitro and invivo / Chapter 3.5.2 --- The rS401-1000(ACN) protein expression level in vitro / Chapter 3.5.3 --- Failure in generating rS401-1000(BMN) / Chapter 3.5.4 --- Purification process of rN(BMN) by IMAC / Chapter 4. --- "Characterization of recombinant rS1-400(E), rN(E), rN(BMN), rS401_1000(E) and rS401-1000(ACN)" / Chapter 4.1 --- Introduction / Chapter 4.2 --- Materials / Chapter 4.2.1 --- Reagents for enzyme-linked immunosorbent assay (ELISA) / Chapter 4.2.2 --- Reagents for purification of human IgG / Chapter 4.2.3 --- Source and identity of Immune sera / Chapter 4.3 --- Methods / Chapter 4.3.1 --- ELISA / Chapter 4.3.2 --- Purification process of human IgG / Chapter 4.4 --- Results / Chapter 4.4.1 --- Validation of Immune sera using SARS viral lysate / Chapter 4.4.2 --- Immunoreactivities of rS1-400(E) and rN(E) against pooled patients sera and normal human serum / Chapter 4.4.3 --- Immunoreactivity comparison of rN(E) and rN(BMN) / Chapter 4.4.4 --- Comparison of the immunoreactivities of rS401-1000(E) and rS401-1000(ACN) / Chapter 4.4.5 --- Immunoreactivity of SARS related proteins against Anti-SARS Antibody (Equine) / Chapter 4.5 --- Discussion / Chapter 4.5.1 --- Comparison of the immunoreactivities of SARS related proteins expressed in the present study / References
32

A ribosome inactivating protein from hairy melon (Benincasa hispida var. chieh-qua) seeds and peptides with translation-inhibiting activity from several other cucurbitaceous seeds.

January 2001 (has links)
Parkash Amarender. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 158-172). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Table of contents --- p.ii / Abstract --- p.xi / 撮要 --- p.xiv / List of Abbreviations --- p.xvi / List of Tables --- p.xvii / List of Figures --- p.xix / Chapter CHAPTER 1. --- INTRODUCTION / Chapter 1.1 --- Ribosome-inactivating proteins (RIPs) --- p.3 / Chapter 1.2 --- General Properties of RIPs --- p.5 / Chapter 1.2.1 --- Structure --- p.5 / Chapter 1.2.1.1 --- Type I and Type II RIPs --- p.5 / Chapter 1.2.1.2 --- Small RIPs --- p.10 / Chapter 1.2.2 --- Distribution --- p.12 / Chapter 1.2.3 --- Physicochemical properties --- p.15 / Chapter 1.3 --- Enzymatic activities of RIPs --- p.17 / Chapter 1.3.1 --- N-glycosidase activity --- p.17 / Chapter 1.3.2 --- Polynucleotide:adenosine glycosidase activity --- p.21 / Chapter 1.3.3 --- Ribonuclease (RNase) activity --- p.24 / Chapter 1.3.4 --- Deoxyribonucleolytic (DNase) activity --- p.25 / Chapter 1.3.5 --- Multiple depurination --- p.26 / Chapter 1.3.6 --- Inhibition of protein synthesis --- p.27 / Chapter 1.4 --- Biological activities of RIPs --- p.29 / Chapter 1.4.1 --- Interaction of ribosome-inactivating proteins with cells --- p.29 / Chapter 1.4.1.1 --- Internalization of type 1 ribosome-inactivating proteins --- p.29 / Chapter 1.4.1.2 --- Internalization of type 2 ribosome-inactivating proteins --- p.32 / Chapter 1.4.2 --- Effects on laboratory animals --- p.33 / Chapter 1.4.3 --- Immunosuppressive activity --- p.33 / Chapter 1.4.4 --- Abortifacient activity --- p.34 / Chapter 1.4.5 --- Antiviral activity --- p.35 / Chapter 1.5 --- Physiological roles of RIPs --- p.37 / Chapter 1.6 --- Applications of RIPs --- p.39 / Chapter 1.6.1 --- Possible uses in experimental and clinical medicine --- p.39 / Chapter 1.6.1.1 --- Anti-tumor therapy --- p.40 / Chapter 1.6.1.2 --- Immune disorders --- p.42 / Chapter 1.6.1.3 --- Neuroscience research --- p.43 / Chapter 1.6.2 --- Applications in agriculture --- p.44 / Chapter 1.7 --- Arginine/Glutamate Rich Polypeptides (AGRPs) --- p.46 / Chapter 1.8 --- Objectives of the present study --- p.48 / Chapter 1.8.1 --- Rationale of the study --- p.48 / Chapter 1.8.2 --- Outline of the thesis --- p.50 / Chapter Chapter 2 --- Materials and methods / Chapter 2.1 --- Introduction --- p.52 / Chapter 2.2 --- Materials and methods --- p.54 / Chapter 2.2.1 --- Materials --- p.54 / Chapter 2.2.2 --- Preparation of crude extract --- p.55 / Chapter 2.2.3 --- Purification of proteins --- p.55 / Chapter 2.2.4 --- Molecular weight determination with sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) --- p.61 / Chapter 2.2.5 --- Protein determination --- p.64 / Chapter 2.2.6 --- N-terminal amino acid sequence --- p.64 / Chapter 2.2.7 --- Preparation of rabbit reticulocyte lysate --- p.65 / Chapter 2.2.8 --- Assay for cell-free protein synthesis- inhibiting activity --- p.65 / Chapter 2.2.9 --- Assay for N-glycosidase activity --- p.66 / Chapter 2.2.10 --- Assay for ribonuclease activity --- p.70 / Chapter 2.2.11 --- Assay for antifungal activity --- p.71 / Chapter 2.2.12 --- Assay for dehydrogenase activity --- p.71 / Chapter Chapter 3 --- Purification and characterization of proteins from their respective sources. / Chapter 3.1. --- Purification and Characterization of Hispidin from Hairy melon (Benincasa hispida var. chieh-qua) / Chapter 3.1.1. --- Introduction --- p.73 / Chapter 3.1.2. --- Results --- p.76 / Chapter 3.1.2.1. --- Purification --- p.78 / Chapter 3.1.2.2. --- Molecular weight determination --- p.84 / Chapter 3.1.2.3. --- N-terminal amino acid sequence --- p.85 / Chapter 3.1.2.4. --- Assay for cell-free protein synthesis-inhibiting activity --- p.86 / Chapter 3.1.2.5. --- Assay for N-glycosidase activity --- p.87 / Chapter 3.1.2.6. --- Assay for ribonuclease activity --- p.88 / Chapter 3.1.2.7. --- Assay for dihydrodiol dehydrogenase activity --- p.88 / Chapter 3.1.2.8. --- Assay for antifungal activity --- p.89 / Chapter 3.1.2.9. --- "Assessment of purity, yield and activity" --- p.91 / Chapter 3.1.3. --- Discussion --- p.92 / Chapter 3.2. --- Purification and Characterization of Momorchin from Dried Bitter Gourd (Momordica charantia) Seeds / Chapter 3.2.1. --- Introduction --- p.95 / Chapter 3.2.2. --- Results --- p.99 / Chapter 3.2.2.1. --- Purification --- p.100 / Chapter 3.2.2.2. --- Molecular weight determination --- p.103 / Chapter 3.2.2.3. --- N-terminal amino acid sequence --- p.104 / Chapter 3.2.2.4. --- Assay for cell-free protein synthesis- inhibiting activity --- p.105 / Chapter 3.2.2.5. --- Assay for ribonuclease activity --- p.105 / Chapter 3.2.2.6. --- Assay for N-glycosidase activity --- p.106 / Chapter 3.2.2.7. --- "Assessment of purity, yield and activity" --- p.107 / Chapter 3.2.3. --- Discussion --- p.108 / Chapter 3.3.3. --- Purification and Characterization of Luffacylin from Sponge Gourd (Luffa cylindrica) / Chapter 3.3.1. --- Introduction --- p.110 / Chapter 3.3.2. --- Results --- p.113 / Chapter 3.3.2.1. --- Purification --- p.115 / Chapter 3.3.2.2. --- Molecular weight determination --- p.119 / Chapter 3.3.2.3. --- N-terminal amino acid sequencing --- p.120 / Chapter 3.3.2.4. --- Assay for cell-free protein synthesis- inhibiting activity --- p.121 / Chapter 3.3.2.5. --- Assay for ribonuclease activity --- p.121 / Chapter 3.3.2.6. --- Assay for N-glycosidase activity --- p.122 / Chapter 3.3.2.7. --- Assay for antifungal activity --- p.123 / Chapter 3.3.2.8. --- "Assessment of purity, activity and yield" --- p.124 / Chapter 3.3.3. --- Discussion --- p.125 / Chapter 3.4. --- Purification and Characterization of α and β Benincasin from fresh Winter Melon {Benincasa hispida var. dong-gua) Seeds / Chapter 3.4.1. --- Introduction --- p.127 / Chapter 3.4.2. --- Results --- p.129 / Chapter 3.4.2.1. --- Purification --- p.130 / Chapter 3.4.2.2. --- Molecular weight determination --- p.135 / Chapter 3.4.2.3. --- N-terminal amino acid sequence --- p.136 / Chapter 3.4.2.4. --- Assay for cell-free protein synthesis- inhibiting activity --- p.137 / Chapter 3.4.2.5. --- Assay for ribonuclease activity --- p.137 / Chapter 3.4.2.6. --- Assay for antifungal activity --- p.138 / Chapter 3.4.2.7. --- "Assessment of purity, activity and yield" --- p.140 / Chapter 3.4.3. --- Discussion --- p.141 / Chapter 3.5. --- Purification and characterization of Moschins from Pumpkin (Cucurbita moschata) Seeds / Chapter 3.5.1. --- Introduction --- p.143 / Chapter 3.5.2. --- Results --- p.145 / Chapter 3.5.2.1. --- Purification --- p.146 / Chapter 3.5.2.2. --- Molecular weight determination --- p.149 / Chapter 3.5.2.3. --- N-terminal amino acid sequence --- p.150 / Chapter 3.5.2.4. --- Assay for cell-free protein synthesis- inhibiting activity --- p.151 / Chapter 3.5.2.5. --- Assay for ribonuclease activity --- p.151 / Chapter 3.5.2.6. --- "Assessment of purity, activity and yield" --- p.152 / Chapter 3.5.3. --- Discussion --- p.153 / Chapter Chapter 4 --- General Discussion and Conclusion --- p.154 / References --- p.158
33

