• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimization of Electron Beam Melting for Production of Small Components in Biocompatible Titanium Grades

Karlsson, Joakim January 2015 (has links)
Additive manufacturing (AM), also called 3D-printing, are technologies where parts are formed from the bottom up by adding material layer-by-layer on top of each other. Electron Beam Melting (EBM) is an AM technique capable of manufacturing fully solid metallic parts, using a high-intensity electron beam to melt powder particles in layers to form finished components. Compared to conventional machining, EBM offers enhanced efficiency for production of customized and patient specific parts such as e.g. dental prosthetics. However, dental prosthetics are challenging to produce by EBM, as their small sizes mean that mechanical and surface properties may be altered as part sizes decreases. The aim of this thesis is to gain new insights that could lead to optimization for production of small sized components in the EBM. The work is focused to understand the process-property relationships for small size components production. To improve the surface resolution and part detailing, a smaller sized powder was used for production and compared to parts made with standard sized powder. The surface-, chemical and mechanical properties were evaluated for parts produced with both types of powders. The results indicate that the surface roughness may be influenced by powder and build layer thickness size, whereas the mechanical properties showed no influence of the layer-wise production. However, the mechanical properties are dependent on part size. The outermost surface of the parts consists of a surface oxide dominated by TiO2, formed as a result of reaction between the surface and residual gases in the EBM build chamber. The surface oxide thickness is comparable to that of a conventionally machined surface, but is dependent on build height. This work concludes that the surface resolution and component detailing can be improved by various measures. Provided that proper process themes are used, the EBM manufactured material is homogenous with properties comparable to conventional produced titanium. It has also been shown that the material properties will be altered for small components. The results point towards different ways of optimizing manufacturing of dental prosthetics by EBM, which will make dental prosthetics available for an increased number of patients.
2

Fate and exposure assessment of PCDD/Fs at contaminated sites

Åberg, Annika January 2008 (has links)
<p>Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzo-furans (PCDFs) belong to the most toxic compounds known to science and they are defined as Persistent Organic Pollutants (POPs) under the Stock-holm Convention. The general human exposure to PCDD/Fs is primarily through dietary intake. The importance of contaminated sites as secondary PCDD/F sources (i.e. sources that once received its contamination from a primary source) are getting increased attention. To be able to assess the risks for human exposure at PCDD/F contaminated sites, the environmen-tal distribution of PCDD/Fs and the potential mobilization between dif-ferent environmental media (e.g. food chain transfer) must be known. The primary aim of the work presented in this thesis was to investigate human exposure pathways associated with PCDD/F contaminated sites by combining field measurements and modeling. Site specific field measurements were made at a PCDD/F contaminated site in Sweden and multimedia modeling scenarios were evaluated against site specific data and national reference data.</p><p>The results show that the congener distributions in exposure media affected by contaminated soil may differ significantly from the distribu-tions found in media from reference locations. Higher chlorinated PCDD/Fs may be transferred into food chains where they contribute to a large fraction of the toxic equivalent concentration (TEQ). Ingestion of locally produced animal food may be an important exposure pathway al-ready at low or moderate PCDD/F soil concentrations. However, the con-gener composition of the source is critical for the exposure. The signifi-cance of the individual exposure routes varies depending on e.g. the spatial distribution and magnitude of the soil contamination, the pro-perties of the exposure media and the human behavior. Multimedia mo-deling can be used in risk assessments as long as model algorithms and model parameters are representative for the superhydrophobic properties of PCDD/Fs. However, selection of physical-chemical PCDD/F properties is a challenge due to large variation in reported values. For some proper-ties, data is scattered or completely lacking</p>
3

Fate and exposure assessment of PCDD/Fs at contaminated sites

Åberg, Annika January 2008 (has links)
Polychlorinated dibenzo-p-dioxins (PCDD) and polychlorinated dibenzo-furans (PCDFs) belong to the most toxic compounds known to science and they are defined as Persistent Organic Pollutants (POPs) under the Stock-holm Convention. The general human exposure to PCDD/Fs is primarily through dietary intake. The importance of contaminated sites as secondary PCDD/F sources (i.e. sources that once received its contamination from a primary source) are getting increased attention. To be able to assess the risks for human exposure at PCDD/F contaminated sites, the environmen-tal distribution of PCDD/Fs and the potential mobilization between dif-ferent environmental media (e.g. food chain transfer) must be known. The primary aim of the work presented in this thesis was to investigate human exposure pathways associated with PCDD/F contaminated sites by combining field measurements and modeling. Site specific field measurements were made at a PCDD/F contaminated site in Sweden and multimedia modeling scenarios were evaluated against site specific data and national reference data. The results show that the congener distributions in exposure media affected by contaminated soil may differ significantly from the distribu-tions found in media from reference locations. Higher chlorinated PCDD/Fs may be transferred into food chains where they contribute to a large fraction of the toxic equivalent concentration (TEQ). Ingestion of locally produced animal food may be an important exposure pathway al-ready at low or moderate PCDD/F soil concentrations. However, the con-gener composition of the source is critical for the exposure. The signifi-cance of the individual exposure routes varies depending on e.g. the spatial distribution and magnitude of the soil contamination, the pro-perties of the exposure media and the human behavior. Multimedia mo-deling can be used in risk assessments as long as model algorithms and model parameters are representative for the superhydrophobic properties of PCDD/Fs. However, selection of physical-chemical PCDD/F properties is a challenge due to large variation in reported values. For some proper-ties, data is scattered or completely lacking

Page generated in 0.1 seconds