• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 12
  • 2
  • Tagged with
  • 25
  • 9
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Phenotypic Outcomes of Aberrant Excitatory to Inhibitory Neuronal Balance

January 2016 (has links)
acase@tulane.edu / 1 / Jacqueline Moran
2

Mechanisms of Inhibitory Synaptic Plasticity: The Regulation of KCC2

Acton, Brooke Ashley 08 January 2014 (has links)
The mechanisms that regulate the activity of the neuron specific K+Cl- cotransporter (KCC2) remain poorly understood, despite the critical importance of this transporter in inhibitory synaptic transmission and plasticity. In this thesis I made three novel discoveries which reveal the cellular and molecular mechanisms of KCC2 regulation. First, I assayed the K+Cl- cotransport function of KCC2 under isotonic conditions and determined the molecular domain of the cotransporter required for constitutive Cl- transport in hippocampal neurons (Acton et al 2012). Specifically, I identified the 15 amino acid domain of the C-terminus in neurons that is responsible for the ability of KCC2 to cotransport K+Cl- under basal isotonic conditions, allowing it to remain constitutively active to create the steep Cl- gradient across the neuronal membrane required for synaptic inhibition. Secondly, I investigated a novel KCC2-interacting protein named Neto2 and determined its effect on the postsynaptic action of GABA (Ivakine et al 2013). I have found that Neto2, which is also an auxiliary protein of kainate-type ionotropic receptors, can also regulate the activity of the KCC2. Neto2 is required for neurons to maintain low [Cl-]i and strong synaptic inhibition. Third, I examined the functional relevance of the KCC2:Neto2:KAR multiprotein complex and found that this complex regulates the surface level membrane expression pattern of KCC2 and the stability of the cotransporter in the membrane. Moreover, I have provided the first evidence that the interactions of KCC2:Neto2:GluK2 regulate KCC2 via a PKC-mediated phosphorylation of the cotransporter. Taken together, these results resolve three novel mechanisms of KCC2 regulation: the identity of the key C-terminal domain of KCC2 required for isotonic transport, the functional significance of the KCC2:Neto2 interaction, and the mechanism by which the KCC2:Neto2:KAR complex regulates KCC2 expression and mobility in the neuronal membrane.
3

Mechanisms of Inhibitory Synaptic Plasticity: The Regulation of KCC2

Acton, Brooke Ashley 08 January 2014 (has links)
The mechanisms that regulate the activity of the neuron specific K+Cl- cotransporter (KCC2) remain poorly understood, despite the critical importance of this transporter in inhibitory synaptic transmission and plasticity. In this thesis I made three novel discoveries which reveal the cellular and molecular mechanisms of KCC2 regulation. First, I assayed the K+Cl- cotransport function of KCC2 under isotonic conditions and determined the molecular domain of the cotransporter required for constitutive Cl- transport in hippocampal neurons (Acton et al 2012). Specifically, I identified the 15 amino acid domain of the C-terminus in neurons that is responsible for the ability of KCC2 to cotransport K+Cl- under basal isotonic conditions, allowing it to remain constitutively active to create the steep Cl- gradient across the neuronal membrane required for synaptic inhibition. Secondly, I investigated a novel KCC2-interacting protein named Neto2 and determined its effect on the postsynaptic action of GABA (Ivakine et al 2013). I have found that Neto2, which is also an auxiliary protein of kainate-type ionotropic receptors, can also regulate the activity of the KCC2. Neto2 is required for neurons to maintain low [Cl-]i and strong synaptic inhibition. Third, I examined the functional relevance of the KCC2:Neto2:KAR multiprotein complex and found that this complex regulates the surface level membrane expression pattern of KCC2 and the stability of the cotransporter in the membrane. Moreover, I have provided the first evidence that the interactions of KCC2:Neto2:GluK2 regulate KCC2 via a PKC-mediated phosphorylation of the cotransporter. Taken together, these results resolve three novel mechanisms of KCC2 regulation: the identity of the key C-terminal domain of KCC2 required for isotonic transport, the functional significance of the KCC2:Neto2 interaction, and the mechanism by which the KCC2:Neto2:KAR complex regulates KCC2 expression and mobility in the neuronal membrane.
4

