• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 12
  • 2
  • Tagged with
  • 25
  • 9
  • 9
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

KCC2 : étude phylogénétique et physiopathologique à perspectives thérapeuthiques / KCC2 : phylogenetic and physio-pathologic studies, therapeutics perspectives

Pisella, Lucie 11 December 2018 (has links)
Du fondamental à la clinique, cette thèse a été construite autour d’un seul mot clefs : KCC2, grâce à plusieurs projets collaboratifs. Ce co-transporteur d’ion est une molécule à plusieurs facettes dont la multiplicité des rôles et ses implications dans diverses pathologies font d’elle un élément clef de l’organisme vivant. En plus des études phylogénétiques et thérapeutiques effectuées au cours de cette période, mon principal travail a été de déterminer le rôle physio-pathologiques in vitro et in vivo d’un mécanisme de régulation post-traductionnelle de KCC2. Nous avons dans un premier temps montré que la déphosphorylation des Thréonines (Thr) 906 et 1007 in vitro était un puissant activateur de la protéine. En effet, nous avons montré que l’état de phosphorylation des sites dicté par la voie Wnk-Spak/OSR1 était impliqué dans le niveau d’expression en surface de la protéine. Par la suite, nous avons pu révéler que les souris porteuses d’une mutation phospho-mimétique Glu906 et Glu1007 “(KCC2E/+)” sur un allèle de la protéine, présentaient un décalage de l’émergence de la force inhibitrice GABAergique, une altération de la balance excitation/inhibition, ainsi qu’une augmentation de la susceptibilité à générer des crises. De plus, ces même souris développent des troubles de la communication chez le jeune ainsi qu’un défaut de sociabilité chez l’adulte, deux symptômes clefs des TSA. Ces résultats suggèrent que la régulation post-traductionnelle est un mécanisme physio-pathologique clef de la protéine. / From basic to clinical aspects, this thesis comprises different collaborative projects focusing on KCC2. KCC2 is a complex protein with multiple roles and implications in various pathologies that makes this molecule a key element of living organisms. In addition to the phylogenetic and therapeutic studies performed during this period, my main work has been to determine the in vitro and in vivo physio-pathological role of a KCC2 post-translational regulatory mechanism. We first showed in vitro that dephosphorylation of Threonines (Thr) 906 and 1007 was a potent activator of the protein. We have shown that phosphorylation state by the Wnk-Spak/OSR1 pathway of these two residues is implicated in the level surface expression of KCC2. Subsequently we have revealed that mice carrying in one allele a phospho-mimetic mutations Glu906 and Glu1007 “(KCC2E/+)”, preventing the developmental dephosphorylation at these sites, exhibited a delayed onset of fast synaptic GABA inhibition, a decreased ratio of spontaneous GABA- to glutamate-driven post-synaptic responses, and a significantly reduced flurothyl-induced seizure threshold. Furthermore, KCC2E/+ pups and adult mice, respectively, exhibited impaired communication and sociability, classic ASD phenotypes. These results suggest that post-translational regulation is a key physio-pathological mechanism of KCC2.
12

The potassium-chloride cotransporter KCC2 : a new therapeutic target for spasticity and neuropathic pain / Le co-transporteur potassium-chlorure KCC2 : une nouvelle cible thérapeutique contre la spasticité et la douleur neuropathique

