Spelling suggestions: "subject:"pump diffusions"" "subject:"jump diffusions""
1 |
Monte Carlo analysis of methods for extracting risk-neutral densities with affine jump diffusionsLu, Shan 31 July 2019 (has links)
Yes / This paper compares several widely-used and recently-developed methods to extract
risk-neutral densities (RND) from option prices in terms of estimation accuracy. It
shows that positive convolution approximation method consistently yields the most
accurate RND estimates, and is insensitive to the discreteness of option prices. RND
methods are less likely to produce accurate RND estimates when the underlying process
incorporates jumps and when estimations are performed on sparse data, especially for
short time-to-maturities, though sensitivity to the discreteness of the data differs across
different methods.
|
2 |
On pricing barrier options and exotic variationsWang, Xiao 01 May 2018 (has links)
Barrier options have become increasingly popular financial instruments due to the lower costs and the ability to more closely match speculating or hedging needs. In addition, barrier options play a significant role in modeling and managing risks in insurance and finance as well as in refining insurance products such as variable annuities and equity-indexed annuities. Motivated by these immediate applications arising from actuarial and financial contexts, the thesis studies the pricing of barrier options and some exotic variations, assuming that the underlying asset price follows the Black-Scholes model or jump-diffusion processes. Barrier options have already been well treated in the classical Black-Scholes framework. The first part of the thesis aims to develop a new valuation approach based on the technique of exponential stopping and/or path counting of Brownian motions. We allow the option's boundaries to vary exponentially in time with different rates, and manage to express our pricing formulas properly as combinations of the prices of certain binary options. These expressions are shown to be extremely convenient in further pricing some exotic variations including sequential barrier options, immediate rebate options, multi-asset barrier options and window barrier options. Many known results will be reproduced and new explicit formulas will also be derived, from which we can better understand the impact on option values of various sophisticated barrier structures. We also consider jump-diffusion models, where it becomes difficult, if not impossible, to obtain the barrier option value in analytical form for exponentially curved boundaries. Our model assumes that the logarithm of the underlying asset price is a Brownian motion plus an independent compound Poisson process. It is quite common to assign a particular distribution (such as normal or double exponential distribution) for the jump size if one wants to pursue closed-form solutions, whereas our method permits any distributions for the jump size as long as they belong to the exponential family. The formulas derived in the thesis are explicit in the sense that they can be efficiently implemented through Monte Carlo simulations, from which we achieve a good balance between solution tractability and model complexity.
|
3 |
Inkorrektheitsphänomene und Regularisierung bei der Parameterschätzung für Jump-Diffusions-ProzesseDüvelmeyer, Dana 22 September 2005 (has links) (PDF)
Die Dissertation widmet sich dem inversen Problem der Bestimmung der fünf Parameter eines Jump-Diffusions-Prozesses aus einer Preistrajektorie. Numerische Rechnungen zu statistischen Standardverfahren haben gezeigt, dass Stabilitätsprobleme insbesondere dann auftreten, wenn die Parameter aus einer relativ kleinen Zahl beobachteter Assetpreise bestimmt werden. Daher untersuchen wir das Problem der Parameterschätzung in dieser Arbeit unter Einbeziehung von Methoden aus der Theorie inverser Probleme, da deren zentrales Anliegen die Analyse und Regularisierung inkorrekter und instabiler inverser Aufgaben ist. In dieser Arbeit werden Phänomene der Instabilität der Parameterbestimmung herausgearbeitet und analysiert. Hierfür leiten wir eine entsprechende nichtlineare Operatorgleichung her, die den Zusammenhang zwischen einer von den Parametern abhängigen Trajektorie des Jump-Diffusions-Prozesses und der Dichtefunktion der Returns beschreibt. Diese Operatorgleichung untersuchen wir bezüglich ihrer Korrektheit. Wir zeigen anhand einer Fallstudie mit simulierten Daten, dass bei der numerischen Lösung Inkorrektheitsphänomene auftreten, sobald die Daten mit kleinen Datenfehlern behaftet sind. Um diese Stabilitätsprobleme zu überwinden, diskutieren wir einen Multiparameter-Regularisierungszugang, bei dem zusätzlich zur Least-Squares Anpassung der empirischen Dichtefunktion die Semiinvarianten berücksichtigt werden. / This thesis deals with the inverse problem of estimating simultaneously the five parameters of a jump diffusion process based on return observations of a price trajectory. It is well known that there occur instability effects using conventional statistical methods, particularly if only a small number of data are available. Therefore we apply the theory of inverse problems for parameter estimation. We analyse the forward operator mapping the parameters to the density function of the returns with respect to well-posedness and ill-posedness of the problem. We show that there occur some ill-posedness phenomena in the parameter estimation problem in case of noisy data and illustrate the instability effect by a numerical case study. To obtain stable approximate solutions of the estimation problem, we use a multi-parameter regularization approach, where a least-squares fitting of empirical densities is superposed by a quadratic penalty term of fitted semi-invariants with weights.
