• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 1
  • Tagged with
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Communication Strategy Use and Negotiation of Meaning in Text Chat and Videoconferencing

Zhao, Ying 13 July 2010 (has links)
No description available.
2

Optimal Trading with Multiplicative Transient Price Impact for Non-Stochastic or Stochastic Liquidity

Frentrup, Peter 28 October 2019 (has links)
Diese Arbeit untersucht eine Reihe multiplikativer Preiseinflussmodelle für das Handeln in einer riskanten Anlage. Unser risikoneutraler Investor versucht seine zu erwartenden Handelserlöse zu maximieren. Zunächst modellieren wir den vorübergehende Preiseinfluss als deterministisches Funktional der Handelsstrategie. Wir stellen den Zusammenhang mit Limit-Orderbüchern her und besprechen die optimale Strategie zum Auf- bzw. Abbau einer Anlageposition bei a priori unbeschränkem Anlagehorizont. Anschließend lösen wir das Optimierungsproblem mit festem Anlagehorizon in zwei Schritten. Mittels Variationsrechnung lässt sich die freie Grenzefläche, die Kauf- und Verkaufsregionen trennt, als lokales Optimum identifizieren, was entscheidend für die Verifikation globaler Optimalität ist. Im zweiten Teil der Arbeit erweitern wir den zwischengeschalteten Markteinflussprozess um eine stochastische Komponente, wodurch optimale Strategien dynamisch an zufällige Liquiditätsschwankungen adaptieren. Wir bestimmen die optimale Liquidierungsstrategie im zeitunbeschränkten Fall als die reflektierende Lokalzeit, die den Markteinfluss unterhalb eines explizit beschriebenen nicht-konstanten Grenzlevels hält. Auch dieser Beweis kombiniert Variationsrechnung und direkten Methoden. Um nun eine Zeitbeschränkung zu ermöglichen, müssen wir Semimartingalstrategien zulassen. Skorochods M1-Toplogie ist der Schlüssel, um die Klasse der möglichen Strategien in einer umfangreichen Familie von Preiseinflussmodellen, welche sowohl additiven, als auch multiplikativen Preiseinfluss umfasst, mit deterministischer oder stochastischer Liquidität, eindeutig von endlichen Variations- auf allgemeine càdlàg Strategien zu erweitern. Nach Einführung proportionaler Transaktionskosten lösen wir das entsprechende eindimensionale freie Grenzproblem des optimalen unbeschränkten Handels und beleuchten mögliche Lösungsansätze für das Liquidierungsproblem, das mit dem Verkauf der letzten Anleihe endet. / In this thesis, we study a class of multiplicative price impact models for trading a single risky asset. We model price impact to be multiplicative so that prices are guaranteed to stay non-negative. Our risk-neutral large investor seeks to maximize expected gains from trading. We first introduce a basic variant of our model, wherein the transient impact is a deterministic functional of the trading strategy. We draw the connection to limit order books and give the optimal strategy to liquidate or acquire an asset position infinite time horizon. We then solve the optimization problem for finite time horizon two steps. Calculus of variations allows to identify the free boundary surface that separates buy and sell regions and moreover show its local optimality, which is a crucial ingredient for the verification giving (global) optimality. In the second part of the thesis, we add stochasticity to the auxiliary impact process. This causes optimal strategies to dynamically adapt to random changes in liquidity. We identify the optimal liquidation strategy in infinite horizon as the reflection local time which keeps the market impact process below an explicitly described non-constant free boundary level. Again the proof technique combines classical calculus of variations and direct methods. To now impose a time constraint, we need to admit semimartingale strategies. Skorokhod's M1 topology is key to uniquely extend the class of admissible controls from finite variation to general càdlàg strategies in a broad class of market models including multiplicative and additive price impact, with deterministic or stochastic liquidity. After introducing proportional transaction costs in our model, we solve the related one-dimensional free boundary problem of unconstrained optimal trading and highlight possible solution methods for the corresponding liquidation problem where trading stops as soon as all assets are sold.
3

