• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 2
  • Tagged with
  • 6
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Zur Charakterisierung isometrischer und konformer Abbildungen zwischen pseudo-Riemannschen Mannigfaltigkeiten

Peleska, Jan, January 1982 (has links)
Thesis (Doctoral)--Universität Hamburg, 1982.
2

Synchronisationsphänomene myotendinöser Oszillationen interagierender neuromuskulärer Systeme : mit Betrachtung einer Hypothese bezüglich unterschiedlicher Qualitäten isometrischer Muskelaktion / Synchronization phenomena of myotendinal oscillations during interaction of neuromuscular systems : considering a hypothesis regarding different qualities of isometric muscle action

Schaefer, Laura January 2014 (has links)
Muskeln oszillieren nachgewiesener Weise mit einer Frequenz um 10 Hz. Doch was geschieht mit myofaszialen Oszillationen, wenn zwei neuromuskuläre Systeme interagieren? Die Dissertation widmet sich dieser Fragestellung bei isometrischer Interaktion. Während der Testmessungen ergaben sich Hinweise für das Vorhandensein von möglicherweise zwei verschiedenen Formen der Isometrie. Arbeiten zwei Personen isometrisch gegeneinander, können subjektiv zwei Modi eingenommen werden: man kann entweder isometrisch halten – der Kraft des Partners widerstehen – oder isometrisch drücken – gegen den isometrischen Widerstand des Partners arbeiten. Daher wurde zusätzlich zu den Messungen zur Interaktion zweier Personen an einzelnen Individuen geprüft, ob möglicherweise zwei Formen der Isometrie existieren. Die Promotion besteht demnach aus zwei inhaltlich und methodisch getrennten Teilen: I „Single-Isometrie“ und II „Paar-Isometrie“. Für Teil I wurden mithilfe eines pneumatisch betriebenen Systems die hypothetischen Messmodi Halten und Drücken während isometrischer Aktion untersucht. Bei n = 10 Probanden erfolgte parallel zur Aufzeichnung des Drucksignals während der Messungen die Erfassung der Kraft (DMS) und der Beschleunigung sowie die Aufnahme der mechanischen Muskeloszillationen folgender myotendinöser Strukturen via Mechanomyo- (MMG) bzw. Mechanotendografie (MTG): M. triceps brachii (MMGtri), Trizepssehne (MTGtri), M. obliquus externus abdominis (MMGobl). Pro Proband wurden bei 80 % der MVC sowohl sechs 15-Sekunden-Messungen (jeweils drei im haltenden bzw. drückenden Modus; Pause: 1 Minute) als auch vier Ermüdungsmessungen (jeweils zwei im haltenden bzw. drückenden Modus; Pause: 2 Minuten) durchgeführt. Zum Vergleich der Messmodi Halten und Drücken wurden die Amplituden der myofaszialen Oszillationen sowie die Kraftausdauer herangezogen. Signifikante Unterschiede zwischen dem haltenden und dem drückenden Modus zeigten sich insbesondere im Bereich der Ermüdungscharakteristik. So lassen Probanden im haltenden Modus signifikant früher nach als im drückenden Modus (t(9) = 3,716; p = .005). Im drückenden Modus macht das längste isometrische Plateau durchschnittlich 59,4 % der Gesamtdauer aus, im haltenden sind es 31,6 % (t(19) = 5,265, p = .000). Die Amplituden der Single-Isometrie-Messungen unterscheiden sich nicht signifikant. Allerdings variieren die Amplituden des MMGobl zwischen den Messungen im drückenden Modus signifikant stärker als im haltenden Modus. Aufgrund dieser teils signifikanten Unterschiede zwischen den beiden Messmodi wurde dieses Setting auch im zweiten Teil „Paar-Isometrie“ berücksichtigt. Dort wurden n = 20 Probanden – eingeteilt in zehn gleichgeschlechtliche Paare – während isometrischer Interaktion untersucht. Die Sensorplatzierung erfolgte analog zu Teil I. Die Oszillationen der erfassten MTG- sowie MMG-Signale wurden u.a. mit Algorithmen der Nichtlinearen Dynamik auf ihre Kohärenz hin untersucht. Durch die Paar-Isometrie-Messungen zeigte sich, dass die Muskeln und die Sehnen beider neuromuskulärer Systeme bei Interaktion im bekannten Frequenzbereich von 10 Hz oszillieren. Außerdem waren sie in der Lage, sich bei Interaktion so aufeinander abzustimmen, dass sich eine signifikante Kohärenz entwickelte, die sich von Zufallspaarungen signifikant unterscheidet (Patchanzahl: t(29) = 3,477; p = .002; Summe der 4 längsten Patches: t(29) = 7,505; p = .000). Es wird der Schluss gezogen, dass neuromuskuläre Komplementärpartner in der Lage sind, sich im Sinne kohärenten Verhaltens zu synchronisieren. Bezüglich der Parameter zur Untersuchung der möglicherweise vorhandenen zwei Formen der Isometrie zeigte sich bei den Paar-Isometrie-Messungen zwischen Halten und Drücken ein signifikanter Unterschied bei der Ermüdungscharakteristik sowie bezüglich der Amplitude der MMGobl. Die Ergebnisse beider Teilstudien bestärken die Hypothese, dass zwei Formen der Isometrie existieren. Fraglich ist, ob man überhaupt von Isometrie sprechen kann, da jede isometrische Muskelaktion aus feinen Oszillationen besteht, die eine per Definition postulierte Isometrie ausschließen. Es wird der Vorschlag unterbreitet, die Isometrie durch den Begriff der