Régulation post traductionnelle du co-transporteur potassium-chlorure KCC2 / Post-translational regulation of potassium-chloride co-transporter KCC2

Friedel, Perrine 16 June 2014 (has links)
Le co-transporteur potassium-chlorure 2, KCC2, contrôle la concentration intracellulaire des ion chlorure (Cl-) dans les neurones matures et régule ainsi la force inhibitrice de l'acide γ-amino butyrique (GABA) et de la glycine, principaux neurotransmetteurs inhibiteurs du système nerveux central. Plusieurs troubles neurologiques sont associés à une diminution de l'expression de KCC2, qui se traduit par l'hyperexcitabilité du réseau neuronal. L'objectif de ce travail de thèse était d'identifier et caractériser les éléments structuraux de la protéine qui sont impliqués dans la régulation de son activité d'un point de vue physiologique et pathologique. J'ai développé de nouvelles approches pour enregistrer l'activité de transporteur d'ions ainsi que l'expression membranaire de KCC2. Ces outils m'ont permis de caractériser de nouveaux éléments structuraux qui régulent le fonctionnement de cette protéine, à savoir, son insertion dans la membrane plasmique, son internalisation ou encore son activité intrinsèque de transporteur d'ions. Enfin, nous avons montré que deux mutations (R952H et R1049C), identifiées chez des patients atteints d'épilepsie idiopathique généralisée (EIG), entrainent la diminution de l'expression membranaire de la protéine et de sa fonction de transporteur de Cl- in vitro. Nos résultats changent la vision actuelle du rôle fonctionnel des régions de KCC2, soulignent l'importance d'étudier l'expression membranaire de la protéine, conjointement à son activité de transporteur, et enfin, démontrent pour la première fois que des mutations sur le gène KCC2, retrouvées chez des patients atteints d'EGI, peuvent perturber le fonctionnement du transporteur. / The potassium chloride co-transporter 2, KCC2, controls the intracellular chloride (Cl-) concentration in mature neurons and thus regulates the inhibitory forces of γ-amino butyrique (GABA) and glycine, the major inhibitory neurotransmitters in the central nervous system. Several neurological disorders are associated with down-regulation of KCC2 expression, resulting in hyperexcitability of neural network. The aim of this thesis was to identify and characterize the structural elements of the protein involved in the regulation of its activity under physiological and pathological conditions. I developed new approaches to record ion-transport activity and membrane expression of KCC2. These tools allowed me to characterize new structural elements regulating the functioning of the protein, namely insertion into plasma membrane, internalisation or intrinsic activity of ion-transport. Finally, we showed that two mutations (R952H and R1049C) identified in patients with idiopathic generalized epilepsy (IGE), cause the decrease in membrane protein expression and its function of Cl-transporter in vitro. Our results change the current view on the functional role of KCC2 regions, emphasize the importance of studying membrane protein expression, together with its transporter activity, and finally, demonstrate for the first time that mutations in the KCC2 gene found in patients with EGI, may interfere with transporter function.
5

Contrôle de l'homéostasie du chlore par la leptine dans l'hippocampe : une nouvelle fonction neurotrophique pour un facteur périphérique / Leptin controls chloride homeostasis in the hippocampus : a new neurotrophic function for a peripheral factor