Influence of small molecule GSK-J1 on early postnatal rat retinal development

Raeisossadati, Seyed Reza January 2018 (has links)
Orientador: Prof. Dr. Alexandre Hiroaki Kihara / Tese (doutorado) - Universidade Federal do ABC, Programa de Pós-Graduação em Neurociência e Cognição, São Bernardo do Campo, 2018. / A determinação do destino das células neuronais é um processo dinâmico regulado pela expressão de centenas de genes simultaneamente. A modificação pós-transcricional das caudas N-terminais das histonas é uma forma dinâmica de regulação gênica. Várias evidências sugerem que a modulação das modificações das histonas desempenha um papel importante na regulação da determinação do destino neuronal e atuam em muitos processos do desenvolvimento. Entre os diferentes moduladores, as enzimas modificadoras de histonas, que possuem como alvos as caudas das histonas, estão no centro da atenção. As histonas demetilases (HDMs) são uma grande família de enzimas que possuem atividade catalítica seletiva contra sítios específicos de metilação de histonas. Jmjd3 é uma HDM específica para histona H3K27 cuja atividade enzimática torna o ambiente propício para aumentar a taxa de transcrição gênica. Para investigar o provável papel da Jmjd3 no desenvolvimento da retina em ratos na fase pós-natal, realizamos o bloqueio desta enzima com o composto farmacológico GSK-J1. Como primeira abordagem, determinamos a localização de Jmjd3 na retina de ratos neonatos e adultos, o que foi consistente com a localização em neurônios diferenciados, incluindo células ganglionares na retina de ratos neonatos. Nesta idade do desenvolvimento, também observamos a presença de Jmjd3 em células indiferenciadas. Injeções subretinianas de GSK-J1 causaram a diminuição do nível proteico de H3k27me3 em retinas de ratos neonatos. Curiosamente, a injeção de GSK-J1 aumentou simultaneamente o número de células proliferativas e apoptóticas. Além disso, mais células imaturas foram detectadas na camada plexiforme externa, com processos neuronais mais longos. Finalmente, a influência da GSK-J1 na citogênese retiniana pós-natal foi examinada. Fomos capazes de determinar que a GSK-J1 especificamente causou uma diminuição significativa no número de células PKC-positivas que, quando localizadas na parte externa da camada nuclear interna, é um marcador confiável de células bipolares de bastonete. Estes dados fornecem as primeiras evidências dos efeitos do bloqueio farmacológico in vivo das histonas demetilases durante o desenvolvimento inicial da retina pós-natal, com impacto sobre processos como proliferação celular, maturação, indução de apoptose e determinação celular específica. / Neuronal cell fate determination is dynamic process regulated by expression of hundreds of genes simultaneously. The posttranslational modification of the N-terminal tails of the histone proteins is dynamic way of gene regulation. Countless numbers of the evidences propose that regulation of histone modification play principal role in various developmental process such as neuronal fate determination. Among different modulators the histone modifying enzymes that are targets histone tails are in the center of attraction. The histone demethylases (HDMs) family is comprised of several enzymes that have selective catalytic activity against specific sites of histone methylation. The enzymatic activity of the histone H3K27-specific demethylase Jmjd3 leads to transcriptionally permissive chromatin environments. To investigate the probable role of Jmjd3 in early postnatal rat retinal development, we tried to block this enzyme with pharmacological compound GSK-J1. As a first approach, we determined the localization of Jmjd3 in neonate and adult rat retina, which is consistent with localization in differentiated neurons, including ganglion cells in the retina of neonate rats. At this developmental age, we also observed the presence of Jmjd3 in undifferentiated cells. Subretinal injection of GSK-J1 caused the decrease of the global level of H3k27me3 in retinas of neonate rats. Interestingly, injection of GSK-J1 simultaneously increased the number of proliferative and apoptotic cells. In addition, more immature cells were detected in outer plexiform layer, with longer neuronal processes. Finally, the influence of GSK-J1 on postnatal retinal cytogenesis was examined. We were able to determine that GSK-J1 specifically caused significant decrease in the number of PKCa-positive cells, which when located in the outer part of the inner nuclear layer is a reliable marker of rod-on bipolar cells. These data provide the first evidence of in vivo pharmacological blocking of histone demethylases during early postnatal retinal development. In summary, we were able to show that application of GSK-J1 can influence on cell proliferation, maturation, apoptosis induction, and specific cell determination.
4