The study and detection of human papillomavirus (HPV) genome in two cervical carcinoma cell lines by the use of hybridization techniques.

January 1990 (has links)
Tin-hung Ho. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1990. / Bibliography: leaves 137-151. / ACKNOWLEDGEMENT --- p.1 / CONTENT --- p.3 / ABBREVIATIONS --- p.7 / ABSTRACT --- p.8 / Chapter CHAPTER 1 --- INTRODUCTION --- p.10 / Chapter CHAPTER 2 --- LITERATURE REVIEW / Chapter 2.1 --- The cervix and cervical cancer --- p.12 / Chapter 2.2 --- Human papillomaviruses --- p.23 / Chapter 2.3 --- Culture of cancer cells --- p.36 / Chapter 2.4 --- Methods for the detection of HPV infection --- p.40 / Chapter CHAPTER 3 --- MATERIALS AND METHODS / Chapter 3.1 --- Characterization of cervical carcinoma cell lines / Chapter 3.1.1 --- Materials and solutions --- p.47 / Chapter 3.1.2 --- Establishment of cervical carcinoma cell lines --- p.50 / Chapter 3.1.3 --- Morphological studies of cervical carcinoma cells --- p.52 / Chapter 3.1.4 --- Examination of cervical carcinoma cells cultured on collagen gel --- p.54 / Chapter 3.1.5 --- Growth kinetics study --- p.55 / Chapter 3.1.6 --- Plating efficiency test --- p.56 / Chapter 3.1.7 --- Spheroid formation assay --- p.56 / Chapter 3.1.8 --- Chromosome number study --- p.57 / Chapter 3.2 --- Immunocytochemical studies / Chapter 3.2.1 --- Materials and solutions --- p.58 / Chapter 3.2.2 --- Immunocytochemical test for keratin --- p.59 / Chapter 3.2.3 --- Test for HPV capsid antigens --- p.60 / Chapter 3.3 --- Molecular studies of HPV in cervical carcinoma cells / Chapter 3.3.1 --- Materials and solutions --- p.62 / Chapter 3.3.2 --- Preparation of HPV DNA probes --- p.66 / Chapter 3.3.3 --- DNA extraction from the cervical carcinoma cells --- p.74 / Chapter 3.3.4 --- Detection of HPV DNA sequences by the use of hybridization techniques --- p.76 / Chapter 3.3.5 --- Copy number and physical state studies of HPV --- p.81 / Chapter 3.3.6 --- Study of the transcriptional activity of HPV DNA in cultured cervical carcinoma cells --- p.83 / Chapter CHAPTER 4 --- RESULTS / Chapter 4.1 --- Characterization of cervical carcinoma cell lines / Chapter 4.1.1 --- Morphological studies --- p.89 / Chapter 4.1.2 --- Examination of cervical carcinoma cells cultured on collagen gel --- p.90 / Chapter 4.1.3 --- Growth kinetics study --- p.93 / Chapter 4.1.4 --- Plating efficiency test --- p.94 / Chapter 4.1.5 --- Spheroid formation assay --- p.95 / Chapter 4.1.6 --- Chromosome number study --- p.98 / Chapter 4.2 --- Immunocytochemical studies / Chapter 4.2.1 --- Immunocytochemical test for keratin --- p.99 / Chapter 4.2.2 --- Test for HPV capsid antigen --- p.99 / Chapter 4.3 --- Molecular studies of HPV in cervical carcinoma cell lines / Chapter 4.3.1 --- Preparation of HPV DNA probes --- p.101 / Chapter 4.3.2 --- Detection of HPV DNA by the use of hybridization techniques --- p.102 / Chapter 4.3.3 --- Copy number and physical state studies --- p.105 / Chapter 4.3.4 --- Analysis of the transcriptional activity --- p.108 / Chapter CHAPTER 5 --- DISCUSSIONS / Chapter 5.1 --- Characterization of cervical carcinoma cell lines / Chapter 5.1.1 --- Morphological features of two cervical carcinoma cell lines --- p.110 / Chapter 5.1.2 --- Other characteristics of the cell lines --- p.112 / Chapter 5.2 --- Immunocytochemical studies / Chapter 5.2.1 --- Test for keratin antigens --- p.117 / Chapter 5.2.2 --- Test for HPV capsid antigens --- p.117 / Chapter 5.3 --- Molecular studies of HPV in cervical carcinoma cell lines / Chapter 5.3.1 --- Establishment of methods --- p.121 / Chapter 5.3.2 --- Detection of HPV DNA sequences by nucleic acid hybridizations --- p.123 / Chapter 5.3.3 --- Copy number and physical state studies --- p.128 / Chapter 5.3.4 --- Transcriptional analysis of HPV DNA in cervical carcinoma cell lines --- p.132 / CONCLUSION --- p.134 / REFERENCES --- p.137 / ILLUSTRATIONS --- p.152
34

Alteration of protein pattern in the brain in experimentally induced cerebral ischemia.

