Spelling suggestions: "subject:"isomorfismos"" "subject:"mesomorfismos""
11 |
The Complexity of angel-daemons and game isomorphismGarcía Chacón, Alina 07 May 2012 (has links)
The analysis of the computational aspects of strategic situations is a basic field in Computer
Sciences. Two main topics related to strategic games have been developed. First,
introduction and analysis of a class of games (so called angel/daemon games) designed
to asses web applications, have been considered. Second, the problem of isomorphism
between strategic games has been analysed. Both parts have been separately considered.
Angel-Daemon Games
A service is a computational method that is made available for general use through a
wide area network. The performance of web-services may fluctuate; at times of stress the
performance of some services may be degraded (in extreme cases, to the point of failure).
In this thesis uncertainty profiles and Angel-Daemon games are used to analyse servicebased
behaviours in situations where probabilistic reasoning may not be appropriate.
In such a game, an angel player acts on a bounded number of ¿angelic¿ services
in a beneficial way while a daemon player acts on a bounded number of ¿daemonic¿
services in a negative way. Examples are used to illustrate how game theory can be used
to analyse service-based scenarios in a realistic way that lies between over-optimism and
over-pessimism.
The resilience of an orchestration to service failure has been analysed - here angels and
daemons are used to model services which can fail when placed under stress. The Nash
equilibria of a corresponding Angel-Daemon game may be used to assign a ¿robustness¿
value to an orchestration.
Finally, the complexity of equilibria problems for Angel-Daemon games has been
analysed. It turns out that Angel-Daemon games are, at the best of our knowledge, the
first natural example of zero-sum succinct games.
The fact that deciding the existence of a pure Nash equilibrium or a dominant strategy
for a given player is Sp
2-complete has been proven. Furthermore, computing the value of
an Angel-Daemon game is EXP-complete. Thus, matching the already known complexity
results of the corresponding problems for the generic families of succinctly represented
games with exponential number of actions.
Game Isomorphism
The question of whether two multi-player strategic games are equivalent and the computational
complexity of deciding such a property has been addressed. Three notions
of isomorphisms, strong, weak and local have been considered. Each one of these isomorphisms
preserves a different structure of the game. Strong isomorphism is defined to
preserve the utility functions and Nash equilibria. Weak isomorphism preserves only the
player preference relations and thus pure Nash equilibria. Local isomorphism preserves
preferences defined only on ¿close¿ neighbourhood of strategy profiles.
The problem of the computational complexity of game isomorphism, which depends
on the level of succinctness of the description of the input games but it is independent
of the isomorphism to consider, has been shown. Utilities in games can be given succinctly
by Turing machines, boolean circuits or boolean formulas, or explicitly by tables.
Actions can be given also explicitly or succinctly. When the games are given in general
form, an explicit description of actions and a succinct description of utilities have been
assumed. It is has been established that the game isomorphism problem for general form
games is equivalent to the circuit isomorphism when utilities are described by Turing Machines;
and to the boolean formula isomorphism problem when utilities are described by
formulas. When the game is given in explicit form, it is has been proven that the game
isomorphism problem is equivalent to the graph isomorphism problem.
Finally, an equivalence classes of small games and their graphical representation have
been also examined.
|
12 |
Síntese estrutural de cadeias cinemáticas e mecanismosSimoni, Roberto January 2008 (has links)
Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Tecnológico. Programa de Pós-graduação em Engenharia Mecânica / Made available in DSpace on 2012-10-23T23:10:37Z (GMT). No. of bitstreams: 1
248436.pdf: 960786 bytes, checksum: ea91ab2ec7da01bf13ed0f739309d988 (MD5) / O objetivo principal deste trabalho é apresentar novas abordagens para a síntese estrutural de cadeias cinemáticas, que é uma fase fundamental para o projeto de mecanismos, utilizando ferramentas da teoria de grafos e da teoria de grupos. A síntese estrutural de cadeias cinemáticas consiste na geração de uma lista completa de cadeias cinemáticas sem cadeia isomórficas e degeneradas que satisfazem a equação da mobilidade.
