Spelling suggestions: "subject:"kernspintomografie"" "subject:"kernspintomographie""
11 |
Retrospektive Bewegungskorrektur zur hochaufgelösten Darstellung der menschlichen Lunge mittels Magnetresonanztomographie / Retrospective Motion Correction for High Resolution Magnetic Resonance Imaging of the Human LungWeick, Stefan January 2015 (has links) (PDF)
Ziel dieser Arbeit war es, das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung mittels der MRT darzustellen. Um trotz der niedrigen Protonendichte der Lunge und der geforderten hohen Auflösung ausreichend Signal für eine verlässliche Diagnostik zu erhalten, sind Aufnahmezeiten von einigen Minuten nötig. Um die Untersuchung für den Patienten angenehmer zu gestalten oder auf Grund der eingeschränkten Fähigkeit eines Atemstopps überhaupt erst zu ermöglichen, war eine Anforderung, die Aufnahmen in freier Atmung durchzuführen. Dadurch entstehen allerdings Bewegungsartefakte, die die Diagnostik stark beeinträchtigen
und daher möglichst vermieden werden müssen. Für eine Bewegungskompensation
der Daten muss die auftretende Atembewegung detektiert werden. Die Bewegungsdetektion
kann durch externe Messgeräte (Atemgurt oder Spirometer) oder durch eine
zusätzliche Anregungen erfolgen (konventionelle Navigatoren) erfolgen. Nachteile
dieser Methoden bestehen darin, dass die Bewegung während der Atmung nicht
direkt verfolgt wird, dass elektronische Messgeräte in die Nähe des Tomographen
gebracht werden und das die Patienten zusätzlich vorbereitet und eingeschränkt
werden. Des Weiteren erfordert eine zusätzliche Anregung extra Messzeit und kann
unter Umständen die Magnetisierung auf unterwünschte Weise beeinflussen.
Um die angesprochenen Schwierigkeiten der Bewegungsdetektion zu umgehen,
wurden in dieser Arbeit innerhalb einer Anregung einer 3d FLASH-Sequenz sowohl
Bilddaten- als auch Navigatordaten aufgenommen. Als Navigator diente dabei das
nach der Rephasierung aller bildgebenden Gradienten entstehende Signal (DC Signal).
Das DC Signal entspricht dabei der Summe aller Signale, die mit einem bestimmten
Spulenelement detektiert werden können. Bewegt sich beispielsweise die Leber
bedingt durch die Atmung in den Sensitivitätsbereich eines Spulenelementes, wird
ein stärkeres DC Signal detektiert werden. Je nach Positionierung auf dem Körper
kann so die Atembewegung mit einzelnen räumlich lokalisierten Spulenelementen
nachverfolgt werden. Am DC Signalverlauf des für die Bewegungskorrektur ausgewählten
Spulenelementes sind dann periodische Signalschwankungen zu erkennen.
Zusätzlich können aus dem Verlauf Expirations- von Inspirationszuständen unterschieden
werden, da sich Endexpirationszustände im Regelfall durch eine längere
Verweildauer auszeichnen.
Grundsätzlich kann das DC Signal vor oder nach der eigentlichen Datenaufnahme
innerhalb einer Anregung aufgenommen werden. Auf Grund der kurzen Relaxationszeit
T∗2 des Lungengewebes fällt das Signal nach der RF Anregung sehr schnell ab. Um
möglichst viel Signal zu erhalten sollten, wie in dieser Arbeit gezeigt wurde, innerhalb einer Anregung zuerst die Bilddaten und danach die Navigatordaten aufgenommen
werden. Dieser Ansatz führt zu einer Verkürzung der Echozeit TE um 0.3 ms und
damit zu einem SNR Gewinn von etwa 20 %. Gleichzeitig ist das verbleibende Signal
nach der Datenakquisition und Rephasierung der bildgebenden Gradienten noch
ausreichend um die Atembewegung zu erfassen und somit eine Bewegungskorrektur
der Daten (Navigation) zu ermöglichen.
