• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 4
  • 1
  • Tagged with
  • 19
  • 19
  • 15
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Nanowires de InP: cálculo do espectro de absorção via método k.p / InP nanowires: absorption spectrum calculation via k.p method

Tiago de Campos 25 July 2013 (has links)
Nos últimos anos, os avanços nas técnicas de crescimento de semicondutores permitiram a fabricação de nanoestruturas isoladas de alta qualidade e com confinamento radial. Essas estruturas quase unidimensionais, conhecidas como nanowires (NWs) têm aplicações tecnológicas vastas, tais como nano sensores químicos e biológicos, foto-detectores e lasers. Seu uso em aplicações tecnológicas requer a compreensão de características óticas e eletrônicas e um estudo teórico mais profundo se faz necessário. O objetivo desse estudo e calcular teoricamente o poder de absorção para NWs de InP e comparar os resultados para as fases cristalinas zincblende (ZB) e wurtzita (WZ) nas suas direções de crescimento equivalentes. Usamos neste estudo a formulação do método k.p que descreve as duas fases cristalinas em um mesmo Hamiltoniano, a aproximação da função envelope e a expansão em ondas planas. O poder de absorção foi calculado a partir das transições entre as bandas de valência e condução através da regra de ouro de Fermi. Mesmo o método k.p sendo o menos custoso computacionalmente, quando comparado com seus correspondentes ab initio, o tamanho das matrizes envolvidas nos cálculos pode ultrapassar a barreira dos giga elementos. Para lidar com essas matrizes, foi implementado um método de resolução de sistemas lineares iterativo, o LOBPCG, utilizando o poder de processamento disponível nas placas gráficas atuais. O novo modo de resolução apresentou ganhos consideráveis em relação ao desempenho observado com os métodos de diagonalização diretos em testes com confinamento em uma única direção. A falta de um pré-condicionador adequado limita o seu uso em NWs. Os cálculos de absorção para NWs na fase ZB apresentaram uma anisotropia em seu espectro de absorção de mais de 90%, enquanto os na fase WZ apresentaram dois regimes distintos de anisotropia, governados pelo aparecimento de um estado oticamente proibido no topo da banda de valência. Em suma, os resultados obtidos com o modelo teórico proposto nesse estudo apresentam as propriedades óticas reportadas na literatura, inclusive o estado oticamente proibido observado em outros sistemas na fase WZ com um alto confinamento quântico. / In recent years, the advances of growth techniques allowed the fabrication of high quality single nanostructures with quantum confinement along lateral directions. These quasi one-dimensional structures known as nanowires (NWs) have vasts technological applications, such as biological and chemical nanosensors, photo detectors and lasers. The applications involving NWs require the comprehension of their optical and electronic properties and, therefore, a deep theoretical understanding should be pursued. The aim of this study is to provide optical absorption theoretical calculations for InP NWs, comparing the results for zincblende (ZB) and wurtzite (WZ) crystal phases, in their equivalent growth directions. We use the k.p method formulation that allow the description of both structures with the same Hamiltonian, the envelope function approximation and the plane wave expansion. The absorption power was calculated for transitions between valence and conduction bands using Fermis Golden Rule. Although the k.p method demands less computational effort, when compared to ab initio calculations, the k.p matrices can break the giga elements barrier. To deal with these matrices, we implemented an linear system solver method, the LOBPCG, using the processing power available in current GPUs. The new resolution method showed a considerable gain comparing the performance of direct diagonalization methods, when tested in systems with confinement in one direction. The lack of an adequate preconditioner limits its use in NWs. The absorption spectra calculations for ZB NWs presented a 90% plus anisotropy, whilst WZ NWs have two distinct regimes, ruled by the presence of an optically forbidden state at valence band maximum. In summary, the results obtained with the theoretical model in this study are in great agreement with optical properties reported in the literature, including the optically forbidden state observed in other WZ systems with high quantum confinement.
12

Nanowhiskers politípicos - uma abordagem teórica baseada em teoria de grupos e no método k.p / Polytypical nanowhiskers - a theoretical approach based on group theory and k.p method