Sanchez Brualla, Irene 26 November 2018 (has links)
La spasticité et la douleur neuropathique sont deux symptômes apparaissant fréquemment après une lésion médullaire. La spasticité est définie comme une augmentation du tonus musculaire qui provoque des contractures, tandis que la douleur neuropathique se caractérise par des sensations douloureuses survenant suite à une lésion du système nerveux.Ces deux symptômes résultent en partie d’une désinhibition des réseaux neuronaux sous-lésionnels lié à une diminution de l’expression du cotransporteur potassium-chlorure type 2 (KCC2). Pour être efficace,l’inhibition nécessite l’action de cette protéine qui extrait les ions chlorure des neurones.L’objectif de la présente thèse est donc d’identifier des médicaments capables d’activer KCC2 afin de restaurer l’inhibition dans le but de traiter la spasticité et la douleur neuropathique.Dans un premier temps, nos résultats ont montré que l’activation de récepteurs sérotoninergiques 5-HT2A avec le TCB-2 rétablit l’expression de KCC2 dans la corne dorsale après une lésion médullaire ou névrectomie. Or le TCB-2 réduit seulement la douleur neuropathique après la lésion spinale.Par la suite, nous avons identifié la prochlorperazine comme une molécule augmentant l’activité de KCC2. Si la prochlorperazine est efficace contre la spasticité, elle a néanmoins un effet plus modeste envers l’allodynie mécanique suite à une lésion médullaire.Enfin, nous avons démontré que la diminution de KCC2,ainsi que l’hyperexcitabilité des motoneurones suite à la lésion, dépendent de l’activation des calpaïnes.Cette thèse valide KCC2 comme une cible thérapeutique dans le traitement de la spasticité et la douleur neuropathique suite à une lésion médullaire. / Spasticity and neuropathic pain are two symptoms that arise frequently after a spinal cord injury. Spasticity is defined as an increase of the muscle tone contributing to cramps, whereas neuropathic pain consists of painful responses caused by a damaged nervous system. Both symptoms arise, in part, due to a loss of inhibition in the sublesional neural networks, linked to a downregulation of the expression of potassium-chloride cotransporter type 2 (KCC2). For inhibition to be efficient, the action of this protein, which extrudes chloride ions from neurons, is needed.The objective of this thesis is, therefore, to identify drugs capable of activating KCC2 to recover inhibition with the objective of treating spasticity and neuropathic pain.First, our results have proven that the activation of serotonin receptors 5-HT2A with TCB-2 restores KCC2 expression in the dorsal horn after a spinal cord or peripheral nerve injury. However, TCB-2 reduces neuropathic pain after a spinal cord injury exclusively.In the next stage of the work, we have identified prochlorperazine as an enhancer of KCC2 activity. Prochlorperazine is efficient against spasticity, although it only showed a modest reduction of mechanical hyperalgesia in animals with a spinal cord injury.Lastly, we have proven that KCC2 downregulation and motoneuron hyperexcitability after a spinal cord injury depend on the overactivation of calpains.This thesis validates KCC2 as a druggable target to treat spasticity and neuropathic pain after spinal cord injury.
13

Plasticités développementale et post-lésionnelle des co-transporteurs cation-chlorure KCC2 et NKCC1 dans la moelle épinière

Liabeuf, Sylvie 14 April 2011 (has links)
Le GABA et la glycine, principaux neurotransmetteurs inhibiteurs de la moelle épinière adulte, jouent un rôle clé dans la plasticité neuronale. Ils peuvent être excitateurs selon la concentration en chlorure du neurone cible. Celle-ci est principalement régulée par les co-transporteurs, KCC2, spécifique des neurones et NKCC1, ubiquitaire. Ces protéines font respectivement sortir et entrer les ions chlorure. Au cours du développement, l’expression de KCC2 augmente alors que celle de NKCC1 diminue, au moment où l’effet des potentiels post-synaptiques inhibiteurs sur le potentiel de membrane des neurones passe d’une dépolarisation à une hyperpolarisation. Une lésion médullaire à P0 bloque cette augmentation développementale. Cela est corrélé à une perte de fonction de KCC2, laquelle est restaurée après traitement avec un agoniste des récepteurs 5-HT2, indiquant que les voies descendantes issues du tronc cérébral, en particulier sérotoninergique, sont essentielles à la maturation du système inhibiteur. Une lésion chez l’adulte, induit une diminution de l’expression KCC2, en particulier à la surface des motoneurones et de ce fait, de la force de l’inhibition post-synaptique. Le BDNF est impliqué dans cette diminution mais son effet s’inverse 15 jours après la lésion, permettant le réacheminement de KCC2 à la surface des cellules. La phosphorylation des tyrosines et sérines serait impliquée dans l’adressage et la stabilisation de KCC2 dans la membrane plasmique alors que celle des thréonines jouerait un rôle dans son activation fonctionnelle. Ces résultats indiquent que KCC2 est une cible de choix pour restaurer l’inhibition neuronale dans la moelle épinière après traumatisme. / Le GABA et la glycine, principaux neurotransmetteurs inhibiteurs de la moelle épinière adulte, jouent un rôle clé dans la plasticité neuronale. Ils peuvent être excitateurs selon la concentration en chlorure du neurone cible. Celle-ci est principalement régulée par les co-transporteurs, KCC2, spécifique des neurones et NKCC1, ubiquitaire. Ces protéines font respectivement sortir et entrer les ions chlorure. Au cours du développement, l’expression de KCC2 augmente alors que celle de NKCC1 diminue, au moment où l’effet des potentiels post-synaptiques inhibiteurs sur le potentiel de membrane des neurones passe d’une dépolarisation à une hyperpolarisation. Une lésion médullaire à P0 bloque cette augmentation développementale. Cela est corrélé à une perte de fonction de KCC2, laquelle est restaurée après traitement avec un agoniste des récepteurs 5-HT2, indiquant que les voies descendantes issues du tronc cérébral, en particulier sérotoninergique, sont essentielles à la maturation du système inhibiteur. Une lésion chez l’adulte, induit une diminution de l’expression KCC2, en particulier à la surface des motoneurones et de ce fait, de la force de l’inhibition post-synaptique. Le BDNF est impliqué dans cette diminution mais son effet s’inverse 15 jours après la lésion, permettant le réacheminement de KCC2 à la surface des cellules. La phosphorylation des tyrosines et sérines serait impliquée dans l’adressage et la stabilisation de KCC2 dans la membrane plasmique alors que celle des thréonines jouerait un rôle dans son activation fonctionnelle. Ces résultats indiquent que KCC2 est une cible de choix pour restaurer l’inhibition neuronale dans la moelle épinière après traumatisme.
14