Nesta fase do projeto de mecanismos as dimensões dos elos não são consideradas e uma cadeia cinemática pode ser representada de forma unívoca por um grafo cujos vértices correspondem aos elos da cadeia e as arestas correspondem às juntas. Com isso, a síntese estrutural de cadeias cinemáticas consiste na geração de uma lista completa de grafos que satisfazem a equação da mobilidade.
Uma revisão dos principais métodos de síntese estrutural de cadeias cinemáticas é apresentada e os principais problemas desses métodos são identificados. Existem duas espécies de problemas: geração de cadeias isomórficas e degeneradas as quais devem sempre ser evitadas por um método ideal de síntese estrutural; e a geração de cadeias com fracionamento as quais devem ser consideradas opcionais. Em vista disto, dois métodos de geração de cadeias sem fracionamento e um de cadeias com fracionamento são aprimorados e um novo método de geração exclusiva de cadeias com fracionamento é proposto. Novos resultados são obtidos para cadeias que operam em vários sistemas de helicóides. Os resultados serão apresentados em tabelas, e para o caso plano, as diferenças nos resultados encontrados na literatura serão analisados.
A síntese estrutural de mecanismos consiste na enumeração das possíveis inversões cinemáticas que uma cadeia cinemática pode originar. Para esta fase foi utilizada uma nova
abordagem com ferramentas da teoria de grupos. Pela primeira vez na literatura de mecanismos foi introduzido o conceito de órbitas do grupo de automorfismos do grafo, o qual representa a cadeia cinemática, para representar as inversões cinemáticas. Novos resultados são obtidos para mecanismos que operam em vários sistemas de helicóides e apresentados em tabelas.
|
13 |
Grupos cobertos por seis subgrupos maximais / Groups covered for six subgroupsJÃnio Moreira de Alencar 18 March 2011 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Esta dissertaÃÃo à baseada no artigo "Groups with a maximal irredundant 6-cover"de A. Abdollahi, M. J. Ataei, S. M. Jafarian Amiri, e A. Mohammadi Hassanabadi, onde caracterizam os grupos que admitem uma cobertura irredundante por seis subgrupos maximais com interseÃÃo livre de nÃcleo. Como uma aplicaÃÃo deste resultado caracterizamos os grupos que admitem uma cobertura por seis subgrupos prÃprios e nÃo admite cobertura com uma quantidade de membros menor que seis. Mostraremos tambÃm que o maior Ãndice|G : D| sobre todos os grupos G tendo uma cobertura irredundante por seis subgrupo prÃprios com interseÃÃo D à 36. / This dissertation is based on the article "Groups with a maximal irredundant 6-cover"of A. Abdollahi, MJ Ataei, SM Jafarian Amiri and A. Mohammadi Hassanabadi, which characterize groups with a maximal irredundante
cover for six subgroups with core-free intersection. As an application of this result we characterize groups that admit a cover for six subgroups own and
does not allow coverage an amount of less than six members. We will also show that the largest index |G : D| over all groups G having an irredundant cover for six subgroup with intersection D is 36.
|
14 |
Teoria isomorfa dos espaços de Banach C0(K,X) / Isomorphic theory of the Banach spaces C0(K,X)Batista, Leandro Candido 12 November 2012 (has links)
Para um espaço localmente compacto de Hausdorff K e um espaço de Banach X, denotamos por C0(K,X) o espaço de todas as funções a valores em X contínuas sobre K que se anulam no infinito, munido da norma do supremo. No espírito do clássico teorema de Banach-Stone 1937, estabelecemos que se C0(K1,X) é isomorfo a C0(K2,X), onde X é um espaço de Banach de cotipo finito e tal que X é separável ou X* tem a propriedade de Radon-Nikodým, então ou K1 e K2 são ambos finitos ou K1 e K2 tem a mesma cardinalidade. Trata-se de uma extensão vetorial de um resultado de Cengiz 1978, o caso escalar X = R ou X = C. Demonstramos também que se K1 e K2 são intervalos compactos de ordinais e X é um espaço de Banach de cotipo finito, então a