• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 74
  • 35
  • 7
  • 6
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 169
  • 58
  • 45
  • 41
  • 26
  • 26
  • 24
  • 23
  • 22
  • 21
  • 19
  • 18
  • 17
  • 16
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

New Perspectives on Solar Wind-Magnetosphere Coupling

Sundberg, Torbjörn January 2011 (has links)
The streaming plasma in the solar wind is a never ending source of energy, plasma, and momentum for planetary magnetospheres, and it continuously drives large-scale plasma convection systems in our magnetosphere and over our polar ionosphere. This coupling between the solar wind and the magnetosphere is primarily explained by two different processes: magnetic reconnection at high latitudes, which interconnects the interplanetary magnetic field (IMF) with the planetary dipole field, and low-latitude dynamos such as viscous interaction, where the streaming plasma in the solar wind may trigger waves and instabilities at the flanks of the magnetosphere, and thereby allow solar wind plasma to enter into the system.This work aims to further determine the nature and properties of these driving dynamos, both by statistical studies of their relative importance for ionospheric convection at Earth, and by assessment and analysis of the Kelvin-Helmholtz instability at Mercury, utilizing data from the MESSENGER spacecraft's first and third flyby of the planet.It is shown that the presence of the low-latitude dynamos is primarily dependent on the IMF direction: the driving is close to non-existent when the IMF is southward, but increases to the order of a third of the total ionospheric driving when the IMF turns northward (here, the magnitude of the driving is also shown to be dependent on the viscous parameters in the solar wind). The work also discusses the saturation of the reconnection generated potential, and shows that the terrestrial response follows a non-linear behavior for strong solar wind driving both when the IMF is southward and northward.Comparative studies of different magnetospheres provide an excellent path for increasing our understanding of space-related phenomena. Here, study of the Kelvin-Helmholtz instability at Mercury allows us to investigate how the different parameters of the system affect the mass, energy, and momentum transfer at the flanks of the magnetosphere. The large ion gyro radius expected is shown to develop a dawn-dusk asymmetry in the growth rates, with the dawn side as the more unstable of the two. This effect should be particularly visible when the planet is close to perihelion. Mercury's smaller scale size combined with the relatively high spacecraft velocity is also shown to provide excellent opportunities for studying the spatial structure of the waves, and a vortex reconstruction that can explain all the large-scale variations in the Kelvin-Helmholtz waves observed during MESSENGER's third Mercury flyby is presented. / QC 20110405
12

Effect of Initial Conditions on the Compound Shear- and Buoyancy-driven Mixing

Placette, Beth 2012 August 1900 (has links)
The effect of initial conditions in combined shear- and buoyancy- driven mixing was investigated through the use of an implicit large eddy simulation code under active development at Los Alamos National Laboratory and Texas A&M University. Alterations were done over several months both at Los Alamos National Laboratory and at the Texas A&M University campus, and include a transition from tilted rig to convective channel arrangement, introduction of an inertial reference frame, alteration of boundary conditions, etc. This work resulted in the development of a numerical framework with the capability to model various shear and Atwood number arrangements such as those seen in an inertial confinement fusion environment. In order to validate the code, it was compared to three published experiments, one with Atwood number 0.46 (White et al. 2010), one with high Atwood number 0.6 (Banerjee et al. 2010), and one with very low Atwood number 0.032 (Akula et al. 2012). Upon validating the code, pure Rayleigh-Taylor and pure Kelvin-Helmholtz instabilities were modeled along with five intermediate cases of increasing shear and constant density gradient. Plots of mixing width, Richardson number, growth parameter, and molecular mixing were compared in order to determine at what level of shear the minimum amount of mixing occurs. The results of height gradient and Reynolds number were to previous experiments and theory. The least amount of molecular mixing at the centerline was found to be when the system had a low Atwood number (0.032) and a multimode initial interface perturbation. While the increase in modes of the interface perturbation did not result in a significant change in the growth parameter, the level of molecular mixing at the centerline substantially decreased. As shear was increased in the system, the mixing width and molecular mixing subsequently increased. For this reason, the shear in the system should be eliminated, or at least minimized, if at possible so as to prevent any additional amalgamation in the system. Analysis of the Reynolds number revealed that with an increase in velocity difference between the fluid layers, the value consequently increased. This trend matches with theoretical results as the value is a function of the mixing width and velocity, thus further validating the code. Analysis of the transitional Richardson number revealed that it had a smaller value in the computational case over the experiment, but this fact can be attributed the difference in mixing width between the two methods. The development of the numerical framework with the capability to model various shear and Atwood number arrangements offers the platform for future study of hydrodynamic instabilities.
13

Influence of ammonia and water sorption on the chemical and electrochemical properties of polyacrylic acid and its derivates

Hörter, Melanie, January 2008 (has links)
Tübingen, Univ., Diss., 2008.
14

Singularity analysis by summing power series

Khan, Md Abdul Hakim January 2001 (has links)
No description available.
15

Development Of Atomic Force Microscopy System And Kelvin Probe Microscopy System For Use In Semiconductor Nanocrystal Characterization