Rôle du transporteur neuronal Potassium/Chlore KCC2 dans la plasticité des synapses glutamatergiques / Involvement of the neuronal K/Cl cotransporter KCC2 in the plasticity of glutamatergic synapses

Chevy, Quentin 16 January 2015 (has links)
L'efficacité de la transmission synaptique GABAergique est influencée par la concentration intracellulaire en ions chlorure. Dans les neurones matures, l'extrusion de ces ions par le transporteur neuronal potassium chlore de type 2 (KCC2) permet l'influx d'ions chlorure lors de l'activation des récepteurs du GABA de type A. Néanmoins, KCC2 est aussi enrichi à proximité des synapses excitatrices portées par les épines dendritiques qui correspondent à des protrusions dendritiques enrichies en actine. Alors que l'effet d'une suppression de KCC2 sur l'homéostasie des ions chlorure et la transmission GABAergique est largement documenté, peu de choses sont connues sur l'impact qu'une telle suppression peut avoir sur la transmission glutamatergique. Lors de ma thèse, j'ai exploré le rôle de KCC2 dans la potentialisation à long terme (LTP) de la transmission glutamatergique à l'origine des phénomènes d'apprentissage et de mémorisation. Ce travail a révélé que la suppression de KCC2 compromet les modifications fonctionnelles et structurales sous-tendant la LTP. Cet effet est associé à une inhibition de la cofilin, protéine responsable de la dépolymérisation de l'actine, qui corrèle avec une augmentation de la quantité d'actine filamenteuse dans les épines dendritiques. En empêchant l'inhibition de la cofilin liée à l'absence de KCC2, il m'a alors été possible de restaurer la LTP suggérant que KCC2 pourrait influencer cette forme de plasticité en régulant la dynamique de polymérisation du cytosquelette d'actine. Mes résultats démontrent que la fonction de KCC2 va au-delà du contrôle de l'homéostasie des ions chlorure et influence les mécanismes de plasticité de la synapse excitatrice. / The polarity and efficacy of GABAergic synaptic transmission are both influenced by the intra-neuronal chloride concentration. In mature neurons, chloride extrusion through the neuronal K/Cl cotransporter KCC2 allows an inhibitory influx of chloride upon activation of GABAA receptors. Nevertheless, KCC2 is enriched in the vicinity of excitatory synapses within the dendritic spines that are actin-rich protrusions emerging from dendritic shafts. While it has become clear that KCC2 suppression alters chloride homeostasis and GABA signaling, little is known on its impact on glutamatergic transmission. In the laboratory, we have previously demonstrated that KCC2 suppression in mature neurons leads to decreased glutamatergic transmission efficacy through an ion-transport independent function of KCC2. During my PhD, I have explored how KCC2 may also impact LTP of glutamatergic synapses. My work reveals that KCC2 suppression compromises both functional and structural LTP at these synapses. This effect is associated with inhibition of the actin-severing protein cofilin and enhanced mobilization of F-actin in dendritic spines. Since LTP can be rescued by preventing cofilin inhibition upon KCC2 suppression, I suggest KCC2 might influence LTP through altered actin cytoskeleton dynamics. My results demonstrate that KCC2 function extends beyond the mere control of neuronal chloride homoeostasis and suggest regulation of KCC2 membrane stability may act as a metaplastic switch to gate long term plasticity at excitatory synapses in cortical neurons.
15