existência de um isomorfismo T de C(K1,X) em C(K2,X) com ||T||||T-1|| < 3 implica que uma certa soma topológica finita de K1 é homeomorfa a alguma soma topológica finita de K2. Mais ainda, se Xn não contém subespaço isomorfo a Xn+1 para todo n ∈ N, então K1 é homeomorfo a K2. Em outras palavras, obtemos um teorema tipo Banach-Stone vetorial que é uma extensão de um teorema de Gordon de 1970 e ao mesmo tempo uma extensão de um teorema de Behrends e Cambern de 1988. Mostramos que se existe um isomorfismo T de C(K1) em um subespaço de C(K2,X) com ||T||||T-1|| < 3, então a cardinalidade do α-ésimo derivado de K2 ou é finita ou é maior do que a cardinalidade do α-ésimo derivado de K1, para todo ordinal α. Em seguida, seja n um inteiro positivo, Γ um conjunto infinito munido da topologia discreta e X um espaço de Banach de cotipo finito. Estabelecemos que se o n-ésimo derivado de K for não vazio, então a distância de Banach-Mazur entre C0(K,X) e C0(Γ,X) é maior ou igual a 2n + 1. Também demonstramos que para quaisquer inteiros positivos n e k, a distância de Banach-Mazur entre C([1,ωnk],X) e C0(N,X) é exatamente 2n+1. Estes resultados fornecem extensões vetoriais para alguns teoremas de Cambern de 1970. Para um ordinal enumerável α, denotando por C(α) o espaço de Banach das funções contínuas no intervalo de ordinal [1, α], obtemos cotas superiores H(n, k) e cotas inferiores G(n, k) para as distâncias de Banach-Mazur entre os espaços C(ω) e C(ωnk), 1 < n, k < ω, verificando H(n, k) - G(n, k) < 2. Estas estimativas fornecem uma resposta para uma questão de Bessaga e Peczynski de 1960 sobre as distâncias de Banach-Mazur entre C(ω) e cada um dos espaços C(α), ω<α<ωω. / For a locally compact Hausdorff space K and a Banach space X, we denote by C0(K,X) the space of X-valued continuous functions on K which vanish at infinity, endowed with the supremum norm. In the spirit of the classical 1937 Banach-Stone theorem, we prove that if C0(K1,X) is isomorphic to C0(K2,X), where X is a Banach space having finite cotype and such that X is separable or X* has the Radon-Nikodým property, then either K1 and K2 are finite or K1 and K2 have the same cardinality. It is a vector-valued extension of a 1978 Cengiz result, the scalar case X = R or X = C. We also prove that if K1 and K2 are compact ordinal spaces and X is Banach space having finite cotype, then the existence of an isomorphism T from C(K1,X) onto C(K2,X) with ||T||||T-1|| < 3 implies that some finite topological sum of K1 is homeomorphic to some finite topological sum of K2. Moreover, if Xn contains no subspace isomorphic to Xn+1 for every n ∈ N, then K1 is homeomorphic to K2. In other words, we obtain a vector-valued Banach-Stone theorem which is an extension of a 1970 Gordon theorem and at same time an improvement of a 1988 Behrends and Cambern theorem. We show that if there is an embedding T of a C(K1) into C(K2,X) with ||T||||T-1|| < 3, then the cardinality of the α-th derivative of K2 is either finite or greater than the cardinality of the α-th derivative of K1, for every ordinal α. Next, let n be a positive integer, Γ an infinite set with the discrete topology and X is a Banach space having finite cotype. We prove that if the n-th derivative of K is not empty, then the Banach Mazur distance between C0(K,X) and C0(Γ,X) is greater than or equal to 2n + 1. Thus, we also show that for every positive integers n and k, the Banach Mazur distance between C([1,ωnk],X) and C0(N,X) is exactly 2n+1. These results provide vector-valued versions of some 1970 Cambern theorems. For a countable ordinal α, writing C(α) for the Banach space of continuous functions on the interval of ordinal [1, α], we give lower bounds H(n, k) and upper bounds G(n, k) on the Banach- Mazur distances between C(ω) and C(ωnk), 1 < n, k < ω, such that H(n, k) - G(n, k) < 2. These estimates provide an answer to a 1960 Bessaga and Peczynski question on the Banach-Mazur distances between C(ω) and each of the C(α) spaces, ω<α<ωω.