January 1991 (has links)
by Mo Flora. / Thesis (M.Phil.)--Chinese University of Hong Kong, 1991. / Includes bibliographical references (leaves 168-184). / ACKNOWLEDGEMENT --- p.i / ABSTRACT --- p.ii / TABLE OF CONTENTS --- p.iv / Chapter CHAPTER ONE --- INTRODUCTION / Chapter 1.1 --- Stroke as a major disabling disease --- p.1 / Chapter 1.2 --- Classification of stroke --- p.4 / Chapter 1.3 --- Risk factors attributing to stroke --- p.15 / Chapter 1.4 --- Experimental methods to induce cerebral ischemia --- p.19 / Chapter 1.4.1 --- The establishment of animal models for stroke --- p.21 / Chapter 1.4.2 --- Gerbil as a putative model --- p.25 / Chapter 1.5 --- Mechanisms of focal ischemia damage --- p.30 / Chapter 1.6 --- Potential biochemical markers for cerebral ischemia --- p.38 / Chapter 1.7 --- Aim of investigation --- p.48 / Chapter CHAPTER TWO --- MATERIALS AND METHODS / Chapter 2.1 --- Common chemicals --- p.49 / Chapter 2.2 --- Common bench solutions --- p.52 / Chapter 2.3 --- Animals / Chapter 2.3.1 --- Gerbils --- p.52 / Chapter 2.3.2 --- Rabbit --- p.53 / Chapter 2.4 --- Establishment of an animal model / Chapter 2.4.1 --- Surgical methods for common carotid artery (CCA) ligation --- p.54 / Chapter 2.5 --- Methods to determine stroke conditions of gerbils / Chapter 2.5.1 --- Ocular fundus examination --- p.56 / Chapter 2.5.2 --- Stroke index --- p.56 / Chapter 2.5.3 --- Inclined plane method --- p.59 / Chapter 2.6 --- Preparation of gerbil brain for subsequent analysis / Chapter 2.6.1 --- Preparation of gerbil brain slices --- p.61 / Chapter 2.6.2 --- "2,3,5-triphenytetrazolium chloride (TTC) for quantitative staining of brain slices" --- p.61 / Chapter 2.6.3 --- Preparation of normal and stroke gerbil brain extract --- p.62 / Chapter 2.7 --- Polyacrylamide gel electrophoresis (PAGE) using a discontinuous buffer system / Chapter 2.7.1 --- Stock reagents --- p.63 / Chapter 2.7.2 --- Separation gel preparation --- p.65 / Chapter 2.7.3 --- Stacking gel preparation --- p.66 / Chapter 2.7.4 --- Electrophoresis conditions --- p.67 / Chapter 2.7.5 --- Staining and destaining --- p.67 / Chapter 2.8 --- Two dimensional slab gel electrophoresis / Chapter 2.8.1 --- Equipment --- p.70 / Chapter 2.8.2 --- Chemical --- p.70 / Chapter 2.8.3 --- Procedure --- p.74 / Chapter 2.9 --- Production of rabbit polyclonal antibodies against isolated stroke protein / Chapter 2.9.1 --- Isolation of stroke protein band from SDS-PAGE slab gel --- p.78 / Chapter 2.9.2 --- Production of anti-stroke protein serum in rabbits --- p.79 / Chapter 2.10 --- Western blotting method / Chapter 2.10.1 --- Reagents --- p.80 / Chapter 2.10.2 --- Procedures --- p.81 / Chapter 2.11 --- Extraction of total cellular RNA by lithium chloride method / Chapter 2.11.1 --- Reagents --- p.83 / Chapter 2.11.2 --- Procedures --- p.84 / Chapter 2.11.3 --- Checking the purity of the extracted RNA --- p.85 / Chapter 2.12 --- Purification of mRNA / Chapter 2.12.1 --- Reagents --- p.85 / Chapter 2.12.2 --- Procedure --- p.86 / Chapter 2.13 --- Verification of purity of mRNA / Chapter 2.13.1 --- Reagents --- p.87 / Chapter 2.13.2 --- Procedure --- p.88 / Chapter 2.14 --- Translation of gerbil brain mRNA in reticulocyte lysates and analysis of its product by SDS PAGE / Chapter 2.14.1 --- Reagents --- p.89 / Chapter 2.14.2 --- Procedures --- p.89 / Chapter CHAPTER THREE --- ESTABLISHMENT OF AN ANIMAL STROKE MODEL / Chapter 3.1 --- Foreword --- p.92 / Chapter 3.2 --- Preliminary studies / Chapter 3.2.1 --- Introduction --- p.92 / Chapter 3.2.2 --- Results --- p.93 / Chapter 3.2.3 --- Discussion --- p.96 / Chapter 3.3 --- Survival rate analysis / Chapter 3.3.1 --- Introduction --- p.97 / Chapter 3.3.2 --- Result --- p.98 / Chapter 3.3.3 --- Discussion --- p.102 / Chapter 3.4 --- Neurologic signs of ischemia / Chapter 3.4.1 --- Introduction --- p.103 / Chapter 3.4.2 --- Result --- p.105 / Chapter 3.4.3 --- Discussion --- p.111 / Chapter 3.5 --- Ocular fundus examination / Chapter 3.5.1 --- Introduction --- p.112 / Chapter 3.5.2 --- Result --- p.114 / Chapter 3.5.3 --- Discussion --- p.116 / Chapter 3.6 --- Inclined plane method / Chapter 3.6.1 --- Introduction --- p.117 / Chapter 3.6.2 --- Result --- p.118 / Chapter 3.6.3 --- Discussion --- p.121 / Chapter 3.7 --- Histologic examination using TTC as staining agent / Chapter 3.7.1 --- Introduction --- p.122 / Chapter 3.7.2 --- Result --- p.124 / Chapter 3.7.3 --- Discussion --- p.129 / Chapter CHAPTER FOUR --- IDENTIFICATION OF ALTERED PROTEIN PATTERN IN THE - BRAINS OF STROKE GERBILS BY ELECTROPHORETIC METHODS / Chapter 4.1 --- Separation of soluble brain extracts by SDS-PAGE analysis / Chapter 4.1.1 --- Introduction --- p.130 / Chapter 4.1.2 --- Result --- p.132 / Chapter 4.1.3 --- Discussion --- p.140 / Chapter 4.2 --- Two dimensional electrophoretic analysis of soluble brain extracts from stroke gerbils / Chapter 4.2.1 --- Introduction --- p.142 / Chapter 4.2.2 --- Result --- p.143 / Chapter 4.2.3 --- Discussion --- p.148 / Chapter CHAPTER FIVE --- ISOLATION OF STROKE-ASSOCIATED PROTEIN FROM BRAINS OF STROKE GERBILS BY IMMUNOCHEMICAL METHOD / Chapter 5.1 --- Introduction --- p.149 / Chapter 5.2 --- Result --- p.151 / Chapter 5.3 --- Discussion --- p.153 / Chapter CHAPTER SIX --- DETECTION OF NEW PROTEIN TRANSLATED FROM MESSENGER RIBONUCLEIC ACID FROM BRAINS OF STROKE GERBIL / Chapter 6.1 --- Introduction / Chapter 6.1.1 --- Extraction of stroke gerbil brain messenger ribonucleic acid --- p.154 / Chapter 6.1.2 --- Translation of mRNA --- p.154 / Chapter 6.2 --- Results / Chapter 6.2.1 --- Yield of total cellular RNA --- p.157 / Chapter 6.2.2 --- Verification of purity of mRNA --- p.157 / Chapter 6.2.3 --- Autoradiographic patterns of translated proteins --- p.159 / Chapter 6.3 --- Discussion --- p.163 / Chapter CHAPTER SEVEN --- GENERAL DISCUSSION --- p.165 / BIBLIOGRAPHY --- p.168
35

Analysis of ginsenosides in ginseng products by capillary electrophoresis.