La double personnalité de l'inhibition dans la moelle épinière

Bos, Rémi 21 December 2012 (has links)
Les travaux entrepris au cours de cette thèse ont eu pour but d'étudier la modulation de la transmission synaptique inhibitrice au niveau des réseaux moteurs spinaux, à la fois au cours du développement et après lésion de la moelle épinière. Le nouveau-né présente des activités motrices spontanées qui jouent un rôle important dans la maturation des muscles et des réseaux de neurones de la moelle épinière. Dans une première étude, nous avons identifié l'un des mécanismes impliqués dans la genèse de ces activités chez le rat nouveau-né in vitro. Nous avons démontré que l'activation des récepteurs GABAᴀ au niveau des terminales d'afférences primaires joue un rôle majeur dans le déclenchement et la propagation de ces activités spontanées. Dans une deuxième étude, nous avons testé la robustesse des dépolarisations de nature GABAergique enregistrées in vitro, c'est-à-dire leur dépendance vis-à-vis des paramètres du milieu de perfusion. Nous avons démontré que l'action dépolarisante des neurotransmetteurs GABA/glycine au niveau des motoneurones et celle du GABA au niveau des terminales d'afférences primaires ne sont pas dues à une fourniture énergétique insuffisante. La dernière étude a été consacrée à la modulation de la transmission synaptique inhibitrice après lésion de la moelle épinière. Nous avons montré que l'activation des récepteurs 5-HT2 (R5-HT2), particulièrement celle de l'isoforme 5-HT2ᴀ, renforce le poids synaptique inhibiteur via une hyperpolarisation du potentiel d'équilibre des ions chlorure (ECl) et une augmentation d'expression de KCC2 au niveau de la membrane des motoneurones. / The aim of this thesis was to explore the modulation of the inhibitory synaptic transmission within the spinal motor networks, both during development and after SCI. Spontaneous movements are an ubiquitous feature of fetal and infant behavior. They provide signals that are important for the development of muscles and the assembly of neuronal networks in the spinal cord. In a first study, we characterized one of the mechanisms underlying spontaneous motor behaviors in the in vitro spinal cord preparation isolated from neonatal rats. We demonstrated that the GABA is playing a key role in promoting spontaneous activity through primary afferent depolarizations which reach firing threshold. In the second part of my thesis, we tested the robustness of the in vitro GABAergic depolarizations and their dependence on the aCSF parameters. We demonstrated that during development the depolarizing actions of GABA/glycine on motoneurons and GABA on primary afferent terminals are not due to inadequate energy supply. In the last part of my thesis, we focused on the modulation of the inhibitory synaptic transmission following SCI. We demonstrated that activation of the 5-HT2 receptors, particularly the 5-HT2ᴀ subtype, strengthens inhibitory synaptic transmission to spinal motoneurons by hyperpolarizing the reversal potential of Cl- ions (ECl) and by increasing the cell-membrane expression of KCC2. This phenomenon reduces spasticity after SCI in rats. Upregulation of KCC2 function by targeting 5-HT2ᴀ receptors therefore opens new therapeutic strategies for the treatment of spasticity following SCI.
16

Dysplasies corticales focales de l'enfant : localisation par l'imagerie de perfusion in vivo et caractérisation électrophysiologique des activités épileptiques in vitro / Focal cortical dysplasia in children : in vivo localization with perfusion imaging, and in vitro characterization of epileptic activities