Potential New Drugs in Lymphoma

Delforoush, Maryam January 2016 (has links)
Lymphomas are malignant tumours arising from cells in the lymphatic system. They are classified as B-cell lymphomas, T-cell lymphomas and Hodgkin lymphoma (HL). Of the B-cell lymphomas, one of the most common is diffuse large B-cell lymphoma (DLBCL). Many patients with lymphomas can be successfully treated however patients who relapse or are refractory have a poor prognosis, warranting further investigations to identify potential targets and develop novel drugs. Picropodophyllin (PPP), a potent and selective inhibitor of IGF-1R, inhibits malignant cell growth with low or no toxicity on normal cells in preclinical models. In paper I, we investigated the potential benefits of using PPP against DLBCL and found that the anti-tumor effects of PPP might possibly be explained by IGF-1R-unrelated mechanism(s). However, the inhibitory effects of PPP on lymphoma cells together with its low toxicity in vivo makes it a promising drug candidate for treatment. Melflufen, a derivative of melphalan, is currently being evaluated in a clinical phase I/II trial in relapsed or refractory multiple myeloma. In paper II, we confirmed previous reports of superior potency of melflufen over melphalan. Being active in cell lines and primary cultures of lymphoma cells as well as in a xenograft model in mice, melflufen considered being a candidate for further evaluation in treatment. bAP-15, a novel inhibitor of proteasome activity, inhibits ubiquitin specific peptidase 14 (USP14) and ubiquitin carboxyl-terminal hydrolase L5 (UCHL5). In paper III, we investigated the activity of b-AP15 in DLBCL and HL cell lines and compared the results to standard drugs used in treatment. Results showed inhibition of the proteasome and growth inhibition/cytotoxicity with IC50-values in the micromolar range. Treatment failure and lack of clinical benefit of proteasome inhibitors like bortezomib in DLBCL patients inspired us investigating for possible new targets, with major focus on proteasome inhibitors in DLBCL. In paper IV, we suggested that UCHL5 and/or USP14, as new targets for proteasome inhibitors in DLBCL, be further evaluated. The findings in this thesis suggest that PPP, Melflufen and b-AP15 are potential candidates for clinical drug development and UCHL5 and/or USP14 are new potential targets for proteasome inhibitors in DLBCL.
5

Fases orientacionais em sistemas com interações competitivas pelo método do aglomerado variacional