|
15 |
Evid??ncias do isomorfismo na gest??o de riscos operacionais em institui????es financeiras que atuam no BrasilFERREIRA, Marta de Lourdes 06 September 2016 (has links)
Submitted by Elba Lopes (elba.lopes@fecap.br) on 2018-03-26T16:30:03Z
No. of bitstreams: 2
Marta de Lourdes Ferreira.pdf: 815747 bytes, checksum: 5a3ca6df9a2d575450bc76d1bec0c528 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-03-26T16:30:03Z (GMT). No. of bitstreams: 2
Marta de Lourdes Ferreira.pdf: 815747 bytes, checksum: 5a3ca6df9a2d575450bc76d1bec0c528 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2016-09-06 / The main objective of this research was to raise and present isomorphism???s evidences in Operational Risk Management (ORM) of Financial Institutions (FIs) operating in Brazil. As specific objectives, to identify convergences and evaluate why they occur. It was made a qualitative and descriptive study of the historical development of ORM in FIs, regulations and similar works. It was carried out content analysis of "Pillar 3" Reports from ten IFs (75% of total assets) that acted in Brazil between 2013 and 2015. It was used descriptive categorizations of situations/events based on the theoretical framework, classified as performance evidence. It was found the presence of 100% of categories from coercive mechanism, 78% from the normative and 70% from the mimetic, proving the simultaneous performance of the mechanisms. The main categories for mechanism and disclosure index were: a) Coercive: related to legal compliance (100%); other risk management beyond the mandatory (89%); Business Continuity Plan (78%), a model of the three defense lines (56%), and prioritization of risks (56%). b) normative: committee responsibilities, executive officers and alike (100%); training in operational risk (78%), and dissemination of the risk culture (67%). c) mimetic: the use of technology in ORM (100%) and in loss databases (78%); the standardization of procedures between headquarters and branches (78%), as well as the use of indicators (78%). As a convergence point, there is a search for improvement of the ORM, and the compliance with requested criteria for approval of internal models to calculate capital requirements. The homogenization of the ORM was due to the legal demands, and its beneficial effects positively change the environment. The public disclosure of principles, the best practices and "Pillar 3" Reports allow other companies to use the main information and implement their own ORM structures. As future researches, we suggest the evolution of operational losses and evidence of the ORM performance; the current development stage of internal models; the profile analysis of people hired in the area, from the perspective of normative isomorphism; the technologies used in the ORM to identify mimetic isomorphism; the categories update of each mechanism, including technology area characteristics and human resources; as well as the research replication for companies subject to specific regulations, such as SOX and capital markets. / O objetivo principal da pesquisa ?? levantar e apresentar evid??ncias do isomorfismo na Gest??o de Riscos Operacionais (GRO) de Institui????es Financeiras (IFs) que operam no Brasil. O objetivo espec??fico ?? identificar pontos de converg??ncia e avaliar porque ocorrem. Realizada pesquisa qualitativa e descritiva da evolu????o hist??rica da GRO em IFs, regulamenta????es e trabalhos semelhantes. Efetuada an??lise de conte??do do Relat??rio ???Pilar 3??? de dez IFs (75% do total de ativos) que atuaram no Brasil entre 2013 e 2015. Utilizadas categoriza????es descritivas de situa????es/eventos conforme referencial te??rico, classific??veis como evid??ncias de atua????o. Constatou-se a presen??a de 100% das categorias do mecanismo coercitivo, 78% do normativo e 70% do mim??tico, comprovando a atua????o simult??nea dos mecanismos. Principais categorias por mecanismo e ??ndices de evidencia????o: a) coercitivo: relacionadas ao atendimento legal (100%); gest??o de outros riscos al??m dos obrigat??rios (89%); Plano de Continuidade de Neg??cios (78%), Modelo das Tr??s Linhas de Defesa (56%) e prioriza????o de riscos (56%). b) normativo: responsabilidades de comit??s, diretores e assemelhados (100%); treinamento em risco operacional (78%) e dissemina????o da cultura de risco (67%). c) mim??tico: uso de tecnologias na GRO (100%) e em bancos de dados de perdas (78%); padroniza????o de procedimentos entre matriz e filiais (78%) e o uso de indicadores (78%). Como ponto de converg??ncia, v??-se a busca pelo aperfei??oamento da GRO e o atendimento aos requisitos necess??rios para aprova????o de modelos internos para c??lculo de requerimentos de capital. A homogeneiza????o da GRO ocorreu em fun????o das demandas legais e seus efeitos ben??ficos alteram positivamente o ambiente. A divulga????o p??blica de princ??pios, melhores pr??ticas e relat??rios ???Pilar 3??? permite que outras organiza????es usem as informa????es como base e implantem suas pr??prias estruturas de GRO. Sugest??es de pesquisa: evolu????o de perdas operacionais e com evid??ncias de atua????o da GRO; est??gio atual de desenvolvimento dos modelos internos; an??lise do perfil dos profissionais contratados na ??rea, sob a ??tica do isomorfismo normativo; tecnologias usadas na GRO buscando evid??ncias do isomorfismo mim??tico; e replica????o da pesquisa para organiza????es sujeitas a regulamenta????es espec??ficas como SOX e mercado de capitais.