Dumon, Camille 23 January 2017 (has links)
Cette thèse participe à l’étude générale des facteurs environnementaux et périphériques qui contrôlent le développement précoce du système nerveux central. Plus particulièrement, notre objectif a été d’établir quel rôle tient la leptine, hormone de satiété également connue pour sa fonction neurotrophique, dans l’établissement de la séquence développementale GABAergiqueEn combinant des approches électrophysiologiques, morphologiques et moléculaires, nous avons montré que cette séquence était altérée chez la souris déficiente pour la leptine (ob/ob) et pour son récepteur (db/db). En effet, chez ces souris, le GABA hyperpolarise et inhibe les neurones hippocampiques dès le troisième jour de vie post-natale, alors que le GABA induit une dépolarisation pendant la première semaine de vie post-natale chez les animaux sauvages. Grace à une étude in vivo sur les nouveau-nés ob/ob et in vitro sur cultures neuronales, nous avons montré que cette altération du fonctionnement de la transmission GABAergique était due à une expression, prématurée du transporteur du chlore KCC2 tant au niveau traductionnel que transcriptionnel. In vivo, nous avons démontré qu’il était possible de rétablir la séquence développementale GABAergique par injection de leptine chez les souris ob/ob. Nous avons évalué comment l’hyperleptinémie associée à l’obésité maternelle altérait l’homéostasie du chlore, sur la descendance de souris obèses. Ces résultats établissent ainsi l’idée d’un contrôle de l’homéostasie du chlore par la leptine dans l’hippocampe en développement et ouvre de nouveaux horizons sur la prise en charge des troubles neurodéveloppementaux liés à une altération de l’homéostasie du chlore. / This dissertation tackles the general study of external cues (sensory inputs, neuronal activity, neurotrophins, and peripheral factors) controlling early central nervous system development. Our specific aim was to establish the role of leptin in shaping GABAergic developmental sequence, from a depolarizing to an hyperpolarizing action of GABA (D/I shift). Using acute hippocampal slices of newborn rodents, we have shown that this shift was abolished in leptin deficient (ob/ob) mice and in leptin receptor deficient (db/db) mice. In these mice the D/I shift occur as early as post-natal day 3, whereas in wild-type (WT) mice it takes place during the second post-natal week. Using newborn ob/ob mice and neuronal cultures we show that this GABAergic transmission impairment was due a precocious expression of the chloride extruder KCC2. In vivo we have also demonstrated that leptin injections were sufficient to restore the WT phenotype. Finally, we have evaluated how hyperleptinemia associated to maternal obesity alter chloride homeostasis in the offspring of high fat fed mothers. This work establishes therefore the involvement of leptin in the control of chloride homeostasis during development, and will help the management of neurodevelopmental disorders in which altered chloride-homeostasis is part of the pathogenic mechanism. Overall, this dissertation proposes that a peripheral factor, leptin, acts as a relay between the environment and the central nervous system to ensure the proper development of the latter.
6

Plasticité GABAergique et épilepsie : focus sur le proBDNF / GABAergic plasticity and epilepsy : focus on proBDNF

Riffault, Baptiste 25 February 2016 (has links)
Le facteur neurotrophique dérivé du cerveau (BDNF) synthétisé sous la forme d'un précurseur (proBDNF) qui peut être clivé pour donner sa forme mature (mBDNF). Le mBDNF et le proBDNF produisent des réponses physiologiques opposées par l'activation de deux classes distinctes de récepteurs transmembranaires : respectivement, le récepteur TrkB et p75NTR. Le ratio mature/pro-BDNF est un élément important impliqué dans la plasticité synaptique, la formation des circuits neuronaux et in fine les fonctions cognitives. Les altérations dans ce clivage peuvent ainsi expliquer l’émergence de conditions pathologiques post-lésionnelles, comme la mort cellulaire induite par un état de mal épileptique. Au cours de ma thèse, j'ai montré que l'altération de la maturation du BDNF in vitro, provoquait, via le récepteur p75NTR, une altération de l’activité GABAergique. Par ailleurs, au cours des crises d'épilepsies, les réponses dépolarisantes et excitatrices du GABA, soutenus par la baisse d’expression et d’activité du co-transporteur KCC2, ont été rapportées. Ainsi, in vivo, j’ai montré que la voie proBDNF/p75NTR module l'homéostasie chlore au cours du développement et dans des processus d’épileptogenèse. Pendant le développement, l’activation de la voie proBDNF/p75NTR contrôle le passage d’un GABA immature dépolarisant à un GABA mature hyperpolarisant via KCC2. Pendant l’épileptogenèse, le proBDNF via p75NTR contribuerait à l’hyperexcitabilité des réseaux neuronaux. De plus, le blocage de p75NTR permet de réduire le nombre de crises épileptiques. En conclusion, proBDNF/p75NTR est un facteur clé dans la séquence maturative du GABA et dans la mise en place de l’épilepsie du lobe temporal. / The brain-derived neurotophic factor (BDNF) is synthesized as a precursor (proBDNF) that can be processed intracellularly to the mature form (mBDNF). mBDNF and proBDNF are assumed to produce opposing physiological responses mediated by the activation of two distinct classes of transmembrane receptors, the TrkB and the p75NTR respectively. The proteolysis of proBDNF is crucial for cognitive functions; its impairment may account for the emergence of brain disorders such as epilepsy. During my thesis, I showed that alteration in BDNF maturation in vitro triggers an up-regulation of p75NTR, inducing a disruption of GABAergic transmission. Moreover, in epilepsy, depolarizing and excitatory GABAergic responses, due to alteration of KCC2, have been reported. Interestingly, I described novel insights into the proBDNF/p75NTR mechanisms and function in vivo in modulating chloride homeostasis during the development of neuronal networks and in the pathogenesis of epilepsy. In physiological conditions, p75NTR activation by proBDNF may be a key regulator in shaping neural circuitry and synaptic plasticity. Moreover, I have shown that proBDNF/p75NTR to mBDNF/TrkB ratio may control the timing of the developmental shift of GABA depolarizing to hyperpolarizing. During epileptogenesis, proBDNF via p75NTR alters the excitatory/inhibitory equilibrium thereby enhancing neuronal activity through the inhibition of KCC2 function. Hence, blockade of p75NTR can prevent some of the epileptogenic mechanisms. Altogether, these data provide the first compelling evidence that proBDNF disrupts the GABA excitatory/inhibitory developmental sequence, which then favors the emergence of epileptic disorders.
7