Paulo Eduardo de Faria Júnior 09 February 2012 (has links)
Nanowhiskers semicondutores de compostos III-V apresentam grande potencial para aplicações tecnológicas. Controlando as condições de crescimento, tais como temperatura e diâmetro, é possível alternar entre as fases cristalinas zincblend e wurtzita, dando origem ao politipismo. Esse efeito tem grande influência nas propriedades eletrônicas e óticas do sistema, gerando novas formas de confinamento para os portadores. Um modelo teórico capaz de descrever com exatidão as propriedades eletrônicas e óticas presentes nessas nanoestruturas politípicas pode ser utilizado para o estudo e desenvolvimento de novos tipos de nanodispositivos. Neste trabalho, apresento a construção do Hamiltoniano k.p no ponto Γ para as estruturas cristalinas zincblend e wurtzita baseada no formalismo da teoria de grupos. Utilizando o grupo de simetria do ponto Γ, é possível obter as representações irredutíveis das bandas de energia, partindo de orbitais atômicos e do número de átomos na célula primitiva unitária. Além disso, as operações de simetria do grupo são utilizadas para calcular os elementos de matriz não nulos e independentes do Hamiltoniano k.p. O estudo da simetria dos estados de base pertencentes às representações irredutíveis das bandas de energia, juntamente com a aproximação da função envelope, permitiu a formulação de um modelo polítipico wurtzita/zincblend para cálculo da estrutura de bandas em nanowhiskers. Embora o interesse seja em super-redes politípicas, o modelo proposto foi aplicado a um poço quântico de InP com o intuito de extrair a física envolvida na interface wurtzita/zincblend. / Semiconductor nanowhiskers made of III-V compounds exhibit great potential for technological applications. Controlling the growth conditions, such as temperature and diameter, it is possible to alternate between zincblend and wurtzite crystalline phases, giving origin to the polytypism. This effect has great influence in the electronic and optical properties of the system, generating new forms of confinement to the carriers. A theoretical model capable to accurately describe electronic and optical properties in these polytypical nanostructures can be used to study and develop new kinds of nanodevices. In this study, I present the development of the k.p Hamiltonian in the Γ point for the zincblend and wurtzite crystal structures based on the formalism of group theory. Using the symmetry group of the Γ point, it is possible to obtain the irreducible representations of the energy bands, considering the atomic orbitals and the number of atoms in the primitive unit cell. Also, the group symmetry operations are used to calculate the non-zero and independent matrix elements of the k.p Hamiltonian. The study of the basis states symmetry of irreducible representations in the energy bands, alongside with the envelope function approximation, allowed the formulation of a wurtzite/zincblend polytypical model to calculate the electronic band structure of nanowhiskers. Although the interest is in polytypical superlattices, the proposed model was applied to a single quantum well of InP to extract the physics of the wurtzite/zincblend interface.
13

Topological k.p Hamiltonians and their applications to uniaxially strained Mercury telluride

Kirtschig, Frank 26 June 2017 (has links) (PDF)
Topological insulators (TIs) are a new state of quantum matter that has fundamentally challenged our knowledge of insulator and metals. They are insulators in the bulk, but metallic on the edge. A TI is characterized by a so-called topological invariant. This characteristic integer number is associated to every mapping between two topological spaces and can be defined for an electronic system on the lattice. Due to the bulk-edge correspondence a non-trivial value leads to topologically protected edge states. To get insight into the electronic characteristics of these edge/surface states, however, an effective continuum theory is needed. Continuum models are analytical and are also able to model transport. In this thesis we will address the suitability of continuum low-energy theories to describe the topological characteristics of TIs. The models which are topologically well-defined are called topological k.p Hamiltonians. After introducing a necessary background in chapter 1 and 2, we will discuss in the methodological chapter 3 the strategies that have to be taken into account to allow for studying topological surface states. In chapter 4 we will study two different model classes associated to a spherical basis manifold. Both have an integer topological invariant, but one shows a marginal bulk-edge correspondence. In chapter 5 we will study a different continuum theory where the basis manifold corresponds to a hemisphere. We then apply all these ideas to a time-reversal invariant TI -- uniaxially strained Mercury Telluride (HgTe). We determine the spin textures of the topological surface states of strained HgTe using their close relations with the mirror Chern numbers of the system and the orbital composition of the surface states. We show that at the side surfaces with $C_{2v}$ point group symmetry an increase in the strain magnitude triggers a topological phase transition where the winding number of the surface state spin texture is flipped while the four topological invariants characterizing the bulk band structure are unchanged. In the last chapter we will give a summary.
14