January 2001 (has links)
Wong Pak Ki. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2001. / Includes bibliographical references (leaves 86-88). / Abstracts in English and Chinese. / Abstract --- p.i / Acknowledgements --- p.iv / Dedication --- p.v / Table of Contents --- p.vi / List of Abbreviations --- p.ix / List of Appendices --- p.xi / List of Figures --- p.xiv / List of Tables --- p.xx / Chapter Chapter 1: --- Introduction --- p.1 / Chapter 1.1 --- Ginseng and Ginsenosides --- p.1 / Chapter 1.2 --- Instrumental Analysis of Ginsenosides --- p.6 / Chapter 1.2.1 --- Thin Layer Chromatography --- p.6 / Chapter 1.2.2 --- Infrared Spectroscopy --- p.7 / Chapter 1.2.3 --- Colorimetry --- p.7 / Chapter 1.2.4 --- Gas Chromatography --- p.7 / Chapter 1.2.5 --- High Performance Liquid Chromatography --- p.8 / Chapter 1.3 --- Objective of the Study --- p.9 / Chapter Chapter 2: --- Experimental --- p.13 / Chapter 2.1 --- History of Electrophoresis and Capillary Electrophoresis --- p.13 / Chapter 2.1.1 --- Electroosmotic Flow (EOF) --- p.14 / Chapter 2.1.2 --- Electrophoretic Migration --- p.18 / Chapter 2.2 --- Reagents and Materials --- p.20 / Chapter 2.2.1 --- Reagents and Glassware --- p.20 / Chapter 2.2.2 --- Instrumentation --- p.20 / Chapter 2.2.3 --- Preparation of Solutions and Wavelength Selection --- p.22 / Chapter 2.2 --- Procedures --- p.23 / Chapter Chapter 3: --- Results and Discussions --- p.24 / Chapter 3.1 --- Initial Selection of the Running Electrolyte --- p.24 / Chapter 3.2 --- Inclusion Additives in the Aqueous Buffer Solution --- p.29 / Chapter 3.2.1 --- Reasons for Addition of Buffer Additives --- p.29 / Chapter 3.2.1.1 --- Cyclodextrin --- p.29 / Chapter 3.3 --- Addition of Surfactants --- p.33 / Chapter 3.3.1 --- Sodium Dodecyl Sulfate (SDS) --- p.35 / Chapter 3.3.2 --- Sodium Cholate --- p.41 / Chapter 3.4 --- Addition of Organic Modifier --- p.43 / Chapter 3.5 --- Effect of pH --- p.46 / Chapter 3.6 --- Effect of the Concentration of the Borate/Phosphate Solution --- p.51 / Chapter 3.7 --- Effect of Capillaries with Different Inner Diameters (I.D.) --- p.54 / Chapter 3.7.1 --- Effect of pH --- p.54 / Chapter 3.7.2 --- Effect of the Buffer Concentration --- p.60 / Chapter 3.7.3 --- Comparison of Migration Time between Capillaries of 50μm and 75μm Inner Diameter --- p.62 / Chapter 3.8 --- Optimization of Other Experimental Parameters --- p.66 / Chapter 3.8.1 --- Applied Voltage --- p.66 / Chapter 3.8.2 --- The Time of Injection --- p.68 / Chapter 3.8.3 --- The Operating Temperature --- p.70 / Chapter 3.9 --- Intra-day and Inter-day Reproducibility --- p.72 / Chapter 3.10 --- Quantitative Analysis of the Ginsenosides --- p.74 / Chapter 3.11 --- Application of the Developed Methodology --- p.78 / Chapter 3.11.1 --- Experimental Procedures --- p.79 / Chapter Chapter 4: --- Conclusion --- p.83 / References --- p.86 / Appendices --- p.89
36

Over expression, purification and characterization of hepatitis B virus X protein (HBx) and its interacting partner HBx - interacting protein (XIP).