Homöometrie auszutauschen. Die Ergebnisse der Paar-Isometrie-Messungen zeigen u.a., dass neuromuskuläre Systeme in der Lage sind, ihre myotendinösen Oszillationen so aufeinander abzustimmen, dass kohärentes Verhalten entsteht. Es wird angenommen, dass hierzu beide neuromuskulären Systeme funktionell intakt sein müssen. Das Verfahren könnte für die Diagnostik funktioneller Störungen relevant werden. / Muscles oscillate with a frequency of about 10 Hz. But what happens with myofascial oscillations if two neuromuscular systems interact? The dissertation is devoted to this question during isometric interaction. The test measurements provide hints for the presence of possibly two different forms of isometric muscle action. When two persons work against each other, each individual can subjectively choose to take up one of two modes: one can either hold isometrically – thus resist the force of the partner – or one can push isometrically – and therefore work against the resistance of the partner. In addition to the measurements to determine the interaction of neuromuscular systems, measurements with single individuals were done to evaluate the question, if probably two forms of isometric muscle action exist. The doctoral thesis consists of two separate parts concerning the content and methodology: I “Single Isometric” and II “Coupled Isometric”. For part I the hypothetical measurement modes - “holding” and “pushing” during isometric muscle action - were examined using a pneumatic system. During the measurements of n = 10 subjects the signal of pressure, force (strain gauge) and acceleration were recorded. Furthermore, the detection of the mechanic muscle oscillations of the following myotendinal structures occurred via Mechanomyo- (MMG) and Mechanotendography (MTG), respectively: triceps brachii muscle (MMGtri), tendon of triceps brachii muscle (MTGtri) and obliquus externus abdominis muscle (MMGobl). Each test person performed at 80 % of MVC six 15-seconds-measurements (three at holding and three at pushing mode, respectively; break: 1 min.) as well as four fatigue measurements (two at holding and two at pushing mode, respectively; break: 2 min.). In order to compare the two measurement modes holding and pushing, the amplitude of the myofascial oscillations as well as the force endurance were used. Significant differences between the holding and the pushing mode appeared especially when looking at the characteristics of fatigue. Subjects in the holding mode yielded earlier than during the pushing one (t(9) = 3.716; p = .005). In the pushing mode the longest isometric plateau amounts 59.4 % of the overall duration of the measurement. During holding it lasted 31.6 % (t(19) = 5.265, p = .000). The amplitudes of the single-isometric-measurements did not differ significantly. But the amplitude of the MMGobl varied significantly stronger during the pushing mode comparing to the holding one. Due to these partly significant differences between both measurement modes, this setting was considered for the second part „Coupled-Isometric“, too. For the coupled-isometric-measurements n = 20 subjects – divided into same-sex couples – were investigated during isometric interaction. The placement of the sensors is analogous to part I. The oscillations of the recorded MMG- and MTG-signals were analyzed regarding their coherence inter alia by algorithms of non-linear dynamics. Through the coupled-isometric-measurements it was shown, that also during isometric interaction the muscles and the tendons of both neuromuscular systems oscillate at the known frequency range of 10 Hz. Moreover, the systems are able to coordinate them in such a manner, that a significant coherence appears. This differed significantly from random pairings (number of patches: t(29) = 3.477; p = .002; Sum of 4 longest patches: t(29) = 7.505; p = .000). Thus it is concluded that neuromuscular complementary partners are able to synchronize themselves in the sense of coherent behavior. Regarding the parameters concerning the possibly existing forms of isometric muscle action, a significant difference at the coupled-isometric-measurements between holding and pushing appeared with respect to the characteristics of fatigue as well as the amplitudes of the MMGobl. The results of both sub studies strengthen the hypothesis that two forms of isometric muscle action exist. It is questionable whether one can talk of isometry at all, since each isometric muscle action consists of fine oscillations. This excludes a by definition postulated isometry. It is proposed to exchange this term with homeometry. The results of the coupled-isometric-measurements show inter alia, that neuromuscular systems are able to coordinate their myotendinal oscillations, so that coherent behavior arises. It is supposed that for this both systems have to be functionally intact. This procedure could become relevant for diagnostics of functional disorders.
3