|
4 |
Inkorrektheitsphänomene und Regularisierung bei der Parameterschätzung für Jump-Diffusions-ProzesseDüvelmeyer, Dana 10 June 2005 (has links)
Die Dissertation widmet sich dem inversen Problem der Bestimmung der fünf Parameter eines Jump-Diffusions-Prozesses aus einer Preistrajektorie. Numerische Rechnungen zu statistischen Standardverfahren haben gezeigt, dass Stabilitätsprobleme insbesondere dann auftreten, wenn die Parameter aus einer relativ kleinen Zahl beobachteter Assetpreise bestimmt werden. Daher untersuchen wir das Problem der Parameterschätzung in dieser Arbeit unter Einbeziehung von Methoden aus der Theorie inverser Probleme, da deren zentrales Anliegen die Analyse und Regularisierung inkorrekter und instabiler inverser Aufgaben ist. In dieser Arbeit werden Phänomene der Instabilität der Parameterbestimmung herausgearbeitet und analysiert. Hierfür leiten wir eine entsprechende nichtlineare Operatorgleichung her, die den Zusammenhang zwischen einer von den Parametern abhängigen Trajektorie des Jump-Diffusions-Prozesses und der Dichtefunktion der Returns beschreibt. Diese Operatorgleichung untersuchen wir bezüglich ihrer Korrektheit. Wir zeigen anhand einer Fallstudie mit simulierten Daten, dass bei der numerischen Lösung Inkorrektheitsphänomene auftreten, sobald die Daten mit kleinen Datenfehlern behaftet sind. Um diese Stabilitätsprobleme zu überwinden, diskutieren wir einen Multiparameter-Regularisierungszugang, bei dem zusätzlich zur Least-Squares Anpassung der empirischen Dichtefunktion die Semiinvarianten berücksichtigt werden. / This thesis deals with the inverse problem of estimating simultaneously the five parameters of a jump diffusion process based on return observations of a price trajectory. It is well known that there occur instability effects using conventional statistical methods, particularly if only a small number of data are available. Therefore we apply the theory of inverse problems for parameter estimation. We analyse the forward operator mapping the parameters to the density function of the returns with respect to well-posedness and ill-posedness of the problem. We show that there occur some ill-posedness phenomena in the parameter estimation problem in case of noisy data and illustrate the instability effect by a numerical case study. To obtain stable approximate solutions of the estimation problem, we use a multi-parameter regularization approach, where a least-squares fitting of empirical densities is superposed by a quadratic penalty term of fitted semi-invariants with weights.
|
5 |
Large Deviations Studies for Small Noise Limits of Dynamical Systems Perturbed by Lévy ProcessesDe Oliveira Gomes, André 13 April 2018 (has links)
Die vorliegende Dissertation beschäftigt sich mit der Anwendung der Theorie der großen Abweichungen auf verschiedene Fragestellungen der stochastischen Analysis und stochastischen Dynamik von Sprungprozessen.
Die erste Fragestellung behandelt die erste Austrittszeit aus einem beschränkten Gebiet für eine bestimmte Klasse von Sprungdiffusionen mit exponentiell leichten Sprüngen.
In Abhängigkeit von der Leichtheit des Sprungmaßes wird das asymptotische Verhalten der Verteilung und insbesondere der Erwartung der ersten Austrittszeit bestimmt wenn das Rauschen verschwindet.
Dabei folgt die Verteilung der ersten Austrittszeit einem Prinzip der großen Abweichungen im Falle eines superexponentiellen Sprungmaßes. Wohingegen im subexponentiellen Fall die Verteilung
einem Prinzip moderater Abweichungen genügt.
In beiden Fällen wird die Asymptotik bestimmt durch eine deterministische Größe, die den minimalen Energieaufwand beschreibt, um die Sprungdiffusion einen optimalen Kontrollpfad, der zum Austritt führt, folgen zu lassen.
Die zweite Fragestellung widmet sich dem Grenzverhalten gekoppelter Vorwärts-Rückwärtssysteme stochastischer Differentialgleichungen bei kleinem Rauschen.
Dazu assoziiert ist eine spezielle Klasse nicht-lokaler partieller Differentialgleichungen, die auch in nicht-lokalen Modellen der Fluiddynamik eine Rolle spielen.
Mithilfe eines probabilistischen Ansatzes und der Markovschen Struktur dieser Systeme wird die Konvergenz auf Ebene von Viskositätslösungen untersucht. Dabei wird ein Prinzip der großen Abweichungen für die involvierten Stochastischen Prozesse hergeleitet. / This thesis deals with applications of Large Deviations Theory to different problems of Stochastic Dynamics and Stochastic Analysis concerning Jump Processes.
The first problem we address is the first exit time from a fixed bounded domain for a certain class of exponentially light jump diffusions. According to the lightness of the jump measure of the driving process, we derive, when the source of the noise vanishes, the asymptotic behavior of the law and of the expected value of first exit time. In the super-exponential regime the law of the first exit time follows a large deviations scale and in the sub-exponential regime it follows a moderate deviations one. In both regimes the first exit time is comprehended, in the small noise limit, in terms of a deterministic quantity that encodes the minimal energy the jump diffusion needs to spend in order to follow an optimal controlled path that leads to the exit.
The second problem that we analyze is the small noise limit of a certain class of coupled forward-backward systems of Stochastic Differential Equations. Associated to these stochastic objects are some nonlinear nonlocal Partial Differential Equations that arise as nonlocal toy-models of Fluid Dynamics. Using a probabilistic approach and the Markov nature of these systems we study the convergence at the level of viscosity solutions and we derive a large deviations principles for the laws of the stochastic processes that are involved.
|
Page generated in 0.0519 seconds