Blauwblomme, Thomas 04 April 2017 (has links)
Les dysplasies corticales (FCD) sont une cause fréquente d’épilepsie lésionnelle requérant un traitement chirurgical, caractérisées par l’association de troubles de l’architecture corticale et la présence de cellules neuronales et/ou gliales anormales Les FCD restent parfois difficiles à identifier / localiser et la physiopathologie des activités épileptiques qu’elles produisent reste mal connue. L’objectif de ce travail est d’optimiser la localisation anatomique et fonctionnelle des FCD chez l’enfant et d’étudier leur épileptogénicité par une double approche, in vivo en imagerie de perfusion IRM-ASL (Arterial Spin Labeling), et in vitro par enregistrements de tissus humains post-opératoires sur matrice de micro électrodes. L’intérêt de l’étude de ces dysplasies chez l’enfant est majeure à un âge où la récurrence des crises n’a pas encore modifié le réseau … Tout d’abord, nous avons montré une hypoperfusion focale des dysplasies corticales focales de type II colocalisée à l’hypo métabolisme en 18FDG-PET scan et au défect histologique. Nous avons développé une méthode d’analyse statistique du signal ASL permettant l’intégration des données objectives de l’imagerie dans une approche multimodale des anomalies interictales associant ASL et IRM fonctionnelle-EEG. Ensuite, nous avons exploré in vitro des tranches de cortex humain dysplasique post-opératoire. La présence d’activités épileptiques interictales spontanées témoignait de la persistance des caractéristiques épileptogéniques des FCD, variables selon les sous types histologiques. L’étude de la signalisation GABAergique et de la régulation du chlore a montré que le co transporteur du chlore NKCC1 chargeait excessivement les neurones en chlore alors que son concurrent KCC2, extrudant normalement ces anions, était down-régulé. La dérégulation neuronale du chlore qui en résulte est à l’origine d’effets paradoxalement dépolarisants du GABA, rendant compte non pas d’une perte d’inhibition GABAergique mais de son implication active dans les processus épileptiques. Enfin, nous avons contribué à mettre en évidence le rôle des hémicanaux Pannexines1, et de la transmission purinergique dans l’initiation et la maintenance des activités ictales, ouvrant une nouvelle piste thérapeutique chez les patients présentant ces épilepsies pharmaco résistantes. / Focal cortical Dysplasias (FCD) are a frequent etiology of lesional epilepsy, requiring surgical treatment. They are defined by abnormalities of cortical architecture intermixed with the presence of abnormal neuronal or glial cells. Imaging FCD remains challenging, both to detect and map the lesion, and the pathophysiology of the epileptic discharges they produce is incompletely understood. The aim of this PhD is to improve in vivo FCD mapping in children with perfusion MRI, and to study in vitro their epileptogenicity with human postoperative cortical slices electrophysiological recordings on micro electrode arrays. First, we showed with ASL MRI (Arterial Spin Labeling) a focal hypoperfusion in type II FCD, colocalized with 18FDG-PET hypo metabolism and histological defects. We developed a statistical analysis of ASL under SPM integrated in a multimodal approach of FCD with EEG-fMRI and ASL-MRI. Second, we studied in vitro slices of human postoperative dysplastic cortex. We could record reliable spontaneous inter ictal discharges, specific of the histological subtype, showing that tissues retain epileptogenic features. We focused our study on GABAergic signaling and neuronal chloride regulation. We have identified an excessive chloride load in neurons by the co transporter NKCC1 whereas chloride extrusion was deficient because of KCC2 down regulation. The consequent chloride dysregulation resulted in paradoxical GABAergic depolarization, responsible for a loss of inhibitory processes but also a shift to excitatory effects of GABAergic signals. Third, we also contributed to a study on Pannexin hemichannels, revealing that Pannexin1 channels sustain initiation and maintenance of ictal activity though purinergic neurotransmission in human cortical slices, supporting new anti epileptic targets in human pharmaco resistant epilepsies.
17

La spasticité après lésion de la moelle épinière : Identification des mécanismes moléculaires et ioniques sous-jacents / Spasticity after spinal cord injury : ionic and molecular mechanisms implicated

Plantier, Vanessa 14 December 2015 (has links)
La spasticité est l’une des nombreuses complications motrices qui peuvent apparaître après une lésion de la moelle épinière. Elle est présente dans 75 % des patients médullo-lésés et se caractérise par une hypertonie musculaire en réponse à un réflexe d’étirement. Les traitements actuels, qui ciblent les symptômes et non les causes de la spasticité, sont peu efficaces. Bien que les mécanismes neurologiques qui sous-tendent la spasticité soient complexes et restent en grande partie méconnus, un certain consensus se dégage sur le fait qu’elle est associée à une hyperexcitabilité intrinsèque des motoneurones et à une levée de l’inhibition des réflexes spinaux. L’hyperexcitabilité motoneuronale se manifeste par une décharge soutenue de potentiels de plateau et résulte en partie d’une augmentation des courants entrants persistants sodiques (INaP). La désinhibition découle, en partie, d’une baisse de l’expression des cotransporteurs potassium-chlorure de type 2 (KCC2) à la membrane des motoneurones, modifiant ainsi le gradient électrochimique des ions Cl- et donnant un caractère excitateur aux deux principaux neurotransmetteurs inhibiteurs que sont le GABA et la glycine. Néanmoins, les mécanismes à l’origine des dérégulations du courant INaP et des co-transporteurs KCC2 ne sont toujours pas élucidés. / Spasticity is commonly caused by several pathologies and specifically after a spinal cord injury (SCI). Spasticity is usually associated with hypertonia, clonus, muscle spasm and pain. The present thesis aims to identify the upstream mechanism in the pathophysiology of spasticity Calpain, a calcium-activated cysteine protease, has been shown to participate in the development of the inflammatory processes after SCI. Of special interest, some determinants governing the inactivation of sodium (Na+) channels are sensitive to proteases and their proteolytic cleavage prevents inactivation of Na+ channels. As a result, INaP is strongly increased. It is worth mentioning that the C-terminal domain of KCC2 is also sensitive to proteases which alter KCC2 ability to extrude Cl- ions. Among the different proteases, calpains are able to truncate both Na+ channels and KCC2 transporters. This led us to consider the exciting possibility that a proteolytic cleavage of both Na+ channels and KCC2 by calpains could compose an upstream inflammatory mechanism contributing to the development of spasticity after SCI. My thesis demonstrates that the cleavage of Na+ channels and KCC2 by calpain after SCI, is responsible for the upregulation of INaP and disinhibition of motoneurons, that both act synergistically to generate spasticity. Calpain inhibition by MDL28170 reduced the cleavage of both Na+channels and KCC2 associated with a respective downregulation of INaP, hyperpolarizing shift of the EIPSP, and an alleviation of spasticity. The thesis represents a significant breakthrough by opening novel perspectives to develop therapies.
18