Régulation rapide du co-transporteur neuronal K/Cl KCC2 par l'inhibition et l'excitation dans les neurones matures. / Rapid regulation of the neuronal K/Cl co-transporter KCC2 by excitation and inhibition in mature neurons.

Heubl, Martin 12 February 2016 (has links)
La polarité et l'efficacité de la transmission GABAergique dépendent de la concentration intra-neuronale en chlore. Dans les neurones matures, le co-transporteur K+/Cl- KCC2 maintient la concentration intracellulaire en chlore à un niveau bas, permettant ainsi une réponse inhibitrice du GABA. En plus de son rôle dans la transmission GABAergique, KCC2 régule aussi l'efficacité de la transmission glutamatergique en contrôlant la spinogenèse, l'exocytose et la dynamique membranaire des récepteurs AMPA. Du fait de son importance aux synapses excitatrices et inhibitrices, il est crucial de comprendre les mécanismes qui régulent l'expression membranaire et la fonction de KCC2. La régulation de KCC2 par l'activité glutamatergique excitatrice ayant été bien caractérisée, il reste à déterminer si l'expression et la fonction de KCC2 sont régulées par l'activité inhibitrice GABAergique. Pendant ma thèse, j'ai montré que KCC2 est en effet directement régulé par la transmission GABAergique. J'ai trouvé que l'activation aigue des RGABAA confine KCC2 dans la membrane alors que le blocage des RGABAA augmente la dynamique membranaire et l'internalisation du transporteur. Les mécanismes moléculaires impliquent le chlore comme messager secondaire, la kinase WNK1 et la phosphorylation de KCC2 sur des résidus thréonines clés. J'ai ensuite pu montrer que cette régulation à un impact aux synapses inhibitrice et excitatrice. Mon travail propose un mécanisme nouveau de la régulation de l'homéostasie du chlore par l'inhibition GABAergique. Ainsi les neurones peuvent compenser une augmentation ou une diminution en chlore neuronale par une adaptation rapide de KCC2 à la surface cellulaire. / The polarity and efficacy of GABAergic neurotransmission depends on the intraneuronal chloride concentration. In mature neurons chloride extrusion by the K+/Cl- co-transporter KCC2 permits an inhibitory influx upon activation of GABAA receptors. In addition to its role in GABAergic transmission, KCC2 regulates also glutamatergic transmission in an ion-independent manner by controlling spinogenesis and AMPAR exocytosis and membrane diffusion in dendritic spines. Knowing its pivotal role at central synapses, it is of particular importance to understand the cellular and molecular mechanisms underlying its regulation. While regulation of KCC2 by neuronal excitation is well documented, it is still unknown whether neuronal inhibition itself can regulate the transporter’s membrane expression and/or activity. During my PhD I was able to demonstrate a direct regulation of KCC2 membrane diffusion and stability by GABAA receptor-mediated inhibition and I characterized the underlying signaling cascade. I found that activation of GABAAR decreased KCC2 lateral diffusion while GABAAR blockade led to increased membrane dynamics and internalization of the transporter. I could show that KCC2 regulation by neuronal inhibition requires chloride as second intracellular messenger and chloride-sensing WNK1 kinase that directly phosphorylate KCC2 on key Threonine residues. This regulation has a functional impact at both excitatory and inhibitory synapses. My work reports a novel and rapid mechanism of control of chloride homeostasis by GABAA receptor-mediated inhibition that allows maintaining the polarity and activity of GABAA receptors constant.
8