|
16 |
Teoria isomorfa dos espaços de Banach C0(K,X) / Isomorphic theory of the Banach spaces C0(K,X)Leandro Candido Batista 12 November 2012 (has links)
Para um espaço localmente compacto de Hausdorff K e um espaço de Banach X, denotamos por C0(K,X) o espaço de todas as funções a valores em X contínuas sobre K que se anulam no infinito, munido da norma do supremo. No espírito do clássico teorema de Banach-Stone 1937, estabelecemos que se C0(K1,X) é isomorfo a C0(K2,X), onde X é um espaço de Banach de cotipo finito e tal que X é separável ou X* tem a propriedade de Radon-Nikodým, então ou K1 e K2 são ambos finitos ou K1 e K2 tem a mesma cardinalidade. Trata-se de uma extensão vetorial de um resultado de Cengiz 1978, o caso escalar X = R ou X = C. Demonstramos também que se K1 e K2 são intervalos compactos de ordinais e X é um espaço de Banach de cotipo finito, então a existência de um isomorfismo T de C(K1,X) em C(K2,X) com ||T||||T-1|| < 3 implica que uma certa soma topológica finita de K1 é homeomorfa a alguma soma topológica finita de K2. Mais ainda, se Xn não contém subespaço isomorfo a Xn+1 para todo n ∈ N, então K1 é homeomorfo a K2. Em outras palavras, obtemos um teorema tipo Banach-Stone vetorial que é uma extensão de um teorema de Gordon de 1970 e ao mesmo tempo uma extensão de um teorema de Behrends e Cambern de 1988. Mostramos que se existe um isomorfismo T de C(K1) em um subespaço de C(K2,X) com ||T||||T-1|| < 3, então a cardinalidade do α-ésimo derivado de K2 ou é finita ou é maior do que a cardinalidade do α-ésimo derivado de K1, para todo ordinal α. Em seguida, seja n um inteiro positivo, Γ um conjunto infinito munido da topologia discreta e X um espaço de Banach de cotipo finito. Estabelecemos que se o n-ésimo derivado de K for não vazio, então a distância de Banach-Mazur entre C0(K,X) e C0(Γ,X) é maior ou igual a 2n + 1. Também demonstramos que para quaisquer inteiros positivos n e k, a distância de Banach-Mazur entre C([1,ωnk],X) e C0(N,X) é exatamente 2n+1. Estes resultados fornecem extensões vetoriais para alguns teoremas de Cambern de 1970. Para um ordinal enumerável α, denotando por C(α) o espaço de Banach das funções contínuas no intervalo de ordinal [1, α], obtemos cotas superiores H(n, k) e cotas inferiores G(n, k) para as distâncias de Banach-Mazur entre os espaços C(ω) e C(ωnk), 1 < n, k < ω, verificando H(n, k) - G(n, k) < 2. Estas estimativas fornecem uma resposta para uma questão de Bessaga e Peczynski de 1960 sobre as distâncias de Banach-Mazur entre C(ω) e cada um dos espaços C(α), ω<α<ωω. / For a locally compact Hausdorff space K and a Banach space X, we denote by C0(K,X) the space of X-valued continuous functions on K which vanish at infinity, endowed with the supremum norm. In the spirit of the classical 1937 Banach-Stone theorem, we prove that if C0(K1,X) is isomorphic to C0(K2,X), where X is a Banach space having finite cotype and such that X is separable or X* has the Radon-Nikodým property, then either K1 and K2 are finite or K1 and K2 have the same cardinality. It is a vector-valued extension of a 1978 Cengiz result, the scalar case X = R or X = C. We also prove that if K1 and K2 are compact ordinal spaces and X is Banach space having finite cotype, then the existence of an isomorphism T from C(K1,X) onto C(K2,X) with ||T||||T-1|| < 3 implies that some finite topological sum of K1 is homeomorphic to some finite topological sum of K2. Moreover, if Xn contains no subspace isomorphic to Xn+1 for every n ∈ N, then K1 is homeomorphic to K2. In other words, we obtain a vector-valued Banach-Stone theorem which is an extension of a 1970 Gordon theorem and at same time an improvement of a 1988 Behrends and Cambern theorem. We show that if there is an embedding T of a C(K1) into C(K2,X) with ||T||||T-1|| < 3, then the