January 2002 (has links)
by Cheung Yuk Yin. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves xx-xxviii). / Abstracts in English and Chinese. / Acknowledgements --- p.i / Abstract --- p.ii / 摘要 --- p.iii / Table of Content --- p.iv / Abbreviations / for Amino Acids --- p.viii / for Standard Genetic Code --- p.ix / for Units --- p.x / for Prefixes --- p.xi / for Terms commonly used in the report --- p.xii / List of Figures --- p.xiii / List of Tables --- p.xiv / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Epidemiology of Hepatitis B Virus (HBV) --- p.1 / Chapter 1.2 --- Relationship between Hepatitis B Virus and Hepatocellular Carcinoma --- p.2 / Chapter 1.3 --- Brief Description of HBV Genome --- p.2 / Chapter 1.4 --- Possible Roles of HBx in Hepatocellular Carcinoma --- p.4 / Chapter 1.5 --- Novel Interacting Partner of HBx - HBx-lnteracting Protein (XIP) --- p.6 / Chapter 1.6 --- Objective --- p.6 / Chapter Chapter 2 --- Methodology / Chapter 2.1 --- Information of the HBx and XIP Clones --- p.7 / Chapter 2.2 --- "Information of the Expression Vectors (pRSETA, 6xHis-pRSETA and pET8C)" --- p.7 / Chapter 2.3 --- Sub-Cloning of HBx and XIP into Different Vectors --- p.9 / Chapter 2.3.1 --- Design of Primers for Cloning of HBx and XIP into Different Vectors --- p.9 / Chapter 2.3.2 --- Polymerase Chain Reaction (PCR) Protocol --- p.12 / Chapter 2.3.3 --- Enzyme Digestion Reaction Protocol --- p.14 / Chapter 2.3.4 --- Ligation Protocol --- p.16 / Chapter 2.3.5 --- Preparation of Competent Cells --- p.17 / Chapter 2.3.6 --- Transformation --- p.18 / Chapter 2.3.7 --- Gel Extraction Protocol --- p.19 / Chapter 2.3.7.1 --- Life Technologies CONCERT´ёØ Rapid Gel Extraction System --- p.19 / Chapter 2.3.7.2 --- QIAGEN Gel Extraction Kit --- p.20 / Chapter 2.3.8 --- Plasmid Preparation Protocol --- p.22 / Chapter 2.3.8.1 --- Life Technologies CONCERT´ёØ Rapid Plasmid Minipreps --- p.22 / Chapter 2.3.8.2 --- QIAGEN Plasmid Maxi Kit --- p.23 / Chapter 2.4 --- Expression of HBx and XIP in E. coli Strain C41 (DE3) --- p.25 / Chapter 2.4.1 --- Transformation --- p.25 / Chapter 2.4.2 --- Expression of HBx and 6xHis-HBx in E. coli Strain C41 (DE3) --- p.26 / Chapter 2.4.3 --- Expression of XIP in E. coli Strain C41 (DE3) --- p.27 / Chapter 2.5 --- Preparation of Buffers for Chromatography and Circular Dichroism Spectrum Measurement --- p.28 / Chapter 2.6 --- Purification and Refolding of HBx and His-Tagged HBx --- p.28 / Chapter 2.6.1 --- Washing of HBx and His-Tagged HBx Inclusion Bodies --- p.28 / Chapter 2.6.2 --- His-Tagged HBx Purification by Affinity Chromatography --- p.29 / Chapter 2.6.3 --- HBx Purification by Size Exclusion Chromatography --- p.30 / Chapter 2.6.4 --- Refolding of HBx and His-Tagged HBx by Oxidative Dialysis --- p.30 / Chapter 2.7 --- Purification of XIP --- p.33 / Chapter 2.7.1 --- Screening of Chromatographic Conditions for the Purification of XIP --- p.33 / Chapter 2.7.2 --- XIP 1st Step of Purification by Hydrophobic Interaction Chromatography --- p.34 / Chapter 2.7.3 --- XIP 2nd step of Purification by Size Exclusion Chromatography --- p.34 / Chapter 2.8 --- Chemical Denaturation Experiment of HBx and XIP --- p.36 / Chapter 2.8.1 --- Preparation of Urea Buffers for the Chemical Denaturation of HBx --- p.37 / Chapter 2.8.2 --- Preparation of Different GdnHCI Buffer for the Chemical Denaturation of XIP --- p.38 / Chapter 2.8.3 --- Calculation for Chemical Denaturation Experiment --- p.39 / Chapter 2.8.3.1 --- Protein Concentration Calculation --- p.39 / Chapter 2.8.3.2 --- Residual Molar Elipticity Calculation --- p.39 / Chapter 2.8.3.3 --- Free Energy Change (ΔGu) Calculation --- p.40 / Chapter 2.9 --- Two-dimensional Heteronuclear Nuclear Magnetic Resonance (NMR) Experiment --- p.41 / Chapter 2.10 --- Interaction Confirmation between HBx and XIP --- p.42 / Chapter 2.10.1 --- "Transfection of pEGFP, pEGFP-HBx and pEGFP-XIP into HepG2" --- p.42 / Chapter 2.10.2 --- Yeast Two Hybrid System for Confirmation of HBx and XIP Interaction --- p.44 / Chapter 2.10.2.1 --- Preparation of Y187 Competent Cells --- p.44 / Chapter 2.10.2.2 --- Transformation of pGBKT7-HBx and pACT2-XIP into Y187 --- p.45 / Chapter 2.10.2.3 --- β-galactosidase Colony Lift Assay --- p.46 / Chapter Chapter 3 --- "Expression, Purification and Characterization of Hepatitis B Virus X Protein (HBx)" / Chapter 3.1 --- Introduction --- p.47 / Chapter 3.2 --- Construction of Recombinant HBx-pRSETA and 6xHis-HBx-pRSETA Plasmids --- p.48 / Chapter 3.3 --- Expression of 6xHis-HBx in E. coli C41 (DE3) using M9ZB Medium --- p.52 / Chapter 3.4 --- Expression of HBx in E. coli C41 (DE3) using M9ZB Medium --- p.54 / Chapter 3.5 --- Purification and Refolding of 6xHis-HBx Fusion Proteins --- p.56 / Chapter 3.6 --- Purification and Refolding of HBx Proteins --- p.60 / Chapter 3.7 --- Structural Characterization of Refolded HBx --- p.65 / Chapter 3.7.1 --- Introduction --- p.55 / Chapter 3.7.2 --- Experimental Analysis of HBx Secondary Structure --- p.66 / Chapter 3.7.3 --- Chemical Unfolding Experiment of HBx --- p.68 / Chapter 3.8 --- Discussion --- p.70 / Chapter 3.8.1 --- "HBx was Expressed, Purified and Characterized instead of 6xHis-HBx" --- p.71 / Chapter 3.8.2 --- High Concentration of DTT was used to Minimize Formation of HBx Aggregates --- p.72 / Chapter 3.8.3 --- Oxidative Refolding to Ensure Proper Disulfide Bond Formation --- p.73 / Chapter 3.8.4 --- Computational Prediction and Experimental Prediction of Secondary Structure of HBx --- p.75 / Chapter 3.9 --- Concluding Remarks --- p.77 / Chapter Chapter 4 --- "Expression, Purification and Characterization of HBx-lnteracting Protein (XIP)" / Chapter 4.1 --- Introduction --- p.78 / Chapter 4.2 --- Construction of Recombinant XIP-pET8C --- p.78 / Chapter 4.3 --- Expression of XIP in E. coli C41 (DE3) using M9ZB and M9 Mediums --- p.82 / Chapter 4.4 --- Screening of Chromatographic Conditions for the Purification of XIP --- p.83 / Chapter 4.4.1 --- Introduction --- p.83 / Chapter 4.4.2 --- Purification Details --- p.83 / Chapter 4.5 --- Purification of XIP by HiTrap Phenyl HP 5-ml Column --- p.87 / Chapter 4.6 --- Purification of XIP by HiLoad 26/60 Superdex 75 Prep Grade --- p.89 / Chapter 4.7 --- Structural Characterization of XIP --- p.92 / Chapter 4.7.1 --- CD Spectrum --- p.92 / Chapter 4.7.2 --- Chemical Denaturation Experiment of XIP --- p.93 / Chapter 4.7.3 --- Two-Dimensional Heteronuclear Nuclear Magnetic Resonance (NMR) Spectrum of 15N Labeled XIP --- p.95 / Chapter 4.8 --- Discussion --- p.97 / Chapter 4.8.1 --- Purification Method Development --- p.97 / Chapter 4.8.2 --- "Do Different Protein Cosolutes, Protein Stabilizers and Detergents Help XIP to Adopt a Stable Conformation?" --- p.99 / Chapter 4.9 --- Concluding Remarks --- p.101 / Chapter Chapter 5 --- In vivo Studies of HBx and XIP Interactions / Chapter 5.1 --- Investigation of Sub-Cellular Localization of HBx and XIP in Liver Cells --- p.102 / Chapter 5.1.1 --- Introduction --- p.102 / Chapter 5.1.2 --- "Construction of Recombinant HBx-pECFP-C1, HBx-pEGFP-C1, HBx-pEYFP-C1 and XIP-pECFP-C1, XIP-pEGFP-C1, XIP-pEYFP-C1" --- p.103 / Chapter 5.1.3 --- Transfection of pEGFP-C1 HBx and pEGFP-C1 XIP into HepG2 to Find Out HBx and XIP Sub-Cellular Localization --- p.106 / Chapter 5.1.3.1 --- Introduction --- p.107 / Chapter 5.1.3.2 --- Investigation of EGFP Proteins Expression using the Confocal Microscope and the Leica TCS Software --- p.108 / Chapter 5.1.4 --- Discussion and Future Prospects --- p.111 / Chapter 5.2 --- Interaction of HBx and XIP Studied by Yeast Two-Hybrid System --- p.113 / Chapter 5.2.1 --- Introduction --- p.113 / Chapter 5.2.2 --- Construction of Recombinant HBx-pGBKT7 and XIP-pACT2 Plasmids --- p.114 / Chapter 5.2.3 --- Confirmation of HBx and XIP Interaction by Yeast Two-Hybrid System --- p.117 / Chapter 5.2.4 --- Discussion --- p.121 / Chapter Chapter 6 --- Conclusion --- p.123 / Appendix I Sequence of HBx and XIP --- p.I / Chapter II --- Vector Sequences --- p.II / Chapter III --- Vector Maps --- p.VI / Chapter IV --- Electrophoresis Markers --- p.XI / Chapter V --- Agarose Gel Electrophoresis --- p.XII / Chapter VI --- SDS-PAGE Eectrophoresis --- p.XIII / Chapter VII --- Medium for Bacterial Culture --- p.XV / Chapter VIII --- Medium for Cell Culture --- p.XVII / Chapter IX --- Medium for Yeast Culture --- p.XVIII / Chapter X --- Buffers for Yeast Transformation --- p.XIX / Reference --- p.XX
37

Chemical constituents and analysis of rhizoma chuanxiong using capillary electrophoresis.