Caractérisation fonctionnelle chez le poisson zèbre de l'isoforme protéique WNK1/HSN2 mutée dans la neuropathie héréditaire sensitive et autonome de type 2

Bercier, Valérie 11 1900 (has links)
La neuropathie humaine sensitive et autonome de type 2 (NHSA 2) est une pathologie héréditaire rare caractérisée par une apparition précoce des symptômes et une absence d’affectation motrice. Cette pathologie entraîne la perte de perception de la douleur, de la chaleur et du froid ainsi que de la pression (toucher) dans les membres supérieurs et inférieurs et est due à des mutations autosomales récessives confinées à l’exon HSN2 de la protéine kinase à sérine/thréonine WNK1 (with-no-lysine protein kinase 1). Cet exon spécifique permettrait de conférer une spécificité au système nerveux à l’isoforme protéique WNK1/HSN2. La kinase WNK1 est étudiée en détails, en particulier au niveau du rein, mais son rôle au sein du système nerveux demeure inconnu. Considérant le début précoce de la neuropathie et le manque d’innervation sensorielle révélé par des biopsies chez les patients NHSA2, notre hypothèse de recherche est que les mutations tronquantes menant à la NHSA de type 2 causent une perte de fonction de l’isoforme WNK1/HSN2 spécifique au système nerveux entraînant un défaut dans le développement du système nerveux sensoriel périphérique. Chez l’embryon du poisson zèbre, WNK1/HSN2 est exprimé au niveau des neuromastes de la ligne latérale postérieure, un système mécanosensoriel périphérique. Nous avons obtenu des embryons knockdown pour WNK1/HSN2 par usage d’oligonucléotides morpholino antisens (AMO). Nos trois approches AMO ont révélé des embryons présentant des défauts d’établissement au niveau de la ligne latérale postérieure. Afin de déterminer la voie pathogène impliquant l’isoforme WNK1/HSN2, nous nous sommes intéressés à l’interaction rapportée entre la kinase WNK1 et le co-transporteur neuronal KCC2. Ce dernier est une cible de phosphorylation de WNK1 et son rôle dans la promotion de la neurogenèse est bien connu. Nous avons détecté l’expression de KCC2 au niveau de neuromastes de la ligne latérale postérieure et observé une expression accrue de KCC2 chez les embryons knockdown pour WNK1/HSN2 à l’aide de RT-PCR semi-quantitative. De plus, une sur-expression d’ARN humain de KCC2 chez des embryons a produit des défauts dans la ligne latérale postérieure, phénocopiant le knockdown de WNK1/HSN2. Ces résultats furent validés par un double knockdown, produisant des embryons n’exprimant ni KCC2, ni WNK1/HSN2, dont le phénotype fut atténué. Ces résultats nous mènent à suggérer une voie de signalisation où WNK1/HSN2 est en amont de KCC2, régulant son activation, et possiblement son expression. Nous proposons donc que la perte de fonction de l’isoforme spécifique cause un débalancement dans les niveaux de KCC2 activée, menant à une prolifération et une différenciation réduites des progéniteurs neuronaux du système nerveux périphérique. Les défauts associés à la NHSA de type 2 seraient donc de nature développementale et non neurodégénérative. / Human sensory and autonomic neuropathy type 2 (HSNA2) is a rare human hereditary pathology characterized by an early onset severe sensory loss (for all modalities) in the distal limbs. It is due to autosomal recessive mutations confined to exon HSN2 of the WNK1 (with-no-lysine protein kinase 1) serine-threonine kinase; the specific exon confers nervous system specificity to target isoform WNK1/HSN2. While this kinase is widely studied in the kidneys, little is known about its role in the nervous system. Due to its role in HSAN type 2, we hypothesized that the truncating mutations present in the HSN2 exon lead to a loss-of-function of the WNK1 kinase, impairing development of the peripheral sensory system. In order to investigate the mechanisms by which the lack of the WNK1/HSN2 isoform acts to cause HSAN type 2, we examined its expression pattern in our zebrafish model and observed strong expression in neuromasts of the peripheral sensory lateral line system. We then knocked down the HSN2 exon in zebrafish embryos using antisense morpholino oligonucleotides. Our three approaches to knockdown the WNK1/HSN2 isoform led to embryos with a defective lateral line. In order to establish a pathogenic pathway involving the WNK1/HSN2 isoform, we investigated the reported interaction between the WNK1 kinase and neuronal potassium chloride co-transporter KCC2. This transporter is a target of WNK1 phosphorylation and also has a known role in promoting neurogenesis. We have also showed its expression in mature neuromasts of the posterior lateral line, and observed an increased expression of KCC2 in WNK1/HSN2 knockdown embryos by semi-quantitative RT-PCR, lending credence to our interaction hypothesis. Furthermore, overexpression of human KCC2 RNA in embryos led to an impaired mechanosensory lateral line system, phenocopying the WNK1/HSN2 knockdown. We then validated these results by obtaining double knockdown embryos, both for WNK1/HSN2 and KCC2, which alleviated the lateral line defect phenotype. These results led us to suggest a pathway in which WNK1/HSN2 is upstream of the KCC2 co-transporter. WNK1 is believed to regulate the level of activation, and possibly level of expression, of KCC2 and we therefore hypothesize that the loss-of-function of the specific isoform causes an imbalance in the levels of activated KCC2. This would then lead to decreased progenitor proliferation and hindered differentiation of neurons, causing the defects associated with HSAN type 2.
19