Quasi-isometries between hyperbolic metric spaces, quantitative aspects

Shchur, Vladimir 08 July 2013 (has links) (PDF)
In this thesis we discuss possible ways to give quantitative measurement for two spaces not being quasi-isometric. From this quantitative point of view, we reconsider the definition of quasi-isometries and propose a notion of ''quasi-isometric distortion growth'' between two metric spaces. We revise our article [32] where an optimal upper-bound for Morse Lemma is given, together with the dual variant which we call Anti-Morse Lemma, and their applications.Next, we focus on lower bounds on quasi-isometric distortion growth for hyperbolic metric spaces. In this class, $L^p$-cohomology spaces provides useful quasi-isometry invariants and Poincaré constants of balls are their quantitative incarnation. We study how Poincaré constants are transported by quasi-isometries. For this, we introduce the notion of a cross-kernel. We calculate Poincaré constants for locally homogeneous metrics of the form $dt^2+\sum_ie^{2\mu_it}dx_i^2$, and give a lower bound on quasi-isometric distortion growth among such spaces.This allows us to give examples of different quasi-isometric distortion growths, including a sublinear one (logarithmic).
4

Rough Isometries of Order Lattices and Groups / Grobe Isometrien von Ordnungsverbänden und Gruppen

Lochmann, Andreas 06 August 2009 (has links)
No description available.
5

Quasi-isometries between hyperbolic metric spaces, quantitative aspects / Quasi-isométries entre espaces métriques hyperboliques, aspects quantitatifs

Shchur, Vladimir 08 July 2013 (has links)
Dans cette thèse, nous considérons les chemins possibles pour donner une mesure quantitative du fait que deux espaces ne sont pas quasi-isométriques. De ce point de vue quantitatif, on reprend la définition de quasi-isométrie et on propose une notion de “croissance de distorsion quasi-isométrique” entre deux espaces métriques. Nous révisons notre article [32] où une borne supérieure optimale pour le lemme de Morse est donnée, avec la variante duale que nous appelons Anti-Morse Lemma, et leurs applications.Ensuite, nous nous concentrons sur des bornes inférieures sur la croissance de distorsion quasi-isométrique pour des espaces métriques hyperboliques. Dans cette classe, les espaces de $L^p$-cohomologie fournissent des invariants de quasi-isométrie utiles et les constantes de Poincaré des boules sont leur incarnation quantitative. Nous étudions comment les constantes de Poincaré sont transportées par quasi-isométries. Dans ce but, nous introduisons la notion de transnoyau. Nous calculons les constantes de Poincaré pour les métriques localement homogènes de la forme $dt^2+\sum_ie^{2\mu_it}dx_i^2$, et donnons une borne inférieure sur la croissance de distorsion quasi-isométrique entre ces espaces.Cela nous permet de donner des exemples présentant différents type de croissance de distorsion quasi-isométrique, y compris un exemple sous-linéaire (logarithmique). / In this thesis we discuss possible ways to give quantitative measurement for two spaces not being quasi-isometric. From this quantitative point of view, we reconsider the definition of quasi-isometries and propose a notion of ``quasi-isometric distortion growth'' between two metric spaces. We revise our article [32] where an optimal upper-bound for Morse Lemma is given, together with the dual variant which we call Anti-Morse Lemma, and their applications.Next, we focus on lower bounds on quasi-isometric distortion growth for hyperbolic metric spaces. In this class, $L^p$-cohomology spaces provides useful quasi-isometry invariants and Poincar\'e constants of balls are their quantitative incarnation. We study how Poincar\'e constants are transported by quasi-isometries. For this, we introduce the notion of a cross-kernel. We calculate Poincar\'e constants for locally homogeneous metrics of the form $dt^2+\sum_ie^dx_i^2$, and give a lower bound on quasi-isometric distortion growth among such spaces.This allows us to give examples of different quasi-isometric distortion growths, including a sublinear one (logarithmic).
6