January 2002 (has links)
Ip Yee-man. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 85-89). / Abstracts in English and Chinese. / Acknowledgement --- p.i / Abstract --- p.iii / Table of Contents --- p.vi / Abbreviations --- p.xi / List of Figures --- p.xiii / List of Tables --- p.xvii / Chapter / Chapter 1. --- Introduction --- p.1 / Chapter 1.1 --- Background --- p.1 / Chapter 1.2 --- Quality control of Chinese herbal medicine --- p.2 / Chapter 1.3 --- Rhizoma Chuanxiong --- p.4 / Chapter 1.3.1. --- General description --- p.4 / Chapter 1.3.2. --- Chemical constituents --- p.4 / Chapter 1.3.3. --- Pharmacology --- p.7 / Chapter 1.3.4 --- Instrumental analysis --- p.9 / Chapter 1.3.4.1 --- Thin Layer Chromatography (TLC) --- p.9 / Chapter 1.3.4.2 --- Gas Chromatography (GC) --- p.10 / Chapter 1.3.4.3 --- High Performance Liquid Chromatography (HPLC) --- p.10 / Chapter 1.3.4.4 --- Capillary Electrophoresis (CE) --- p.10 / Chapter 1.4 --- Objectives of the study --- p.11 / Chapter 2. --- "Isolation, Characterization and Identification of Reference Compounds" --- p.13 / Chapter 2.1 --- General experiment procedures --- p.13 / Chapter 2.1.1. --- Solvents for chromatographic separation --- p.13 / Chapter 2.1.2 --- Chromatographic methods --- p.13 / Chapter 2.1.2.1 --- Adsorption column chromatography --- p.13 / Chapter 2.1.2.2 --- Thin layer chromatography --- p.13 / Chapter 2.1.2.3 --- Preparative layer chromatography --- p.14 / Chapter 2.1.3 --- Determination of physical data --- p.14 / Chapter 2.1.3.1 --- Infrared (IR) absorption spectra --- p.14 / Chapter 2.1.3.2 --- Nuclear Magnetic Resonance (NMR) spectra --- p.14 / Chapter 2.1.3.3 --- Mass spectra (MS) --- p.15 / Chapter 2.1.3.4 --- X-ray crystallography --- p.15 / Chapter 2.1.4 --- Authentic reference compounds --- p.15 / Chapter 2.2 --- "Procurement, extraction and initial fractionation of Rhizoma Chuanxiong" --- p.15 / Chapter 2.3 --- Chromatographic separation of the chloroform extract --- p.16 / Chapter 2.3.1 --- Chromatographic separation of fraction F1002 --- p.16 / Chapter 2.3.1.1 --- Spectral data for the characterization of compound 1 [5-(hydroxymethyl)- 2- furancarboxaldehyde] --- p.17 / Chapter 2.3.2 --- Column chromatographic separation of fraction F1003A --- p.17 / Chapter 2.3.2.1 --- Spectral data for the characterization of compound 2 (oleic acid) --- p.18 / Chapter 2.3.2.2 --- Physical data for the characterization of compound 3 (ferulic acid) --- p.18 / Chapter 2.3.3 --- Preparative layer chromatographic separation of Fraction F1010 --- p.19 / Chapter 2.3.3.1 --- Spectral data for the characterization of compound 4 (daucosterol) --- p.19 / Chapter 2.4 --- Column chromatographic separation of the hexane extract --- p.19 / Chapter 2.4.1 --- Removal of fatty acids in fraction F2005 and F2006 by partition --- p.20 / Chapter 2.4.2 --- Column chromatographic separation of fraction F2005M --- p.20 / Chapter 2.4.2.1 --- Spectral data for the characterization of compound 5 (butylidenephthalide) --- p.20 / Chapter 2.4.2.2 --- Spectral data for the characterization of compound 6 (butylphthalide) --- p.21 / Chapter 2.4.3 --- Column chromatographic separation of fraction F2006M --- p.21 / Chapter 2.4.3.1 --- "Spectral data for the characterization of compound 7 (Z, Z'-6.6', 7.3'a- diligustilide)" --- p.21 / Chapter 2.4.4 --- Colum chromatographic separation of fraction --- p.22 / Chapter 2.4.4.1 --- Spectral data for the characterization of compound 8 (pregnenolone) --- p.22 / Chapter 2.4.4.2 --- "Spectral data for the characterization of compound 9 [5,5- oxydimethylenebis(2-furaldehyde)]" --- p.23 / Chapter 2.5 --- Results and Discussion --- p.24 / Chapter 2.5.1 --- Identification of compound 1 [5-(hydroxymethyl)-2- furancarboxaldehyde] --- p.24 / Chapter 2.5.2 --- Identification of compound 2 (oleic acid) --- p.25 / Chapter 2.5.3 --- Identification of compound 3 (ferulic acid) --- p.26 / Chapter 2.5.4 --- Identification of compound 4 (daucosterol) --- p.26 / Chapter 2.5.5 --- Identification of compound 5 (butylidenephthalide) --- p.27 / Chapter 2.5.6 --- Identification of compound 6 (butylphthalide) --- p.28 / Chapter 2.5.7 --- "Identification of compound 7 (Z, Z'-6.6', 7.3'a-diligustilide)" --- p.30 / Chapter 2.5.8 --- Identification of compound 8 (pregnenolone) --- p.31 / Chapter 2.5.9 --- "Identification of compound 9 [5,5'-oxydimethylenebis(2-furaldehyde)]" --- p.32 / Chapter 2.6 --- Conclusions --- p.34 / Chapter 3. --- Analysis of Rhizoma Chuanxiong by Capillary Electrophoresis --- p.35 / Chapter 3.1 --- Introduction --- p.35 / Chapter 3.1.1 --- Capillary electrophoreis system --- p.35 / Chapter 3.1.2 --- Principles of separation --- p.36 / Chapter 3.1.3 --- Considerations on development of analysis method --- p.41 / Chapter 3.2 --- Experimental --- p.43 / Chapter 3.2.1 --- Reagents and materials --- p.43 / Chapter 3.2.2 --- Reference compounds --- p.43 / Chapter 3.2.3 --- Instrumentation and apparatus --- p.44 / Chapter 3.2.4 --- Experimental procedures --- p.45 / Chapter 3.2.4.1 --- Preparation of running buffer solution --- p.45 / Chapter 3.2.4.2 --- Preparation of standard solutions --- p.46 / Chapter 3.2.4.3 --- Preparation of Rhizoma Chuanxiong extracts --- p.47 / Chapter 3.2.4.4 --- Flushing of capillaries --- p.47 / Chapter 3.2.4.5 --- Conditions of separation --- p.48 / Chapter 3.3 --- Results and Discussion --- p.48 / Chapter 3.3.1 --- Preliminary experiments --- p.48 / Chapter 3.3.1.1 --- Addition of surfactants --- p.51 / Chapter 3.3.2 --- Effect of buffer concentration --- p.54 / Chapter 3.3.3 --- Effect of SDS concentration --- p.59 / Chapter 3.3.4 --- Addition of organic modifier --- p.63 / Chapter 3.3.5 --- Reproducibility of the proposed method --- p.68 / Chapter 3.3.6 --- Quantitative analysis of seven standard compounds --- p.70 / Chapter 3.3.7 --- Application of the developed methodology --- p.74 / Chapter 3.3.8 --- Conclusions --- p.83 / References --- p.85 / Appendices / Appendix 1.1.1 1H-NMR spectrum of 5-(hydroxymethyl)-2-furancarboxaldehyde --- p.90 / Appendix 1.1.2 13C-NMR spectrum of 5-(hydroxyinethyl)-2-furancarboxaldehyde --- p.90 / Appendix 1.2 X-ray crystallographic data of ferulic acid --- p.91 / Appendix 1.3 13C-NMR spectrum of butylidenephthalide --- p.96 / Appendix 1.4.1 1 H-NMR spectrum of butylphthalide --- p.97 / Appendix 1.4.2 13C-NMR spectrum of butylphthalide --- p.97 / "Appendix 1.5 X-ray crystallographic data of z, z', 6.6', 7.3'a-diligustilide" --- p.98 / "Appendix 1.6 X-ray crystallographic data of 5,5'-oxydimethylenebis(2-furaldehyde)" --- p.105 / Appendix 2.1 Details of quantitative analysis of 5-(hydroxymethyl)-2-furancarboxaldehyde --- p.112 / Appendix 2.2 Details of quantitative analysis of ligustrazin hydrochloride --- p.112 / "Appendix 2.3 Details of quantitative analysis of 5,5'-oxydimethylenebis(2-furaldehyde)" --- p.113 / Appendix 2.4 Details of quantitative anlaysis of ferulic acid --- p.113 / Appendix 2.5 Details of quantitative analysis of butylphthalide --- p.114 / Appendix 2.6 Details of quantitative analysis of butylidenephthalide --- p.114 / "Appendix 2.7 Details of quantitative anlaysis of z,z', 6.6', 7.3'a-diligustilide" --- p.115 / Appendix 3.1 Quantitative analysis of Chuanxiong sample from Hong Kong (HK1) --- p.115 / Appendix 3.2 Quantitaive analysis of Chuanxiong sample from Hong Kong (HK2) --- p.116 / Appendix 3.3 Quantitative analysis of Chuanxiong sample from Sichuan (SC1) --- p.116 / Appendix 3.4 Quantitative analysis of Chuanxiong sample from Sichuan (SC2) --- p.117 / Appendix 3.5 Quantitative anlaysis of Chuanxiong samplefrom Fujian (FJ) --- p.117
38