Guerrero Duymovic, Alejandra Isabel January 2015 (has links)
Nesta tese estudamos um modelo de spins do tipo Ising, modelo J1 J2, com interações competitivas J1 ferromagnéticas entre primeiros vizinhos na rede quadrada e J2 antiferromagnética entre segundos vizinhos. O diagrama de fases do modelo e as correlações de pares foram analisadas com o Método do Aglomerado Variacional nos casos sem e com um campo magnético externo. A campo nulo, construímos o diagrama de fases no plano T=J1 onde = jJ2j=J1. A transição ferromagnética-paramagnética é de segunda ordem quando < 1=2 e a transição stripes-paramagnética de primeira ordem para 1=2 < < 1 e de segunda ordem para valores de 1. Nossos resultados concordam com prévios estudos. Ao aplicarmos um campo magnético externo ao sistema, em regiões onde a campo nulo se observa a fase de stripes ( = 0:6 e = 1), as filas (ou colunas) de spins paralelos ao campo externo ganham estabilidade dando lugar a uma fase de stripes mista com magnetizações nas filas e colunas com magnitudes diferentes. A campos maiores, o sistema se encontra numa fase homogênea com uma magnetização remanente, a fase paramagnética saturada. Na interfase entre a fase de stripes e a paramagnética saturada, encontramos uma fase intermediária nemática do tipo Ising. Esta fase possui uma magnetização homogênea e correlações de pares anisotrópicas nas direções x e y quantificadas por um parâmetro de ordem orientacional. A fase nemática tem sido observada principalmente em sistemas com interações competitivas de longo alcance. O uso do Método do Aglomerado Variacional na aproximação de quatro pontos permitiu detectá-la no modelo J1 J2 clássico. A presença da fase nemática intermediária foi confirmada em simulações de Monte Carlo. As transições stripes-paramagnética saturada e stripes-nemática são de primeira ordem e a transição nemática-paramagnética saturada é uma transição de segunda ordem de acordo com a análise da energia livre. Na segunda parte do nosso estudo, calculamos o fator de estrutura na aproximação de quatro pontos do Método do Aglomerado Variacional válido tanto nas fases desordenada como ordenadas no modelo sem e com campo magnético. A partir desta análise, determinamos as linhas de estabilidade para a fase paramagnética no modelo sem campo e também mostramos a existência destas linhas na solução de stripes. No modelo com campo, estudamos o fator de estrutura e a susceptibilidade reduzida para = 0:6 e diferentes temperaturas. A susceptibilidade é descontínua nas transições stripes-paramagnética saturada e stripes-nemática compatível com uma transição de primeira ordem. Por sua vez, na transição nemática-paramagnética saturada de segunda ordem se observa um máximo em uma das componentes da susceptibilidade no espaço recíproco e um câmbio da simetria Z2 para a Z4 no fator de estrutura. / In this thesis, we studied a Ising model, the J1 J2 model, with nearest neighbors ferromagnetic interactions J1 and next-nearest antiferromagnetic neighbors interactions J2. The phase diagram and the pair correlations were analyzed with the Cluster Variation Method, with and without an external magnetic field. At zero field, we build the phase diagram in the plane T=J1 where = jJ2j=J1. The ferromagnetic-paramagnetic phase transition is a second order one at < 1=2. The stripes-paramagnetic is a first order transition when 1=2 < < 1 and second order for values bigger than one. Our results are in agreement with previous works. Applying an external magnetic field to the system, in regions where the ground state is stripes ( = 0:6 e = 1), the columns (or rows) of parallel spins to the field gain stability given place to a mixed phase with columns (or rows) magnetization with different magnitudes. At higher fields, the systems enters in a homogeneous phase with a remanent magnetization, the saturated paramagnetic phase. In the interface between the stripes and saturated paramagnetic phase we found a intermediate phase, the Ising-nematic. This phase has a homogeneous magnetization and anisotropic nearest-neighbor correlations in the directions x and y quantified by a orientacional order parameter. The nematic phase has been observed in systems with long range interactions. The Cluster Variation Method (CVM) in the four site approximation detected the nematic phase in the classical J1 J2 model. These results were confirmed by Monte Carlo simulations. The stripes-saturated paramagnetic and stripes-nematic transitions are found to be first order transitions. The nematic-saturated paramagnetic is of second order according to free energy analysis. In the second part, we computed the structure factor in the four-site approximation of the CVM. This expression is valid for order and disorder phases, with or without a magnetic field. Through this analysis we found the paramagnetic stability lines in the model at zero magnetic field, we also showed the existence of spinodal temperature for stripes solutions. In the model with a magnetic field, we studied the structure factor and susceptibility for = 0:6 and different temperatures. A discontinuity in susceptibility was observed in the stripes-saturated paramagnetic and stripes-nematic transitions compatible with a first order transition. In the nematic-saturated paramagnetic second order transition we found a maximum in one of the susceptibility components and a change of the Z2 symmetry to the Z4 in the structure factor.
6

Fases orientacionais em sistemas com interações competitivas pelo método do aglomerado variacional