Um eine retrospektive Bewegungskorrektur durchführen zu können, müssen Akzeptanzbedingungen
(Schwellenwerte) für die Datenauswahl festgelegt werden. Bei
der Wahl des Schwellenwertes ist darauf zu achten, dass weder zu wenige noch zu
viele Daten akzeptiert werden. Akzeptiert man sehr wenige Daten, zeichnen sich die
Rekonstruktionen durch einen scharfen Übergang zwischen Lunge und Diaphragma
aus, da man sehr wenig Bewegung in den Rekonstruktionen erlaubt. Gleichzeitig
erhöht sich allerdings das Risiko, dass nach der Navigation Linien fehlen. Dies führt
zu Einfaltungsartefakten, die in Form von gestörten Bildintensitäten in den Rekonstruktionen
zu sehen sind und die diagnostische Aussagekraft einschränken. Um
Einfaltungsartefakte zu vermeiden sollte der Schwellenwert so gewählt werden, dass
nach der Datenauswahl keine Linien fehlen. Aus dieser Anforderung lässt sich ein
maximaler Schwellenwert ableiten. Akzeptiert man dagegen sehr viele Daten, zeichnen
sich die Rekonstruktionen durch erhöhtes Signal und das vermehrte Auftreten
von Bewegungsartefakten aus. In diesem Fall müsste der Arzt entscheiden, ob Bewegungsartefakte
die Diagnostik zu stark beeinflussen. Wählt man den Schwellenwert
so, dass weder Linien fehlen noch zu viel Bewegung erlaubt wird, erhält man Rekonstruktionen
die sich durch einen scharfen Diaphragmaübergang auszeichnen und in
denen noch kleinste Gefäße auch in der Nähe des Diaphragmas deutlich zu erkennen
sind. Hierfür haben sich Schwellenwerte, die zu einer Datenakzeptanz von ca. 40 %
führen als günstig erwiesen.
Um Einfaltungsartefakte auf Grund der retrospektiven Datenauswahl zu verhindern,
muss das Bildgebungsvolumen mehrfach abgetastet werden. Dadurch wird
gewährleistet, dass für die letztendliche Rekonstruktion ausreichend Daten zur Verfügung
stehen, wobei mehrfach akzeptierte Daten gemittelt werden. Dies spielt auf
Grund der niedrigen Protonendichte der Lunge eine wesentliche Rolle in der Rekonstruktion
hochaufgelöster Lungendatensätze. Weiterhin führt das Mitteln von
mehrfach akzeptierten Daten zu einer Unterdrückung der sogenannten Ghost Artefakte,
was am Beispiel der Herzbewegung in der Arbeit gezeigt wird.
Da die Messungen unter freier Atmung durchgeführt werden und keine zusätzlichen
externen Messgeräte angeschlossen werden müssen, stellte die Untersuchung
für die Patienten in dieser Arbeit kein Problem dar. Im ersten Teil dieser wurde Arbeit
gezeigt, dass sich mit Hilfe des DC Signales als Navigator und einer retrospektiven
Datenauswahl das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung
von beispielsweise 1.6 x 1.6 x 4 mm3 innerhalb von 13 min. darstellen lässt. Die Anwendbarkeit der vorgestellten Methode zur Bewegungskorrektur wurde neben
Probanden auch an Patienten demonstriert.
Da wie bereits beschrieben das Bildgebungsvolumen mehrfach abgetastet werden
muss, wiederholt sich auch die Abfolge der für die Bildgebung verantwortlichen
Gradienten periodisch. Da sich der Atemzyklus aber auch periodisch wiederholt,
kann es zu Korrelationen zwischen der Atmung und den wiederholten Messungen
kommen. Dies führt dazu, dass auch nach vielen wiederholten Messungen immer
noch größere Bereiche fehlender Linien im k-Raum bleiben, was zu Artefakten in
den Rekonstruktionen führt. Dies konnte im Falle der konventionellen Bewegungskorrektur
in den Gatingmasken, die die Verteilung und Häufigkeit der einzelnen
akzeptierten Phasenkodierschritte im k-Raum zeigen, beobachtet werden.