Contribution des co-transporteurs cation chlorure KCC2 et NKCC1, à la maturation et la modulation des réseaux locomoteurs spinaux

Stil, Aurélie 09 September 2011 (has links)
Le cerveau et la moelle épinière adultes sont câblés pour traiter l’information sensorielle et la transformer en patrons d’activité cohérents qui forment la base de la perception du monde extérieur et de la motricité. Ces connexions très précises, loin d’être complètement établies à la naissance, sont affinées par l’activité électrique. Des activités spontanées (AS) peuvent être générées en l’absence de stimulation extrinsèque au système considéré. Au niveau de la moelle épinière, les AS sont responsables des mouvements spontanés et des tremblements myocloniques observés chez tous les mammifères immatures y compris chez l’humain. Elles constituent en quelque sorte les premiers pas du réseau locomoteur, ce qui signifie d’une part, qu’elles apparaissent avant l’émergence d’une activité de type locomotrice, et d’autre part, qu’elles participent à la mise en place et au raffinement d’un réseau moteur fonctionnel. La locomotion est générée par des réseaux de neurones localisés au niveau de la moelle épinière lombaire. Ces neurones constituent le générateur de rythme locomoteur (ou CPG, pour « central pattern generator »). Contrairement aux AS, l’activité locomotrice est déclenchée par une stimulation du réseau. Le patron locomoteur de décharges rythmiques est alterné de chaque côté de la moelle spinale, et entre les racines lombaires qui innervent des muscles extenseurs et fléchisseurs. / The mature brain and spinal cord are precisely wired to process sensory information into coherent patterns of activity that form the basis of our perception and motor behaviors. This precise wiring is not fully developed at birth. The pattern of connections that emerges during prenatal development only roughly approximates the final wiring. This initially coarse pattern of connections is subsequently refined by activity-dependent mechanisms that match precisely the presynaptic neurons to their appropriate target cells. In spinal cord, spontaneous activity (SA) is responsible for spontaneous limb movements and myoclonic twitching observed in all immature mammals, including human babies. SA can be seen as the first steps of the locomotor network since its participates in the development of the locomotor system.Locomotion is produced by neural networks located in the spinal cord (Central Pattern Generators (CPGs). Activation of CPGs, evokes a fictive locomotor pattern consisting of alternation between the motor bursts on the left and right sides of the spinal cord, as well as alternation between flexor and extensor bursts on the same side. Operation of neural networks depends on the balance between excitation and inhibition. At early stages of development, neuronal assemblies are hyperexcitable mainly because of GABA and glycine, the major inhibitory neurotransmitters in adults,that are depolarizing. GABA and glycine action depends on the intracellular concentration of chloride ([Cl-]i) which is finely regulated by specific cation-chloride co-transporters, called KCC2 and NKCC1.
9

Enhanced Proteomics Resolves KCC2 as a Novel Therapeutic Target for Traumatic Brain Injury