Caractérisation fonctionnelle chez le poisson zèbre de l'isoforme protéique WNK1/HSN2 mutée dans la neuropathie héréditaire sensitive et autonome de type 2

Bercier, Valérie 11 1900 (has links)
La neuropathie humaine sensitive et autonome de type 2 (NHSA 2) est une pathologie héréditaire rare caractérisée par une apparition précoce des symptômes et une absence d’affectation motrice. Cette pathologie entraîne la perte de perception de la douleur, de la chaleur et du froid ainsi que de la pression (toucher) dans les membres supérieurs et inférieurs et est due à des mutations autosomales récessives confinées à l’exon HSN2 de la protéine kinase à sérine/thréonine WNK1 (with-no-lysine protein kinase 1). Cet exon spécifique permettrait de conférer une spécificité au système nerveux à l’isoforme protéique WNK1/HSN2. La kinase WNK1 est étudiée en détails, en particulier au niveau du rein, mais son rôle au sein du système nerveux demeure inconnu. Considérant le début précoce de la neuropathie et le manque d’innervation sensorielle révélé par des biopsies chez les patients NHSA2, notre hypothèse de recherche est que les mutations tronquantes menant à la NHSA de type 2 causent une perte de fonction de l’isoforme WNK1/HSN2 spécifique au système nerveux entraînant un défaut dans le développement du système nerveux sensoriel périphérique. Chez l’embryon du poisson zèbre, WNK1/HSN2 est exprimé au niveau des neuromastes de la ligne latérale postérieure, un système mécanosensoriel périphérique. Nous avons obtenu des embryons knockdown pour WNK1/HSN2 par usage d’oligonucléotides morpholino antisens (AMO). Nos trois approches AMO ont révélé des embryons présentant des défauts d’établissement au niveau de la ligne latérale postérieure. Afin de déterminer la voie pathogène impliquant l’isoforme WNK1/HSN2, nous nous sommes intéressés à l’interaction rapportée entre la kinase WNK1 et le co-transporteur neuronal KCC2. Ce dernier est une cible de phosphorylation de WNK1 et son rôle dans la promotion de la neurogenèse est bien connu. Nous avons détecté l’expression de KCC2 au niveau de neuromastes de la ligne latérale postérieure et observé une expression accrue de KCC2 chez les embryons knockdown pour WNK1/HSN2 à l’aide de RT-PCR semi-quantitative. De plus, une sur-expression d’ARN humain de KCC2 chez des embryons a produit des défauts dans la ligne latérale postérieure, phénocopiant le knockdown de WNK1/HSN2. Ces résultats furent validés par un double knockdown, produisant des embryons n’exprimant ni KCC2, ni WNK1/HSN2, dont le phénotype fut atténué. Ces résultats nous mènent à suggérer une voie de signalisation où WNK1/HSN2 est en amont de KCC2, régulant son activation, et possiblement son expression. Nous proposons donc que la perte de fonction de l’isoforme spécifique cause un débalancement dans les niveaux de KCC2 activée, menant à une prolifération et une différenciation réduites des progéniteurs neuronaux du système nerveux périphérique. Les défauts associés à la NHSA de type 2 seraient donc de nature développementale et non neurodégénérative. / Human sensory and autonomic neuropathy type 2 (HSNA2) is a rare human hereditary pathology characterized by an early onset severe sensory loss (for all modalities) in the distal limbs. It is due to autosomal recessive mutations confined to exon HSN2 of the WNK1 (with-no-lysine protein kinase 1) serine-threonine kinase; the specific exon confers nervous system specificity to target isoform WNK1/HSN2. While this kinase is widely studied in the kidneys, little is known about its role in the nervous system. Due to its role in HSAN type 2, we hypothesized that the truncating mutations present in the HSN2 exon lead to a loss-of-function of the WNK1 kinase, impairing development of the peripheral sensory system. In order to investigate the mechanisms by which the lack of the WNK1/HSN2 isoform acts to cause HSAN type 2, we examined its expression pattern in our zebrafish model and observed strong expression in neuromasts of the peripheral sensory lateral line system. We then knocked down the HSN2 exon in zebrafish embryos using antisense morpholino oligonucleotides. Our three approaches to knockdown the WNK1/HSN2 isoform led to embryos with a defective lateral line. In order to establish a pathogenic pathway involving the WNK1/HSN2 isoform, we investigated the reported interaction between the WNK1 kinase and neuronal potassium chloride co-transporter KCC2. This transporter is a target of WNK1 phosphorylation and also has a known role in promoting neurogenesis. We have also showed its expression in mature neuromasts of the posterior lateral line, and observed an increased expression of KCC2 in WNK1/HSN2 knockdown embryos by semi-quantitative RT-PCR, lending credence to our interaction hypothesis. Furthermore, overexpression of human KCC2 RNA in embryos led to an impaired mechanosensory lateral line system, phenocopying the WNK1/HSN2 knockdown. We then validated these results by obtaining double knockdown embryos, both for WNK1/HSN2 and KCC2, which alleviated the lateral line defect phenotype. These results led us to suggest a pathway in which WNK1/HSN2 is upstream of the KCC2 co-transporter. WNK1 is believed to regulate the level of activation, and possibly level of expression, of KCC2 and we therefore hypothesize that the loss-of-function of the specific isoform causes an imbalance in the levels of activated KCC2. This would then lead to decreased progenitor proliferation and hindered differentiation of neurons, causing the defects associated with HSAN type 2.
20