Da eine vorsätzliche Unterbrechung der Atemperiodizität (der Patient wird dazu
angehalten, seine Atemfrequenz während der Messung absichtlich zu variieren) zur
Vermeidung der angesprochenen Korrelationen nicht in Frage kommt, musste die
Periodizität in der Datenaufnahme unterbrochen werden. In dieser Arbeit wurde
dies durch eine quasizufällige Auswahl von Phasen- und Partitionskodiergradienten
erreicht, da Quasizufallszahlen so generiert werden, dass sie unabhängig von ihrer
Anzahl einen Raum möglichst gleichförmig ausfüllen. Die quasizufällige Datenaufnahme
führt deshalb dazu, das sowohl akzeptierte als auch fehlende Linien nach der
Bewegungskorrektur homogen im k-Raum verteilt auftreten.
Vergleicht man das auftreten von Ghosting zeichnen sich die quasizufälligen Rekonstruktionen
im Vergleich zur konventionellen Datenaufnahme durch eine verbesserte
Reduktion von Ghost Artefakten aus. Dies ist auf die homogene Verteilung mehrfach
akzeptierter Linien im k-Raum zurückzuführen. Die homogenere Verteilung von
fehlenden Linien im k-Raum führt weiterhin zu einer wesentlich stabileren Rekonstruktion
fehlender Linien mit parallelen MRT-Verfahren (z.B. iterativem Grappa).
Dies wird umso deutlicher je höher der Anteil fehlender Linien im k-Raum wird. Im
Falle der konventionellen Datenaufnahme werden die zusammenhängenden Bereiche
fehlender Linien immer größer, was eine erfolgreiche Rekonstruktion mit iterativem
Grappa unmöglich macht. Im Falle der quasizufälligen Datenaufnahme dagegen
können auch Datensätze in denen 40% der Linien fehlen einfaltungsartefaktfrei
rekonstruiert werden.
Im weiteren Verlauf der Arbeit wurde gezeigt, wie die Stabilität der iterativen Grappa
Rekonstruktion im Falle der quasizufälligen Datenaufnahme für eine erhebliche
Reduktion der gesamten Messzeit genutzt werden kann. So ist in einer Messzeit von
nur 74s die Rekonstruktion eines artefaktfreien und bewegungskorrigierten dreidimensionalen
Datensatzes der menschlichen Lunge mit einer Auflösung von 2 x 2 x
5 mm3 möglich. Des Weiteren erlaubt die quasizufällige Datenaufnahme in Kombination
mit iterativem Grappa die Rekonstruktion von Datensätzen unterschiedlicher
Atemphasen von Inspiration bis Expiration (4D Bildgebung). Nach einer Messzeit
von 15min. wurden 19 unterschiedliche Atemzustände rekonstruiert, wobei sich der Anteil der fehlenden Linien zwischen 0 und 20 % lag. Im Falle der konventionellen
Datenaufnahme wäre eine wesentlich längere Messzeit nötig gewesen, um ähnliche
Ergebnisse zu erhalten.
Zum Schluss soll noch ein Ausblick über mögliche Weiterentwicklungen und Anwendungsmöglichkeiten,
die sich aus den Erkenntnissen dieser Arbeit ergeben haben,
gegeben werden. So könnte das quasizufällige Aufnahmeschema um eine Dichtegewichtung
erweitert werden. Hierbei würde der zentrale k-Raum Bereich etwas
häufiger als die peripheren Bereiche akquiriert werden. Dadurch sollte die iterative
Grappa Rekonstruktion noch stabiler funktionieren und Ghost Artefakte besser reduziert
werden. Die Verteilung der Linien sollte allerdings nicht zu inhomogen werden,
um größere Lücken im k-Raum zu vermeiden.
Darüber hinaus könnte die vorgestellte Methode der Bewegungskompensation
auch für die Untersuchung anderer Organe oder Körperteile verwendet werden.