Guerrero Duymovic, Alejandra Isabel January 2015 (has links)
Nesta tese estudamos um modelo de spins do tipo Ising, modelo J1 J2, com interações competitivas J1 ferromagnéticas entre primeiros vizinhos na rede quadrada e J2 antiferromagnética entre segundos vizinhos. O diagrama de fases do modelo e as correlações de pares foram analisadas com o Método do Aglomerado Variacional nos casos sem e com um campo magnético externo. A campo nulo, construímos o diagrama de fases no plano T=J1 onde = jJ2j=J1. A transição ferromagnética-paramagnética é de segunda ordem quando < 1=2 e a transição stripes-paramagnética de primeira ordem para 1=2 < < 1 e de segunda ordem para valores de 1. Nossos resultados concordam com prévios estudos. Ao aplicarmos um campo magnético externo ao sistema, em regiões onde a campo nulo se observa a fase de stripes ( = 0:6 e = 1), as filas (ou colunas) de spins paralelos ao campo externo ganham estabilidade dando lugar a uma fase de stripes mista com magnetizações nas filas e colunas com magnitudes diferentes. A campos maiores, o sistema se encontra numa fase homogênea com uma magnetização remanente, a fase paramagnética saturada. Na interfase entre a fase de stripes e a paramagnética saturada, encontramos uma fase intermediária nemática do tipo Ising. Esta fase possui uma magnetização homogênea e correlações de pares anisotrópicas nas direções x e y quantificadas por um parâmetro de ordem orientacional. A fase nemática tem sido observada principalmente em sistemas com interações competitivas de longo alcance. O uso do Método do Aglomerado Variacional na aproximação de quatro pontos permitiu detectá-la no modelo J1 J2 clássico. A presença da fase nemática intermediária foi confirmada em simulações de Monte Carlo. As transições stripes-paramagnética saturada e stripes-nemática são de primeira ordem e a transição nemática-paramagnética saturada é uma transição de segunda ordem de acordo com a análise da energia livre. Na segunda parte do nosso estudo, calculamos o fator de estrutura na aproximação de quatro pontos do Método do Aglomerado Variacional válido tanto nas fases desordenada como ordenadas no modelo sem e com campo magnético. A partir desta análise, determinamos as linhas de estabilidade para a fase paramagnética no modelo sem campo e também mostramos a existência destas linhas na solução de stripes. No modelo com campo, estudamos o fator de estrutura e a susceptibilidade reduzida para = 0:6 e diferentes temperaturas. A susceptibilidade é descontínua nas transições stripes-paramagnética saturada e stripes-nemática compatível com uma transição de primeira ordem. Por sua vez, na transição nemática-paramagnética saturada de segunda ordem se observa um máximo em uma das componentes da susceptibilidade no espaço recíproco e um câmbio da simetria Z2 para a Z4 no fator de estrutura. / In this thesis, we studied a Ising model, the J1 J2 model, with nearest neighbors ferromagnetic interactions J1 and next-nearest antiferromagnetic neighbors interactions J2. The phase diagram and the pair correlations were analyzed with the Cluster Variation Method, with and without an external magnetic field. At zero field, we build the phase diagram in the plane T=J1 where = jJ2j=J1. The ferromagnetic-paramagnetic phase transition is a second order one at < 1=2. The stripes-paramagnetic is a first order transition when 1=2 < < 1 and second order for values bigger than one. Our results are in agreement with previous works. Applying an external magnetic field to the system, in regions where the ground state is stripes ( = 0:6 e = 1), the columns (or rows) of parallel spins to the field gain stability given place to a mixed phase with columns (or rows) magnetization with different magnitudes. At higher fields, the systems enters in a homogeneous phase with a remanent magnetization, the saturated paramagnetic phase. In the interface between the stripes and saturated paramagnetic phase we found a intermediate phase, the Ising-nematic. This phase has a homogeneous magnetization and anisotropic nearest-neighbor correlations in the directions x and y quantified by a orientacional order parameter. The nematic phase has been observed in systems with long range interactions. The Cluster Variation Method (CVM) in the four site approximation detected the nematic phase in the classical J1 J2 model. These results were confirmed by Monte Carlo simulations. The stripes-saturated paramagnetic and stripes-nematic transitions are found to be first order transitions. The nematic-saturated paramagnetic is of second order according to free energy analysis. In the second part, we computed the structure factor in the four-site approximation of the CVM. This expression is valid for order and disorder phases, with or without a magnetic field. Through this analysis we found the paramagnetic stability lines in the model at zero magnetic field, we also showed the existence of spinodal temperature for stripes solutions. In the model with a magnetic field, we studied the structure factor and susceptibility for = 0:6 and different temperatures. A discontinuity in susceptibility was observed in the stripes-saturated paramagnetic and stripes-nematic transitions compatible with a first order transition. In the nematic-saturated paramagnetic second order transition we found a maximum in one of the susceptibility components and a change of the Z2 symmetry to the Z4 in the structure factor.
7

Fases orientacionais em sistemas com interações competitivas pelo método do aglomerado variacional