Lizhnyak, Pavel N 01 January 2019 (has links)
The development of traumatic brain injury (TBI) therapeutics and effective translation to clinic remains stubbornly elusive despite the high prevalence of TBI within the United States and across the globe. Interventions must be devised around testable targets, appropriately timed to intercede on secondary results. Here, we have utilized temporal neuroproteomics as an ideal approach to inform on the complex biochemical processing in order to address the well-recognized temporal evolution of TBI pathobiology and interrogate a novel therapeutic target in a mild-moderate rat Controlled Cortical Impact (CCI) within perilesioned somatosensory cortex. First, our findings revealed 2047 proteins significantly impacted within the first two weeks following TBI. Subsequent artificial neural network analysis revealed a delayed-onset cluster of proteins highly enriched in GABAergic neurotransmission and ion transport to reveal the prototypical target potassium/chloride transport 2 (KCC2 or SLC12A5) for further investigation with the KCC2-specific pharmacologic CLP290. Our tested therapeutic window guided by post-translational processing preceding one-day prior to protein loss revealed effective CLP290 restoration of KCC2 localization. We further demonstrated recovery in functional and behavioral assessments with one-day administration paradigm supporting the effectiveness of CLP290 treatment after brain injury. To better understand the underlying mechanism of CLP290, we utilized proteomic and bioinformatic approaches to tease out the biological response to treatment. Results demonstrate recovery of PKCδ-mediated phosphorylation of KCC2 and recovery of transporter activity. Additionally, findings reveal preservation of tyrosine kinase by reversing ubiquitin-mediated proteasomal degradation. Our functional assessment of secondary injury insults two-weeks following TBI revealed recovery in seizure threshold, reduction in lesion expansion and a decrease in cell loss suggesting maintained recovery of KCC2 and restored E/I balance. In conclusion, the presented studies in these two chapters propose a novel approach for development of therapeutics for TBI and test the selective manipulation via pharmacological intervention. These findings are promising for the development and treatment of other neurological disorders.
10

Contribution des co-transporteurs de chlore NKCC1 et KCC2 dans la genèse de crises épileptiformes et l'induction d'un foyer épileptique chez les nouveaux-nés : Recherche de nouvelles stratégies thérapeutiques