Bostanci, Umut 01 August 2007 (has links) (PDF)
Atomic Force Microscopy (AFM) and Kelvin Probe Microscopy (KPM) are two surface characterization methods suitable for semiconductor nanocrystal applications. In this thesis work, an AFM system with KPM capability was developed and implemented. It was observed that, the effect of electrostatic interaction of the probe cantilever with the sample can be significantly reduced by using higher order resonant modes for Kelvin force detection. Germanium nanocrystals were grown on silicon substrate using different growth conditions. Both characterization methods were applied to the nanocrystal samples. Variation of nanocrystal sizes with varying annealing temperature were observed. Kelvin spectroscopy measurements made on nanocrystal samples using the KPM apparatus displayed charging effects.
16

Kelvin-Helmholtz instability at the magnetopause : theory and observations / Instabilité de Kelvin-Hemholtz à la magnétopause : théorie et observations

Rossi, Claudia 29 April 2015 (has links)
L'interaction entre le vent solaire (VS) et la magnétosphère (MSP) terrestre se fait par l'intermédiaire de la magnétopause (MP). Le VS éjecté du Soleil, voyage transportant avec lui le champ magnétique interplanétaire (CMI). Ce dernier interagit avec le champ géomagnétique provoquant le phénomène de reconnexion magnétique (RM). La RM permet l'entrée d'une grande quantité de particules du VS dans la MSP. Si le CMI est dirigé vers le nord, la RM peut avoir lieu à haute latitude, mais n'est pas assez efficace pour justifier la quantité de plasma typique du VS, observée par les satellites à l'intérieur de la MSP. En outre, dans les cas où le CMI est dirigé vers le nord, la formation d'une couche de mélange est observée à basse latitude. Les tourbillons de Kelvin-Hemholtz (KH) fournissent un mécanisme efficace pour la formation d'une couche de mélange à la MP. Les simulations numériques montrent que l'évolution temporelle de l'instabilité de KH dépend fortement des profils initiales à grande échelle. La comparaison des données spatiales et des simulations numériques est donc d'une importance fondamentale dans ce contexte. Les principaux résultats obtenus au cours de ce travail sont la caractérisation de la turbulence à l'intérieur des tourbillons de KH, ainsi que des événements de RM à petite échelle; la sélection d'un événement où nous avons une combinaison des données des satellites avant et après KHI se développe; l'observation d'un décalage entre les profils de densité et de vitesse et constat que ce décalage initial entraîne une évolution différente de la simulations numériques qui est en accord avec les observations satellites. / Solar Wind (SW) and the Earth's magnetosphere interaction is mediated by the magnetopause. The SW carries with it the Interplanetary Magnetic Field (IMF) which interacts with northwards geomagnetic field lines causing magnetic reconnection (MR) events that make SW particles to be tranferred into the Earth's magnetosphere. If the IMF is directed northward, MR takes place at high latitude, but it is not efficient enough to justify the amount of SW plasma observed by satellites inside the magnetosphere. During northwards conditions one observe the formation of a wide boundary layer (BL) at the low latitude. This BL is thought to be driven by the the Kelvin-Helmholtz instability (KHI) , originating from the velocity shear between SW and the almost static near-Earth plasma. Numerical simulations (NS) have shown that the long time evolution of the KHI depends strongly on the initial large scale field profiles used as initial conditions. In order to make a further step towards the comprehension of this complex system, it is imperative to combine satellite data and NS. The idea here is to initialize NS by using in-situ observations of the main field profiles since only a correct initialization can reproduce the correct dynamics. The main results achieved in this work are: characterize the turbulence inside KH vortices and the small scale MR; select one event where there is a combination of a satellite measurements before and after KH develops, find that density and velocity profiles are shifted by a distance comparable to their shear lengths and that this initial shift cause a different evolution of the KHI leading to a final state in agreement with satellites observations.
17

Identification des symétries matérielles de matériaux anisotropes

François, Marc 19 December 1995 (has links) (PDF)
La mesure du tenseur d'élasticité complet d'un matériau anisotrope élastique linéaire présente des difficultés expérimentales lorsque les éventuelles symétries ne sont pas connues à l'avance. Aux mesures mécaniques dont la complexité est montrée, nous préférons une campagne d'essais ultrasonores. Ceux-ci sont effectués par la méthode de contact direct sur une éprouvette polyhédrale à 26 facettes. Le tenseur d'élasticité est obtenu par la minimisation d'une fonctionnelle basée sur l'écart entre deux expressions du tenseur acoustique (de Christoffel). Afin de révéler les symétries exactes ou non du tenseur obtenu exprimé dans le repère de l'éprouvette, des figures de pôles montrent la corrélation du tenseur avec son symétrique par rapport à tout plan de l'espace. Ces cartes sont révélatrices de tous les niveaux de symétries possibles. Un opérateur intrinsèque détermine le tenseur possédant la symétrie choisie, le plus proche du tenseur expérimentalement obtenu. L'écart entre les deux tenseurs et la classification des niveaux de symétrie permettent de faire le choix de la symétrie correspondant le mieux au matériau étudié. Enfin, l'étude de l'anisotropie induite par l'endommagement est abordée à l'aide de la décomposition de Kelvin.
18