Paralelização do cálculo de estruturas de bandas de semicondutores usando o High Performance Fortran / Semiconductors band structure calculus paralelization using High Performance Fortran

Malara, Rodrigo Daniel 14 January 2005 (has links)
O uso de sistemas multiprocessados para a resolução de problemas que demandam um grande poder computacional tem se tornado cada vez mais comum. Porém a conversão de programas seqüenciais para programas concorrentes ainda não é uma tarefa trivial. Dentre os fatores que tornam esta tarefa difícil, destacamos a inexistência de um paradigma único e consolidado para a construção de sistemas computacionais paralelos e a existência de várias plataformas de programação para o desenvolvimento de programas concorrentes. Nos dias atuais ainda é impossível isentar o programador da especificação de como o problema será particionado entre os vários processadores. Para que o programa paralelo seja eficiente, o programador deve conhecer a fundo aspectos que norteiam a construção do hardware computacional paralelo, aspectos inerentes à arquitetura onde o software será executado e à plataforma de programação concorrente escolhida. Isto ainda não pode ser mudado. O ganho que podemos obter é na implementação do software paralelo. Esta tarefa pode ser trabalhosa e demandar muito tempo para a depuração, pois as plataformas de programação não possibilitam que o programador abstraia dos elementos de hardware. Tem havido um grande esforço na criação de ferramentas que otimizem esta tarefa, permitindo que o programador se expresse mais fácil e sucintamente quanto à para1elização do programa. O presente trabalho se baseia na avaliação dos aspectos ligados à implementação de software concorrente utilizando uma plataforma de portabilidade chamada High Performance Fortran, aplicado a um problema específico da física: o cálculo da estrutura de bandas de heteroestruturas semicondutoras. O resultado da utilização desta plataforma foi positivo. Obtivemos um ganho de performance superior ao esperado e verificamos que o compilador pode ser ainda mais eficiente do que o próprio programador na paralelização de um programa. O custo inicial de desenvolvimento não foi muito alto, e pode ser diluído entre os futuros projetos que venham a utilizar deste conhecimento pois após a fase de aprendizado, a paralelização de programas se torna rápida e prática. A plataforma de paralelização escolhida não permite a paralelização de todos os tipos de problemas, apenas daqueles que seguem o paradigma de paralelismo por dados, que representam uma parcela considerável dos problemas típicos da Física. / The employment of multiprocessor systems to solve problems that demand a great computational power have become more and more usual. Besides, the conversion of sequential programs to concurrent ones isn\'t trivial yet. Among the factors that makes this task difficult, we highlight the nonexistence of a unique and consolidated paradigm for the parallel computer systems building and the existence of various programming platforms for concurrent programs development. Nowadays it is still impossible to exempt the programmer of the specification about how the problem will be partitioned among the various processors. In order to have an efficient parallel program the programmer have to deeply know subjects that heads the parallel hardware systems building, the inherent architecture where the software will run and the chosen concurrent programming platform. This cannot be changed yet. The gain is supposed to be on the parallel software implementation. This task can be very hard and consume so much time on debugging it, because the programming platforms do not allow the programmer to abstract from the hardware elements. It has been a great effort in the development of tools that optimize this task, allowing the programmer to work easily and briefly express himself concerning the software parallelization. The present work is based on the evaluation of aspects linked to the concurrent software implementation using a portability platform called High Performance Fortran, applied to a physics specific problem: the calculus of semiconductor heterostructures? valence band structure. The result of the use of this platform use was positive. We obtained a performance gain superior than we expected and we could assert that the compiler is able to be more effective than the programmer on the paralelization of a program. The initial development cost wasn\'t so high and it can be diluted between the next projects that would use the acquired knowledge, because after the learning phase, the programs parallelization task becomes quick and practical. The chosen parallelization platform does not allow the parallelization of all kinds of problems, but just the ones that follow the data parallelism paradigm that represents a considerable parcel of tipical Physics problems.
15

Paralelização do cálculo de estruturas de bandas de semicondutores usando o High Performance Fortran / Semiconductors band structure calculus paralelization using High Performance Fortran