cardinality of the α-th derivative of K2 is either finite or greater than the cardinality of the α-th derivative of K1, for every ordinal α. Next, let n be a positive integer, Γ an infinite set with the discrete topology and X is a Banach space having finite cotype. We prove that if the n-th derivative of K is not empty, then the Banach Mazur distance between C0(K,X) and C0(Γ,X) is greater than or equal to 2n + 1. Thus, we also show that for every positive integers n and k, the Banach Mazur distance between C([1,ωnk],X) and C0(N,X) is exactly 2n+1. These results provide vector-valued versions of some 1970 Cambern theorems. For a countable ordinal α, writing C(α) for the Banach space of continuous functions on the interval of ordinal [1, α], we give lower bounds H(n, k) and upper bounds G(n, k) on the Banach- Mazur distances between C(ω) and C(ωnk), 1 < n, k < ω, such that H(n, k) - G(n, k) < 2. These estimates provide an answer to a 1960 Bessaga and Peczynski question on the Banach-Mazur distances between C(ω) and each of the C(α) spaces, ω<α<ωω.
|
17 |
Geometria dos espaços de Banach C([0, α ], X) para ordinais enumeráveis α / Geometry of Banach spaces C([0,α], X) for countable ordinals αZahn, Mauricio 12 June 2015 (has links)
A classificação isomorfa dos espaços de Banach separáveis C(K) é devida a Milutin no caso em que K são não enumeráveis e a Bessaga e Pelczynski no caso em que K são enumeráveis. Neste trabalho apresentamos uma extensão vetorial dessa classificação e tiramos várias consequências, por exemplo, considerando o espaço métrico compacto infinito K e Y um espaço de Banach: 1. Sendo 1 < p < ∞ e Γ um conjunto infinito, classificamos, a menos de isomorfismo, os espaços de Banach C(K, Y ⊕ lp(Γ)), quando o dual de Y contém uma cópia de lq, onde 1/p+ 1/q =1. 2. Classificamos os espaços de Banach C(K, Y ⊕ l∞(Γ)), quando a densidade de Y é estritamente menor que 2|Γ|. 3. Classificamos os espaços de Banach C(K ×(S⊕ βΓ)) e C(S ⊕ (K× βΓ)), onde S é um compacto disperso de Hausdorff arbitrário e βΓ é a compactificação de Stone-Cech de Γ. Obtemos, também, algumas leis de cancelamento para espaços de Banach da forma C(K1,X)⊕ C(K2,Y), onde K1 e K2 são espaços compactos métricos infinitos de Hausdorff e X, Y espaços de Banach satisfazendo condições adequadas. Estabelecemos também um teorema de quase-dicotomia envolvendo os espaços C(K,X), onde X tem cotipo finito. Finalmente, apresentamos algumas majorações nas distorções de isomorfismos positivos de C([0,ωk]) em C([0,ω]) e também de C([0,ω]) em C([0,ωk]), k∈ N, k ≥ 2. / The isomorphic classification of separable Banach spaces C(K) is due Milutin in the case when K are uncountable and to Bessaga and Pelczynski in the case when K are countable. In this work we prove a vectorial extention of this classification and provide several consequences, for example considering the infinite metric compact space K and Y a Banach space: 1. Let 1 < p < ∞ and Γ a infinite set, we classify, up to an isomorphism, the Banach spaces C(K, Y ⊕ lp(Γ)), in the case where the dual of Y contains no copy of lq, where 1/p+ 1/q =1. 2. We classify the Banach spaces C(K, Y ⊕ l∞(Γ)), when the density character of Y is strictly less that 2|Γ|. 3. We classify the Banach spaces C(K ×(S⊕ βΓ)) and C(S ⊕ (K× βΓ)) where S is an arbitrary dispersed compact and βΓ is the Stone-Cech compactification of Γ. We obtain also some cancellation laws for Banach spaces in the form C(K1,X)⊕ C(K2,Y), where K1 and K2 are metric compact Hausdorff spaces and X, Y Banach spaces satisfying appropriate conditions. We established also a quasi-dichotomy theorem envolving the C(K,X) spaces, where X is of finite cotype. Finally, we present some upper bounds of distortions of positive isomorphisms of C([0,ωk]) on C([0,ω]) and also of C([0,ω]) on C([0,ωk]), k∈ N, k ≥ 2.