A Novel Sensor to Monitor Surface Charge Interactions: The Optically Stimulated Contact Potential Difference Probe

Mess, Francis McCarthy 17 February 2006 (has links)
This study addresses the development of a sensor to monitor chemical adsorption and charge transfer processes on a surface using a contact potential difference probe (CPD). The current investigation is an outgrowth of ongoing research on non-vibrating CPD probes (nvCPD) which led to the recent development of a novel measurement technique utilizing optical stimulation: optically stimulated CPD (osCPD). Primary outcomes of this thesis are the theoretical modeling, fabrication and demonstration of a functional osCPD sensor. The research also involved significant engineering and experimentation in the design, development, and application of this sensor to oil condition monitoring. This technique measures dielectric and chemical properties of a fluid at the interface between the fluid and a semiconductor substrate. Chopped visible light is used to stimulate the rear surface of a semiconductor substrate, and a CPD probe measures the work function response of the semiconductor on the front surface of the substrate. The work function response is influenced by the nature and quantity of adsorbed species on the top surface, allowing the probe to detect changes in chemical composition at the substrate/fluid interface. An analytical model is developed that relates the osCPD sensor output signal to the chemical and dielectric properties of the oil sample, as well as to the geometry, composition, and control inputs of the silicon substrate and test fixture. In this investigation, the osCPD sensor was used to evaluate dielectric and chemical properties of commercially available engine oil. Oil samples were intentionally degraded through thermal aging (oxidation) and through addition of known contaminants. The osCPD sensor shows good sensitivity to depletion of antioxidants in the oil, as well as to the presence of ferric chloride, an oil-soluble salt typically used to calibrate laboratory test equipment.
19

Vibrating Kelvin Probe Measurements of a Silicon Surface with the Underside Exposed to Light

Dukic, Megan Marie 24 August 2007 (has links)
This thesis addresses the use of a vibrating Kelvin probe to monitor the change in the front surface potential of a silicon wafer while the rear surface is illuminated with monochromatic, visible light. Two tests were run to verify the change in surface potential. One test increased the intensity of the light and the other increased the wavelength while recording the front surface potential. The change in the surface potential for a range of intensities of incident light was recorded and analyzed. The results show that the change in surface potential increased with increasing intensity. For each wafer, the smallest change in surface potential occurred at the lowest intensity, 3.77 mW. In the same respect, the largest change in surface potential occurred at the highest intensity, 17.8 mW. For all wafers, the change in surface potential ranged from approximately 8 mV at 3.77 mW to approximately 80 mV at 17.8 mW. The change in the surface potential for a range of wavelengths of incident light was also recorded and analyzed. The results showed that the change in surface potential formed a skewed bell curve with increasing wavelength of incident light. For each wafer, the largest change in surface potential occurred at mid-range wavelengths, between 600 nm and 700 nm. The smallest change in surface potential occurred at 450 nm, the shortest wavelength, and 800 nm, the longest wavelength. For all wafers, the change in surface potential ranged from approximately 8 mV at 800 nm to approximately 165 mV at 700 nm. A model based on excess electron diffusion within the silicon wafer was used to predict material properties. After curve fitting the model with experimental results, an excess electron lifetime of ôN = 17 µs and surface recombination rates of sFRONT = sREAR = 18,000cm/s were predicted. These values suggest poor silicon wafer quality relative to commercial silicon devices. Regardless of the quality, the results show that the front surface potential of a silicon wafer is affected by incident light on the rear surface. The quantitative effect of the light is dependent on the properties of the light and the material properties of the silicon wafer.
20

Scanning Probe Microscopy Methods to Study Electrostatic Properties within Biosystems

Moores, Bradley Adam James January 2010 (has links)
Many proteins are known to actively interact with biological, as well as inorganic and synthetic surfaces that are widely used in nano- and bio-technology as biosensing platforms and in tissue engineering. Amyloid fibrils are insoluble protein aggregates in beta-sheet conformation that are implicated in at least 20 diseases for which no cure is currently available. The molecular mechanism of fibril formation, as well as the mechanism of fibril clusters interacting with lipid membrane surfaces is currently unknown. The lipid membrane surface has a complex biochemical composition and is also electrostatically non-homogeneous. Currently, the experimental data available for amyloid fibril formation both on lipid and artificial surfaces is limited. The goal of our study is to investigate how the physical properties of the surfaces affect binding of amyloid peptides and affect the fibril formation. We seek to elucidate the effect of electrostatic interactions of amyloid peptides with surfaces using Atomic Force Microscopy (AFM) and Kelvin probe force microscopy (KPFM). We show using KPFM that electrostatic domains readily form within biological systems such as lung surfactant and lipid monolayers. We compared three different implementations of KPFM to demonstrate that frequency modulated (FM-) KPFM provides significant advantages over other modes. We also present a study of Amyloid beta (1-42) fibril formation on model surfaces, which are uniformly charged or possess periodicity of charges and hydrophobic functionality based on thiol self-assembly. Effect of membrane composition, surface charge, and presence of steroids will be discussed.

Page generated in 0.0186 seconds