Isolation and characterization of chymotrypsin inhibitor and trypsin inhibitors from seeds of momordica cochinchinensis.

January 2000 (has links)
by Ricardo Wong Chi Ho. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 128-138). / Abstracts in English and Chinese. / Acknowledgments --- p.i / Abstract --- p.ii / 論文摘要 --- p.iv / Table of Contents --- p.vi / List of Figures --- p.xi / List of Tables --- p.xiii / List of Abbreviations --- p.xiv / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Overview of Serine Protease Inhibitors --- p.1 / Chapter 1.2 --- Classification of Serine Protease Inhibitors --- p.2 / Chapter 1.2.1 --- Kunitz Type Serine Protease Inhibitors --- p.7 / Chapter 1.2.2 --- Bowman-Birk Type Serine Protease Inhibitors --- p.11 / Chapter 1.2.3 --- Squash Type Serine Protease Inhibitors --- p.16 / Chapter 1.3 --- Role of Serine Protease Inhibitors in Plants --- p.20 / Chapter 1.4 --- Nutritional Fact of Serine Protease Inhibitors --- p.22 / Chapter 1.5 --- Possible Applications of Serine Protease Inhibitors --- p.25 / Chapter 1.5.1 --- Medical Applications --- p.25 / Chapter 1.5.2 --- Agricultural Applications --- p.29 / Chapter 1.6 --- Rationale of the Present Study --- p.31 / Chapter Chapter 2 --- Screening of Seeds for Inhibitory Activities Against Serine Proteases --- p.33 / Chapter 2.1 --- Introduction --- p.33 / Chapter 2.2 --- Materials and Methods --- p.37 / Chapter 2.2.1 --- Materials --- p.37 / Chapter 2.2.2 --- Extraction Method --- p.37 / Chapter 2.2.3 --- Assays for Proteases Inhibitory Activities --- p.38 / Chapter 2.2.3.1 --- Assay for Chymotrypsin Activity --- p.38 / Chapter 2.2.3.2 --- Assay for Trypsin Activity --- p.38 / Chapter 2.2.3.3 --- Assay for Elastase Activity --- p.39 / Chapter 2.2.3.4 --- Assay for Subtilisin Activity --- p.39 / Chapter 2.2.3.5 --- Assays for Protease Inhibitory Activities --- p.40 / Chapter 2.2.4 --- Determination of Protein Concentration --- p.41 / Chapter 2.3 --- Results --- p.42 / Chapter 2.3.1 --- Extraction --- p.42 / Chapter 2.3.2 --- Serine Proteases Inhibitory Activities --- p.42 / Chapter 2.4 --- Discussion --- p.47 / Chapter Chapter 3 --- Isolation of Chymotrypsin Inhibitor and Trypsin Inhibitors from Momordica cochinchinensis Seeds --- p.49 / Chapter 3.1 --- Introduction --- p.49 / Chapter 3.2 --- Materials and Methods --- p.56 / Chapter 3.2.1 --- Materials --- p.56 / Chapter 3.2.2 --- Protein Extraction --- p.57 / Chapter 3.2.3 --- SP-Sepharose Chromatography --- p.57 / Chapter 3.2.4 --- Reversed Phase High Pressure Liquid Chromatography --- p.58 / Chapter 3.2.5 --- Assays for Chymotrypsin and Trypsin Inhibitory Activities --- p.60 / Chapter 3.2.6 --- Titration of Chymotrypsin --- p.61 / Chapter 3.2.7 --- Tricine Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis --- p.62 / Chapter 3.2.8 --- Coupling of Trypsin-Sepharose 4B Affinity Column --- p.63 / Chapter 3.2.9 --- Affinity Chromatography on Trypsin-Sepharose 4B --- p.64 / Chapter 3.3 --- Results --- p.65 / Chapter 3.3.1 --- SP-Sepharose Chromatography --- p.65 / Chapter 3.3.2 --- Reversed Phase High Pressure Liquid Chromatography --- p.67 / Chapter 3.3.3 --- Summary of Purification --- p.71 / Chapter 3.3.4 --- Titration of Chymotrypsin --- p.74 / Chapter 3.3.5 --- Tricine Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis --- p.74 / Chapter 3.3.6 --- Affinity Chromatography on Trypsin-Sepharose 4B --- p.78 / Chapter 3.4 --- Discussion --- p.81 / Chapter Chapter 4 --- Characterization of Chymotrypsin Inhibitor and Trypsin Inhibitors --- p.88 / Chapter 4.1 --- Introduction --- p.88 / Chapter 4.2 --- Materials and Methods --- p.90 / Chapter 4.2.1 --- Materials --- p.90 / Chapter 4.2.2 --- Determination of Molecular Weight --- p.90 / Chapter 4.2.3 --- Amino Acid Sequence Analysis --- p.91 / Chapter 4.2.4 --- Surface Plasmon Resonance Measurement --- p.92 / Chapter 4.2.4.1 --- Immobilization of Ligands on the Surface of Optical Biosensors --- p.92 / Chapter 4.2.4.2 --- Determination of Kinetics Constants --- p.93 / Chapter 4.2.4.3 --- pH Dependence of the Inhibition by Chymotrypsin Inhibitor --- p.93 / Chapter 4.2.4.4 --- Data Analysis --- p.94 / Chapter 4.2.5 --- Effect of Chymotrypsin Inhibitor on the Estereolytic Activity and Proteolytic Activity of Chymotrypsin --- p.95 / Chapter 4.2.6 --- Specificities of the Inhibitors % --- p.96 / Chapter 4.2.7 --- Binding Ratio of CI to Different Proteases --- p.97 / Chapter 4.2.8 --- Effects of the Proteases on Their Corresponding Inhibitors --- p.97 / Chapter 4.2.8.1 --- Tricine Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis --- p.97 / Chapter 4.2.8.2 --- Assay for Chymotrypsin Inhibitory Activity --- p.98 / Chapter 4.3 --- Results --- p.99 / Chapter 4.3.1 --- Molecular Weight of the Inhibitors --- p.99 / Chapter 4.3.2 --- N-terminal Amino Acid Sequence --- p.99 / Chapter 4.3.3 --- Surface Plasmon Resonance Measurement --- p.102 / Chapter 4.3.3.1 --- Kinetics of Chymotrypsin Inhibitor --- p.102 / Chapter 4.3.3.2 --- Kinetics of Trypsin Inhibitors --- p.106 / Chapter 4.3.3.3 --- pH Dependence of the Inhibition by Chymotrypsin Inhibitor --- p.106 / Chapter 4.3.4 --- Effect of Chymotrypsin Inhibitor on the Estereolytic Activity and Proteolytic Activity of Chymotrypsin --- p.106 / Chapter 4.3.5 --- Specificities of the Inhibitors --- p.110 / Chapter 4.3.6 --- Binding Ratio of CI to Different Proteases --- p.112 / Chapter 4.3.7 --- Effects of the Proteases on Their Corresponding Inhibitors --- p.112 / Chapter 4.4 --- Discussion --- p.119 / Chapter Chapter 5 --- Conclusion --- p.125 / References --- p.128
39