Rodrigo Daniel Malara 14 January 2005 (has links)
O uso de sistemas multiprocessados para a resolução de problemas que demandam um grande poder computacional tem se tornado cada vez mais comum. Porém a conversão de programas seqüenciais para programas concorrentes ainda não é uma tarefa trivial. Dentre os fatores que tornam esta tarefa difícil, destacamos a inexistência de um paradigma único e consolidado para a construção de sistemas computacionais paralelos e a existência de várias plataformas de programação para o desenvolvimento de programas concorrentes. Nos dias atuais ainda é impossível isentar o programador da especificação de como o problema será particionado entre os vários processadores. Para que o programa paralelo seja eficiente, o programador deve conhecer a fundo aspectos que norteiam a construção do hardware computacional paralelo, aspectos inerentes à arquitetura onde o software será executado e à plataforma de programação concorrente escolhida. Isto ainda não pode ser mudado. O ganho que podemos obter é na implementação do software paralelo. Esta tarefa pode ser trabalhosa e demandar muito tempo para a depuração, pois as plataformas de programação não possibilitam que o programador abstraia dos elementos de hardware. Tem havido um grande esforço na criação de ferramentas que otimizem esta tarefa, permitindo que o programador se expresse mais fácil e sucintamente quanto à para1elização do programa. O presente trabalho se baseia na avaliação dos aspectos ligados à implementação de software concorrente utilizando uma plataforma de portabilidade chamada High Performance Fortran, aplicado a um problema específico da física: o cálculo da estrutura de bandas de heteroestruturas semicondutoras. O resultado da utilização desta plataforma foi positivo. Obtivemos um ganho de performance superior ao esperado e verificamos que o compilador pode ser ainda mais eficiente do que o próprio programador na paralelização de um programa. O custo inicial de desenvolvimento não foi muito alto, e pode ser diluído entre os futuros projetos que venham a utilizar deste conhecimento pois após a fase de aprendizado, a paralelização de programas se torna rápida e prática. A plataforma de paralelização escolhida não permite a paralelização de todos os tipos de problemas, apenas daqueles que seguem o paradigma de paralelismo por dados, que representam uma parcela considerável dos problemas típicos da Física. / The employment of multiprocessor systems to solve problems that demand a great computational power have become more and more usual. Besides, the conversion of sequential programs to concurrent ones isn\'t trivial yet. Among the factors that makes this task difficult, we highlight the nonexistence of a unique and consolidated paradigm for the parallel computer systems building and the existence of various programming platforms for concurrent programs development. Nowadays it is still impossible to exempt the programmer of the specification about how the problem will be partitioned among the various processors. In order to have an efficient parallel program the programmer have to deeply know subjects that heads the parallel hardware systems building, the inherent architecture where the software will run and the chosen concurrent programming platform. This cannot be changed yet. The gain is supposed to be on the parallel software implementation. This task can be very hard and consume so much time on debugging it, because the programming platforms do not allow the programmer to abstract from the hardware elements. It has been a great effort in the development of tools that optimize this task, allowing the programmer to work easily and briefly express himself concerning the software parallelization. The present work is based on the evaluation of aspects linked to the concurrent software implementation using a portability platform called High Performance Fortran, applied to a physics specific problem: the calculus of semiconductor heterostructures? valence band structure. The result of the use of this platform use was positive. We obtained a performance gain superior than we expected and we could assert that the compiler is able to be more effective than the programmer on the paralelization of a program. The initial development cost wasn\'t so high and it can be diluted between the next projects that would use the acquired knowledge, because after the learning phase, the programs parallelization task becomes quick and practical. The chosen parallelization platform does not allow the parallelization of all kinds of problems, but just the ones that follow the data parallelism paradigm that represents a considerable parcel of tipical Physics problems.
16

Topological k · p Hamiltonians and their applications to uniaxially strained Mercury telluride