Guerrero Duymovic, Alejandra Isabel January 2015 (has links)
Nesta tese estudamos um modelo de spins do tipo Ising, modelo J1 J2, com interações competitivas J1 ferromagnéticas entre primeiros vizinhos na rede quadrada e J2 antiferromagnética entre segundos vizinhos. O diagrama de fases do modelo e as correlações de pares foram analisadas com o Método do Aglomerado Variacional nos casos sem e com um campo magnético externo. A campo nulo, construímos o diagrama de fases no plano T=J1 onde = jJ2j=J1. A transição ferromagnética-paramagnética é de segunda ordem quando < 1=2 e a transição stripes-paramagnética de primeira ordem para 1=2 < < 1 e de segunda ordem para valores de 1. Nossos resultados concordam com prévios estudos. Ao aplicarmos um campo magnético externo ao sistema, em regiões onde a campo nulo se observa a fase de stripes ( = 0:6 e = 1), as filas (ou colunas) de spins paralelos ao campo externo ganham estabilidade dando lugar a uma fase de stripes mista com magnetizações nas filas e colunas com magnitudes diferentes. A campos maiores, o sistema se encontra numa fase homogênea com uma magnetização remanente, a fase paramagnética saturada. Na interfase entre a fase de stripes e a paramagnética saturada, encontramos uma fase intermediária nemática do tipo Ising. Esta fase possui uma magnetização homogênea e correlações de pares anisotrópicas nas direções x e y quantificadas por um parâmetro de ordem orientacional. A fase nemática tem sido observada principalmente em sistemas com interações competitivas de longo alcance. O uso do Método do Aglomerado Variacional na aproximação de quatro pontos permitiu detectá-la no modelo J1 J2 clássico. A presença da fase nemática intermediária foi confirmada em simulações de Monte Carlo. As transições stripes-paramagnética saturada e stripes-nemática são de primeira ordem e a transição nemática-paramagnética saturada é uma transição de segunda ordem de acordo com a análise da energia livre. Na segunda parte do nosso estudo, calculamos o fator de estrutura na aproximação de quatro pontos do Método do Aglomerado Variacional válido tanto nas fases desordenada como ordenadas no modelo sem e com campo magnético. A partir desta análise, determinamos as linhas de estabilidade para a fase paramagnética no modelo sem campo e também mostramos a existência destas linhas na solução de stripes. No modelo com campo, estudamos o fator de estrutura e a susceptibilidade reduzida para = 0:6 e diferentes temperaturas. A susceptibilidade é descontínua nas transições stripes-paramagnética saturada e stripes-nemática compatível com uma transição de primeira ordem. Por sua vez, na transição nemática-paramagnética saturada de segunda ordem se observa um máximo em uma das componentes da susceptibilidade no espaço recíproco e um câmbio da simetria Z2 para a Z4 no fator de estrutura. / In this thesis, we studied a Ising model, the J1 J2 model, with nearest neighbors ferromagnetic interactions J1 and next-nearest antiferromagnetic neighbors interactions J2. The phase diagram and the pair correlations were analyzed with the Cluster Variation Method, with and without an external magnetic field. At zero field, we build the phase diagram in the plane T=J1 where = jJ2j=J1. The ferromagnetic-paramagnetic phase transition is a second order one at < 1=2. The stripes-paramagnetic is a first order transition when 1=2 < < 1 and second order for values bigger than one. Our results are in agreement with previous works. Applying an external magnetic field to the system, in regions where the ground state is stripes ( = 0:6 e = 1), the columns (or rows) of parallel spins to the field gain stability given place to a mixed phase with columns (or rows) magnetization with different magnitudes. At higher fields, the systems enters in a homogeneous phase with a remanent magnetization, the saturated paramagnetic phase. In the interface between the stripes and saturated paramagnetic phase we found a intermediate phase, the Ising-nematic. This phase has a homogeneous magnetization and anisotropic nearest-neighbor correlations in the directions x and y quantified by a orientacional order parameter. The nematic phase has been observed in systems with long range interactions. The Cluster Variation Method (CVM) in the four site approximation detected the nematic phase in the classical J1 J2 model. These results were confirmed by Monte Carlo simulations. The stripes-saturated paramagnetic and stripes-nematic transitions are found to be first order transitions. The nematic-saturated paramagnetic is of second order according to free energy analysis. In the second part, we computed the structure factor in the four-site approximation of the CVM. This expression is valid for order and disorder phases, with or without a magnetic field. Through this analysis we found the paramagnetic stability lines in the model at zero magnetic field, we also showed the existence of spinodal temperature for stripes solutions. In the model with a magnetic field, we studied the structure factor and susceptibility for = 0:6 and different temperatures. A discontinuity in susceptibility was observed in the stripes-saturated paramagnetic and stripes-nematic transitions compatible with a first order transition. In the nematic-saturated paramagnetic second order transition we found a maximum in one of the susceptibility components and a change of the Z2 symmetry to the Z4 in the structure factor.
8