|
18 |
Geometria dos espaços de Banach C([0, α ], X) para ordinais enumeráveis α / Geometry of Banach spaces C([0,α], X) for countable ordinals αMauricio Zahn 12 June 2015 (has links)
A classificação isomorfa dos espaços de Banach separáveis C(K) é devida a Milutin no caso em que K são não enumeráveis e a Bessaga e Pelczynski no caso em que K são enumeráveis. Neste trabalho apresentamos uma extensão vetorial dessa classificação e tiramos várias consequências, por exemplo, considerando o espaço métrico compacto infinito K e Y um espaço de Banach: 1. Sendo 1 < p < ∞ e Γ um conjunto infinito, classificamos, a menos de isomorfismo, os espaços de Banach C(K, Y ⊕ lp(Γ)), quando o dual de Y contém uma cópia de lq, onde 1/p+ 1/q =1. 2. Classificamos os espaços de Banach C(K, Y ⊕ l∞(Γ)), quando a densidade de Y é estritamente menor que 2|Γ|. 3. Classificamos os espaços de Banach C(K ×(S⊕ βΓ)) e C(S ⊕ (K× βΓ)), onde S é um compacto disperso de Hausdorff arbitrário e βΓ é a compactificação de Stone-Cech de Γ. Obtemos, também, algumas leis de cancelamento para espaços de Banach da forma C(K1,X)⊕ C(K2,Y), onde K1 e K2 são espaços compactos métricos infinitos de Hausdorff e X, Y espaços de Banach satisfazendo condições adequadas. Estabelecemos também um teorema de quase-dicotomia envolvendo os espaços C(K,X), onde X tem cotipo finito. Finalmente, apresentamos algumas majorações nas distorções de isomorfismos positivos de C([0,ωk]) em C([0,ω]) e também de C([0,ω]) em C([0,ωk]), k∈ N, k ≥ 2. / The isomorphic classification of separable Banach spaces C(K) is due Milutin in the case when K are uncountable and to Bessaga and Pelczynski in the case when K are countable. In this work we prove a vectorial extention of this classification and provide several consequences, for example considering the infinite metric compact space K and Y a Banach space: 1. Let 1 < p < ∞ and Γ a infinite set, we classify, up to an isomorphism, the Banach spaces C(K, Y ⊕ lp(Γ)), in the case where the dual of Y contains no copy of lq, where 1/p+ 1/q =1. 2. We classify the Banach spaces C(K, Y ⊕ l∞(Γ)), when the density character of Y is strictly less that 2|Γ|. 3. We classify the Banach spaces C(K ×(S⊕ βΓ)) and C(S ⊕ (K× βΓ)) where S is an arbitrary dispersed compact and βΓ is the Stone-Cech compactification of Γ. We obtain also some cancellation laws for Banach spaces in the form C(K1,X)⊕ C(K2,Y), where K1 and K2 are metric compact Hausdorff spaces and X, Y Banach spaces satisfying appropriate conditions. We established also a quasi-dichotomy theorem envolving the C(K,X) spaces, where X is of finite cotype. Finally, we present some upper bounds of distortions of positive isomorphisms of C([0,ωk]) on C([0,ω]) and also of C([0,ω]) on C([0,ωk]), k∈ N, k ≥ 2.
|
Page generated in 0.0335 seconds