Kirtschig, Frank 26 June 2017 (has links)
Topological insulators (TIs) are a new state of quantum matter that has fundamentally challenged our knowledge of insulator and metals. They are insulators in the bulk, but metallic on the edge. A TI is characterized by a so-called topological invariant. This characteristic integer number is associated to every mapping between two topological spaces and can be defined for an electronic system on the lattice. Due to the bulk-edge correspondence a non-trivial value leads to topologically protected edge states. To get insight into the electronic characteristics of these edge/surface states, however, an effective continuum theory is needed. Continuum models are analytical and are also able to model transport. In this thesis we will address the suitability of continuum low-energy theories to describe the topological characteristics of TIs. The models which are topologically well-defined are called topological k.p Hamiltonians. After introducing a necessary background in chapter 1 and 2, we will discuss in the methodological chapter 3 the strategies that have to be taken into account to allow for studying topological surface states. In chapter 4 we will study two different model classes associated to a spherical basis manifold. Both have an integer topological invariant, but one shows a marginal bulk-edge correspondence. In chapter 5 we will study a different continuum theory where the basis manifold corresponds to a hemisphere. We then apply all these ideas to a time-reversal invariant TI -- uniaxially strained Mercury Telluride (HgTe). We determine the spin textures of the topological surface states of strained HgTe using their close relations with the mirror Chern numbers of the system and the orbital composition of the surface states. We show that at the side surfaces with $C_{2v}$ point group symmetry an increase in the strain magnitude triggers a topological phase transition where the winding number of the surface state spin texture is flipped while the four topological invariants characterizing the bulk band structure are unchanged. In the last chapter we will give a summary.
17

Propriedades eletrônicas de hetero-estruturas de semicondutores zincblende. / Electronic properties of zincbled semiconductor heterostructures.

Chitta, Valmir Antonio 27 October 1987 (has links)
Utilizou-se um Hamiltoniano KP (6x6) do tipo Kane para, se estudar a estrutura de bandas e níveis de Landau para heteroestruturas de semicondutores zincblende dos grupos III-V e II-VI. Os efeitos do acoplamento entre as bandas de condução e valência, da mistura dos estados da banda de valência, da não-parabolicidade dos níveis, da total degenerescência dos níveis, do warping e das descontinuidades das massas efetivas nas heterointerfaces são levados em conta. Mostrou-se que a interação entre as bandas de condução e valência não pode ser desprezada, mesmo para semicondutores de gap largo, como citado em trabalhos existentes na literatura. Para um estudo sistemático do modelo, utilizou-se um poço quântico de GaAs Ga(Al)As e então aplicou-se o modelo a um sistema de semicondutores semi-magnéticos (poço quântico de CdTe Cd(Mn)Te). / A Kane-like (6x6) KP Hamiltonian is used to study the subband structure and Landau levels for group III-V and group II-VI zincblende semiconductor heterostructures. The effects of conduction-valence band coupling, valence band states mixing, nonparabolicity of the levels, the full degeneracy of the levels, warping and effective masses discontinuities at the heterointerfaces are taken into account. It is shown that the interaction between conduction-valence bands cannot be neglected, even so the semicondutctor have wide gap, as claimed in previous work in the literature. GaAs-Ga(Al)As quantum well was used as a model for a systematic study of the effects of each effective KP parameters. Then, it was applied to the study the subband structure of semi-magnetic semiconductor system (a quantum well of CdTe-Cd(Mn)Te.
18