Feedback Effects in Stochastic Control Problems with Liquidity Frictions

Bilarev, Todor 03 December 2018 (has links)
In dieser Arbeit untersuchen wir mathematische Modelle für Finanzmärkte mit einem großen Händler, dessen Handelsaktivitäten transienten Einfluss auf die Preise der Anlagen haben. Zuerst beschäftigen wir uns mit der Frage, wie die Handelserlöse des großen Händlers definiert werden sollen. Wir identifizieren die Erlöse zunächst für absolutstetige Strategien als nichtlineares Integral, in welchem sowohl der Integrand als der Integrator von der Strategie abhängen. Unserere Hauptbeiträge sind hier die Identifizierung der Skorokhod M1 Topologie als geeigneter Topologue auf dem Raum aller Strategien sowie die stetige Erweiterung der Definition für die Handelserlöse von absolutstetigen auf cadlag Kontrollstrategien. Weiter lösen wir ein Liquidierungsproblem in einem multiplikativen Modell mit Preiseinfluss, in dem die Liquidität stochastisch ist. Die optimale Strategie wird beschrieben durch die Lokalzeit für Reflektion einer Diffusion an einer nicht-konstanten Grenze. Um die HJB-Variationsungleichung zu lösen und Optimalität zu beweisen, wenden wir probabilistische Argumente und Methoden aus der Variationsrechnung an, darunter Laplace-Transformierte von Lokalzeiten für Reflektion an elastischen Grenzen. In der zweiten Hälfte der Arbeit untersuchen wir die Absicherung (Hedging) für Optionen. Der minimale Superhedging-Preis ist die Viskositätslösung einer semi-linearen partiellen Differenzialgleichung, deren Nichtlinearität von dem transienten Preiseinfluss abhängt. Schließlich erweitern wir unsere Analyse auf Hedging-Probleme in Märkten mit mehreren riskanten Anlagen. Stabilitätsargumente führen zu strukturellen Bedingungen, welche für ein arbitragefreies Modell mit wechselseitigem Preis-Impakt gelten müssen. Zudem ermöglichen es jene Bedingungen, die Erlöse für allgemeine Strategien unendlicher Variation in stetiger Weise zu definieren. Als Anwendung lösen wir das Superhedging-Problem in einem additiven Preis-Impakt-Modell mit mehreren Anlagen. / In this thesis we study mathematical models of financial markets with a large trader (price impact models) whose actions have transient impact on the risky asset prices. At first, we study the question of how to define the large trader's proceeds from trading. To extend the proceeds functional to general controls, we ask for stability in the following sense: nearby trading activities should lead to nearby proceeds. Our main contribution in this part is to identify a suitable topology on the space of controls, namely the Skorokhod M1 topology, and to obtain the continuous extension of the proceeds functional for general cadlag controls. Secondly, we solve the optimal liquidation problem in a multiplicative price impact model where liquidity is stochastic. The optimal control is obtained as the reflection local time of a diffusion process reflected at a non-constant free boundary. To solve the HJB variational inequality and prove optimality, we need a combination of probabilistic arguments and calculus of variations methods, involving Laplace transforms of inverse local times for diffusions reflected at elastic boundaries. In the second half of the thesis we study the hedging problem for a large trader. We solve the problem of superhedging for European contingent claims in a multiplicative impact model using techniques from the theory of stochastic target problems. The minimal superhedging price is identified as the unique viscosity solution of a semi-linear pde, whose nonlinearity is governed by the transient nature of price impact. Finally, we extend our consideration to multi-asset models. Requiring stability leads to strong structural conditions that arbitrage-free models with cross-impact should satisfy. These conditions turn out to be crucial for identifying the proceeds functional for a general class of strategies. As an application, the problem of superhedging with cross-impact in additive price impact models is solved.

Page generated in 0.0241 seconds