On Uniform and integrable measure equivalence between discrete groups / Sur l'équivalence mesurée uniforme et intégrable entre groupes discrets

Das, Kajal 19 October 2016 (has links)
Ma thèse se situe à l'intersection de \textit {la théorie des groupes géométrique} et \textit{la théorie des groupes mesurée}. Une question majeure dans la théorie des groupes géométrique est d'étudier la classe de quasi-isométrie (QI) et la classe d'équivalence mesurée (ME) d'un groupe, respectivement. $L^p$-équivalence mesurée est une relation d'équivalence qui est définie en ajoutant des contraintes géométriques avec d'équivalence mesurée. En plus, QI est une condition géométrique. Il est une question naturelle, si deux groupes sont QI et ME, si elles sont $L^p$-ME pour certains $p>0$. Dans mon premier article, en collaboration avec R. Tessera, nous répondons négativement à cette question pour $p\geq 1$, montrant que l'extension centrale canonique d'un groupe surface de genre plus élevé ne sont pas $L^1$-ME pour le produit direct de ce groupe de surface avec $\mathbb{Z}$ (alors qu'ils sont à la fois quasi-isométrique et équivalente mesurée).Dans mon deuxième papier, j'ai observé un lien général entre la géométrie des expandeurs, defini comme une séquence des quotients finis ( l'espace de boîte) d'un groupe finiment engendré, et les propriétés mesurée theorique du groupe. Plus précisément, je l'ai prouvé que si deux <<espaces de boîte>> sont quasi-isométrique, les groupes correspondants doivent être <<mesurée équivalente uniformément >>, une notion qui combine à la fois QI et ME. Je prouve aussi une version de ce résultat pour le plongement grossière, ce qui permet de distinguer plusieurs classe des expandeurs. Par exemple, je montre que les expandeurs associé à $SL(m, \mathbb{Z})$ ne grossièrement plongent à les expandeurs associés à $SL_n(\mathbb{Z})$ si $m>n$. / My thesis lies at the intersection of \textit{geometric group theory} and \textit{measured group theory}. A major question in geometric group theory is to study the quasi-isometry (QI) class and the measure equivalence (ME) class of a group, respectively. $L^p$-measure equivalence is an equivalence relation which is defined by adding some geometric constraints with measure equivalence. Besides, quasi-isometry is a geometric condition. It is a natural question if two groups are QI and ME, whether they are $L^p$-ME for some $p>0$. In my first paper, together with R. Tessera, we answer this question negatively for $p\geq 1$, showing that the canonical central extension of a surface group of higher genus is not $L^1$-ME to the direct product of this surface group with $\mathbb{Z}$ (while they are both quasi-isometric and measure equivalent). In my second paper, I observed a general link between the geometry of expanders arising as a sequence of finite quotients (box space) of a finitely generated group, and the measured theoretic properties of the group. More precisely, I proved that if two box spaces' are quasi-isometric, then the corresponding groups must be `uniformly measure equivalent', a notion that combines both quasi-isometry and measure equivalence. I also prove a version of this result for coarse embedding, allowing to distinguish many classes of expanders. For instance, I show that the expanders associated to $SL(m,\mathbb{Z})$ do not coarsely embed inside the expanders associated to $SL_n(\mathbb{Z}$ if $m>n$.

Page generated in 0.0319 seconds