Purification and characterization of grass carp aldehyde dehydrogenase.

January 2000 (has links)
by Choy Ka-Fai. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2000. / Includes bibliographical references (leaves 107-125). / Abstracts in English and Chinese. / ACKNOWLEDGEMENTS --- p.I / 論文摘要 --- p.II / ABSTRACT --- p.III / ABBREVIATIONS --- p.V / TABLE OF CONTENTS --- p.VI / Chapter CHAPTER 1 --- INTRODUCTION --- p.1 / Chapter CHAPTER 2 --- PURIFICATION OF GRASS CARP ALDH FROM MITOCHONDRIA --- p.18 / Chapter CHAPTER 3 --- PURIFICATION & CHARACTERIZATION OF GRASS CARP ALDH --- p.49 / Chapter CHAPTER 4 --- CONCLUSION --- p.104 / REFERENCES --- p.107
40

Purification and characterization of two isoforms of aldehyde dehydrogenase from the liver of black seabream Mylio macrocephalus.

January 2002 (has links)
by Tang Wai Kwan. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2002. / Includes bibliographical references (leaves 91-110). / Abstracts in English and Chinese. / Acknowledgements / 論文摘要 / Abstract / Abbreviations / Chapter Chapter 1 --- Introduction / Chapter 1.1 --- Aldehyde Dehydrogenase Extended Family --- p.1 / Chapter 1.1.1 --- Phylogenetic Tree --- p.2 / Chapter 1.1.2 --- Physiological Functions --- p.4 / Chapter 1.1.3 --- Structural Conservations --- p.7 / Chapter 1.2 --- ALDH-1 and ALDH-2 --- p.9 / Chapter 1.3 --- Antiquitin --- p.11 / Chapter 1.4 --- Osmoregulation --- p.14 / Chapter 1.4.1 --- Osmoprotectant --- p.14 / Chapter 1.4.2 --- Betaine Aldehyde Dehydrogenase --- p.15 / Chapter 1.5 --- Objectives of the Present Study --- p.18 / Chapter Chapter 2 --- Purification and Characterization of Seabream ALDH-2 and Antiquitin --- p.20 / Chapter 2.1 --- Introduction --- p.20 / Chapter 2.2 --- Materials --- p.21 / Chapter 2.3 --- Methodology / Chapter 2.3.1 --- Preparation of Crude Tissue Extract --- p.22 / Chapter 2.3.2 --- Synthesis of α-Cyanocinnamate Sepharose --- p.22 / Chapter 2.3.3 --- Synthesis of p-Hydroxyacetophenone Sepharose --- p.23 / Chapter 2.3.4 --- Purification of ALDH-2 --- p.23 / Chapter 2.3.5 --- Purification of Antiquitin --- p.24 / Chapter 2.3.6 --- Enzyme and Protein Assays --- p.24 / Chapter 2.3.7 --- Electrophoretic Procedures / Chapter 2.3.7.1 --- Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) --- p.26 / Chapter 2.3.7.2 --- Native PAGE --- p.27 / Chapter 2.3.7.3 --- Isoelectric focusing (IEF) --- p.27 / Chapter 2.3.8 --- N-terminal Amino Acid Sequencing --- p.28 / Chapter 2.4 --- Results / Chapter 2.4.1 --- Tissue Distribution of ALDH --- p.29 / Chapter 2.4.2 --- Purification and Molecular Properties of ALDH-2 --- p.31 / Chapter 2.4.3 --- Kinetic Properties of ALDH-2 --- p.42 / Chapter 2.4.4 --- Purification and Molecular Properties of Antiquitin --- p.49 / Chapter 2.4.5 --- Kinetic Properties of Antiquitin --- p.54 / Chapter Chapter 3 --- Discussion / Chapter 3.1 --- Tissue Distribution --- p.66 / Chapter 3.2 --- N-terminal Amino Acid Sequencing --- p.67 / Chapter 3.3 --- Purification of Seabream ALDH --- p.68 / Chapter 3.3.1 --- Separation of Two ALDH isoforms --- p.69 / Chapter 3.3.2 --- Binding Affinity of α-Cyanocinnamate Sepharose --- p.70 / Chapter 3.3.3 --- Purification --- p.72 / Chapter 3.4 --- Electrophoretic Properties --- p.73 / Chapter 3.5 --- pH and Temperature Stability --- p.74 / Chapter 3.6 --- Substrate Specificity --- p.77 / Chapter 3.7 --- Possible Functions of Antiquitin --- p.80 / Chapter 3.8 --- Future Prospects --- p.84 / Chapter Chapter 4 --- Conclusion --- p.90 / Chapter Chapter 5 --- References --- p.91

Page generated in 0.1811 seconds