Estrutura eletrônica de anéis quânticos

Oliveira Neto, Vivaldo Lopes 09 August 2011 (has links)
Made available in DSpace on 2016-06-02T20:16:47Z (GMT). No. of bitstreams: 1 3834.pdf: 2869870 bytes, checksum: cda4c3f94950b35242f2e16dff60bd42 (MD5) Previous issue date: 2011-08-09 / Universidade Federal de Sao Carlos / The nanoscopic structures with ring topology, or quantum rings, have attracted the interest due to their unique rotational symmetry and the possibility of checking fundamental quantum phenomena. Among them, the study of Aharonov-Bohm interference effects appears with special emphasis. Analytical calculations of the electronic structure of quantum rings were performed for the electron confined in one-dimensional and threedimensional potentials. These calculations were complemented by the electronic structure simulation of the valence band using the k.p method, main objective this work. This theoretical contribution is a part of a collaboration with experimental groups of growth and spectroscopy which deal with problems related to the manipulation of electronic states and spin properties of quantum rings. The ground states of both electrons and holes in quantum dots (quasi-zero-dimensional systems) have zero angular momentum (in the absence of magnetic fields and low fields) and exhibit a diamagnetic response of the spin states in the presence of an external magnetic field. In non-magnetic quantum dots, the spin properties are mainly attributed to the electron spin and the heavy hole. On the other hand, it is assumed that the light holes have a minor role in the properties of the exciton ground state. Our results show that the interband coupling may lead to the angular momentum hybridization of the electronic states, even in the ground state and the the light hole may assume a relevant role. The adaptation and improvement of calculations of the electronic structure using the k.p methods were two of the main objectives of this work. The theoretical tools developed aim to contribute to the establishment of protocols for optimal use and application of such systems. / As estruturas nanoscópicas de topologia anelar, ou anéis quânticos, têm atraído o interesse devido a sua simetria rotacional única e à possibilidade de verificar fenômenos quânticos fundamentais. Dentre eles, o estudo de efeitos relacionados à interferência do tipo Aharonov-Bohm aparece com especial ênfase. Cálculos analíticos da estrutura eletrônica dos anéis quânticos foram realizados para os casos de um elétron confinado em um potencial unidimensional e tridimensional. Estes cálculos foram complementados com a simulação da estrutura eletrônica da banda de valência utilizando o método k.p, que é o objetivo principal do trabalho. Esta contribuição teórica forma parte de uma colaboração com grupos experimentais de crescimento e de espectroscopia onde são tratados problemas relacionados à manipulação de estados eletrônicos e de spin em sistemas quase-zero dimensionais de topologia anelar. O estado fundamental do elétron e do buraco em pontos quânticos (sistemas quase-zero-dimensionais) possui tipicamente momento angular zero (na ausência de campos magnéticos e para campos suficientemente baixos) e exibe uma resposta diamagnética dos estados desdobrados de spin uma vez que um campo magnético externo é aplicado. Nos pontos quânticos não magnéticos as propriedades de spin são fundamentalmente atribuídas aos elétrons e ao buraco pesado. Em contrapartida, se assume que os buracos leves possuem um papel menor nas propriedades do estado fundamental do éxciton. Nossos resultados mostram que o acoplamento entre bandas pode gerar estados com hibridização do momento angular, inclusive o estado fundamental e o papel do buraco leve acaba sendo relevante. A adaptação e melhoramento do cálculo da estrutura eletrônica utilizando métodos k.p foram dois dos objetivos fundamentais deste trabalho. As ferramentas teóricas desenvolvidas visam contribuir para o estabelecimento de protocolos para o uso e aplicação otimizada de tais sistemas.
19

Propriedades eletrônicas de hetero-estruturas de semicondutores zincblende. / Electronic properties of zincbled semiconductor heterostructures.

Valmir Antonio Chitta 27 October 1987 (has links)
Utilizou-se um Hamiltoniano KP (6x6) do tipo Kane para, se estudar a estrutura de bandas e níveis de Landau para heteroestruturas de semicondutores zincblende dos grupos III-V e II-VI. Os efeitos do acoplamento entre as bandas de condução e valência, da mistura dos estados da banda de valência, da não-parabolicidade dos níveis, da total degenerescência dos níveis, do warping e das descontinuidades das massas efetivas nas heterointerfaces são levados em conta. Mostrou-se que a interação entre as bandas de condução e valência não pode ser desprezada, mesmo para semicondutores de gap largo, como citado em trabalhos existentes na literatura. Para um estudo sistemático do modelo, utilizou-se um poço quântico de GaAs Ga(Al)As e então aplicou-se o modelo a um sistema de semicondutores semi-magnéticos (poço quântico de CdTe Cd(Mn)Te). / A Kane-like (6x6) KP Hamiltonian is used to study the subband structure and Landau levels for group III-V and group II-VI zincblende semiconductor heterostructures. The effects of conduction-valence band coupling, valence band states mixing, nonparabolicity of the levels, the full degeneracy of the levels, warping and effective masses discontinuities at the heterointerfaces are taken into account. It is shown that the interaction between conduction-valence bands cannot be neglected, even so the semicondutctor have wide gap, as claimed in previous work in the literature. GaAs-Ga(Al)As quantum well was used as a model for a systematic study of the effects of each effective KP parameters. Then, it was applied to the study the subband structure of semi-magnetic semiconductor system (a quantum well of CdTe-Cd(Mn)Te.

Page generated in 0.0644 seconds