Nardou, Romain 12 December 2011 (has links)
Les études cliniques montrent que l’incidence des crises épileptiformes est la plus forte durant la période néonatale. Ces crises ont de nombreux facteurs étiologiques : un traumatisme crânien, des épisodes anoxo-ischémiques, des infections périnatales, des hémorragies intracrâniennes, des troubles métaboliques et de la fièvre... Ces crises per se peuvent entrainer des conséquences délétères à long terme. Notamment, l’hypothèse que la propagation des crises répétées vers des structures cérébrales naïves peut conduire à la formation d’un foyer épileptique secondaire qui génère des crises spontanées a été longtemps suggérée comme étant un mécanisme de base dans l’épilepsie humaine. Par conséquent, il est nécessaire de traiter efficacement les crises néonatales. Cependant, les traitements de premier choix comme le phénobarbital et le diazépam qui ont été développés pour traiter les crises chez l’adulte, sont souvent inefficaces chez les nouveau-nés et peuvent même aggraver les crises. Les mécanismes à l’origine de cette différence sont actuellement mal connus. Récemment, à l’aide d’une préparation développée dans le laboratoire composée des deux hippocampes néonataux interconnectés, il a été montré pour la première fois que des crises induites dans un hippocampe qui se propagent vers l’hippocampe controlatéral pouvaient conduire à la formation d’un foyer épileptique secondaire - foyer miroir (« seizure beget seizure »). Ce modèle a permis de montrer qu’un des mécanismes clés de la formation d’un foyer épileptique était l’augmentation permanente du chlore intracellulaire résultant en une action GABAergique excitatrice favorisant la genèse de crises spontanées. Déterminer les mécanismes à l’origine de l’épileptogenèse secondaire est d’une importance clinique majeure, et permettra de développer de nouvelles stratégies de prévention des effets pathologiques des crises.La première partie de ce travail a été de définir l’implication du co-transporteur de chlore NKCC1 dans la genèse de crises et l’épileptogenèse secondaire. Nous avons montré que le blocage de NKCC1, à l’aide d’outils pharmacologiques ou génétiques, ne prévient ni la formation d’un foyer miroir par des crises propagées ni l’augmentation permanente de chlore intracellulaire. Par conséquent, NKCC1 n’est ni nécessaire ni suffisant à induire ces modifications. Dans la deuxième partie, utilisant des outils électrophysiologiques et immunochimiques, nous apportons un faisceau d’évidences montrant que le co-transporteur de chlore KCC2 est internalisé et altéré fonctionnellement par des crises suggérant que l’accumulation de chlore résulte essentiellement de l’incapacité des neurones à évacuer le chlore. Dans la troisième partie nous avons étudié les effets du phénobarbital (PB) et du diazépam (DZP) sur la genèse de crises et l’épileptogenèse durant la période néonatale. En particulier, nous montrons que le PB, mais pas le DZP, bloque des crises initiales induites et prévient l’induction d’un foyer épileptique secondaire. Cette différence est due à un blocage partiel des récepteurs AMPA/KA par le PB. Cependant, une fois le foyer miroir établi, le PB comme le DZP aggravent les crises spontanées en exacerbant les effets excitateurs du GABA. Ces résultats montrent que l’histoire des crises détermine les effets du PB. En outre, le bumétanide, un antagoniste de NKCC1 qui réduit le chlore intracellulaire, améliore l’action du PB et bloque les crises spontanées. En conclusion, nos observations plaident fortement pour un traitement rapide des crises néonatales afin de protéger autant que faire les capacités du neurone à réguler le chlore intracellulaire. / Clinical studies show that children, especially neonates are in a much higher risk than adults to develop seizures. Such seizures in the brain may be provoked by different factors: tumor, infection, anoxia, fever, trauma, cysts, vascular malformations... Seizures in neonates are also often resistant to treatments and available antiepileptic drugs (AEDs) are inefficient or even provoke and aggravate neonatal seizures. A fundamental concept in epilepsy is that the seizures generated in epileptogenic regions propagate to the other brain structures even to the contralateral side and may develop permanent epileptic focus in the naïve brain structures – secondary epileptic focus. Consequently, it is necessary to treat the neonatal seizures. Diazepam (DZP) and phenobarbital (PB) are extensively used as first and second line drugs to treat acute seizures in neonates and their actions are thought to be mediated by increasing the actions of GABAergic signals. Yet, their efficacy is different and variable with occasional failure or even aggravation of recurrent seizures questioning whether other mechanisms are not involved in their actions. We studied these issues in the intact interconnected hippocampal preparation from neonatal rats and mice. Using this preparation and three-compartment chamber we induced seizures in one hippocampus that propagated to the contralateral one. The propagation of recurrent seizures transformed the contralateral hippocampus into independent epileptogenic focus – mirror focus (MF) - that was capable of generating spontaneous seizures (« seizure beget seizure »). The formation of MF is associated with a permanent increase of the intracellular concentration of chloride and a shift of the actions of GABA from inhibitory to excitatory. Therefore determining how secondary epileptogenesis is induced will have major clinical impact as it will enable to develop tools that prevent selectively the pathogenic seizures.At first, we have determined the impact and the contribution of chloride co-transporter NKCC1 in seizure generation and secondary epileptigenesis. We have shown that the pharmacologically or genetically blockade of NKCC1 did not prevent neither the generation nor propagation of evoked seizures nor formation of MF. However, in the isolated MF, bumetanide effectively blocked spontaneous epileptiform activity. Bumetanide partially reduced DFGABA and therefore the excitatory action of GABA in epileptic neurons. Therefore, bumetanide is a potent anticonvulsive agent although it cannot prevent formation of the epileptogenic MF.Second using different electrophysiological and immunochemistry approaches we have demonstrated that the accumulation of chloride and the excitatory actions of GABA in mirror foci neurons are mediated by NKCC1 chloride importer and by a downregulation and internalisation of the chloride exporter KCC2.Finally using our MF model we have compared the actions of PB and DZP on neonatal seizures. We have revealed that PB but not DZP dramatically reduced initial propagating seizures and prevented formation of epileptogenic MF. We show that PB in contrast to DZP has a highly specific action on AMPA/kainate receptor mediated currents. This action underlies an important difference between the two AEDs as in contrast to PB, DZP aggravates early seizures reflecting the advantage of PB over DZP to prevent secondary epileptogenesis. Yet, after repeated seizures, once an epileptogenic MF has been formed, this difference is abolished because of the strong excitatory actions of GABA. Therefore, the history of seizures prior to GABA acting AED treatment determines its effects and rapid treatment of severe potentially epileptogenic neonatal seizures is recommended to prevent secondary epileptogenesis associated with KCC2 down regulation.

Page generated in 0.0299 seconds