The Effects of Alcohol on BDNF and CD5 Dependent Pathways

Payne, Andrew Jordan 07 August 2020 (has links)
Alcohol represents the third leading cause of preventable death in the United States. Yet, despite its prevalent role in impeding human health, there is much to understand about how it elicits its effects on the body and how the body and brain change when an individual becomes physiologically dependent upon alcohol. The work presented herein represents an effort to elucidate the acute and chronic effects of alcohol on the nervous system. We investigate two specific protein pathways and their role in alcohol's effects on the body. The first begins with brain-derived neurotrophic factor (BDNF), which acts on TrkB, and ends with KCC2. We demonstrate that BDNF expression is increased in the VTA during withdrawal from chronic but not acute alcohol exposure and that this increase persists for at least seven days. Concomitantly, we demonstrate that the activation of GABAA channels on produces less inhibition of VTA GABA neurons in mice treated with chronic intermittent ethanol exposure than in alcohol naïve mice. This effect likewise persisted for at least seven days. We illustrate that BDNF has no apparent direct effect on VTA GABA neuron firing rate. The second pathway begins with the T cell marker CD5 and ends with the anti-inflammatory cytokine, IL-10. We demonstrate that in a genetic CD5 knockout (CD5 KO) mouse model both alcohol consumption as well as the sedative properties of alcohol are reduced. Since CD+ B cells secrete more IL-10 than CD5- B cells, we also demonstrate the effects of IL-10 on VTA neurons. We show that IL-10 has direct effects on VTA dopamine (DA) neurons by increasing their firing activity. We relatedly illustrate that IL-10 produces an increase in DA release in the nucleus accumbens (NAc). However, contrary to our hypotheses, we show that IL-10 produces conditioned place aversion rather than conditioned place preference in a place conditioning paradigm, suggesting that IL-10 might mediate pain-induced secretions of DA. Collectively, these results suggest two potential therapeutic targets to reduce alcohol consumption that need further validation. They also suggest a novel mechanism for the sedative effects of alcohol at moderate and high doses.

Page generated in 0.0671 seconds