Voraussetzung wäre lediglich das Vorhandensein dezidierter Spulenanordnungen,
mit denen die Bewegung nachverfolgt werden kann. So ist beispielsweise eine dynamische
Bildgebung des frei und aktiv bewegten Knies möglich, wobei zwischen
Beugung und Streckung durch die erste Ableitung des zentralen k-Raum Signales
unterschieden werden kann. Dies kann zusätzliche Diagnoseinformationen liefern
oder für Verlaufskontrollen nach Operationen benutzt werden [15].
Eine Weiterentwicklung mit hohem klinischen Potential könnte die Kombination
der in dieser Arbeit vorgestellten retrospektiven Bewegungskorrektur mit einer Multi-
Gradienten-Echo Sequenz darstellen. Hierzu musste die bestehende Sequenz lediglich
um eine mehrfache Abfolge von Auslesegradienten innerhalb einer Anregung erweitert
werden. Dies ermöglicht eine bewegungskorrigierte voxelweise Bestimmung der
transversalen Relaxationszeit T∗2 in hoher räumlicher Auflösung. Unter zusätzlicher
Sauerstoffgabe kann es zu einer Veränderung von T∗2 kommen, die auf den sogenannten
BOLD Effekt (Blood Oxygen Level Dependent) zurückzuführen ist. Aus dieser
Änderung könnten Rückschlüsse auf hypoxische Tumorareale gezogen werden. Da
diese eine erhöhte Strahlenresistenz aufweisen, könnte auf diese Bereiche innerhalb
des Tumors eine erhöhte Strahlendosis appliziert und so möglicherweise Behandlungsmisserfolge
reduziert werden. Gleichzeitig kann durch die 4D Bildgebung eine
mögliche Tumorbewegung durch die Atmung erfasst und diese Information ebenfalls
in der Bestrahlungsplanung benutzt werden. Die Lungen MRT könnte somit um eine
hochaufgelöste dreidimensionale funktionelle Bildgebung erweitert werden. / The goal of this work was to depict the whole lung volume by MRI in high spatial
resolution. To obtain sufficient signal for a reliable diagnosis despite the inherently low
proton density of the lung and the requested high spatial resolution, total acquisition
times of a few minutes are mandatory. Simultaneously, the measurements should
be performed under free breathing conditions making patient examinations more
comfortable or possible for patients with limited breath holding capabilities. However,
free breathing leads to motion artifacts which can severely influence the diagnostic
value of the images and hence have to be avoided. To compensate for motion the
prevalent breathing pattern has to be detected. This can be achieved by external
measurement devices such as a respiration belt or a spirometer or by conventional
navigator echoes using an additional excitation pulse. Drawbacks of these methods
are that the respiratory motion is detected only indirectly, that electronic devices
have to be used near the MRI machine and the patients have to be prepared and are
strongly restricted. Furthermore, additional excitation pulses will prolong the total
acquisition time and may affect the magnetization adversely.
To overcome these limitations of motion detection in the present work, the image as
well as the navigator data was acquired within one excitation of a FLASH sequence.
The resulting central k-space signal (DC signal) after rephasing of all imaging gradients
was used as a navigator signal. The DC signal represents the sum of all signals
that can be detected with a single receiver coil element. If the liver is for example
moving in the sensitivity area of one coil element due to breathing, an increased DC
signal will be detected. Depending on their local position on the body the locally
confined coil elements are able to track respiratory motion. The time course of the
DC signal of the selected coil element for respiratory motion compensation will
depict periodic signal variations accordingly. Additionally, respiratory phases of
expiration can be distinguished from inspiratory phases because the resting times in
end-expiratory phases are usually longer compared to end-inspiratory phases.
The DC signal can be acquired either before or after the actual image data acquisition
within one excitation. The short T2* of the human lung tissue leads to a
rapid signal decay after the excitation. As shown in this thesis, the DC signal should
be acquired after the image data within one excitation. This approach allows for
echo time (TE) reduction of 0.3 ms leading to a signal benefit of approximately 20 %.
Simultaneously, the remaining signal after image data acquisition and rephasing of
all imaging gradients is still sufficient to track respiratory motion and can therefore
be used for motion compensation of the acquired data. In order to compensate for motion retrospectively, threshold values for data acceptance
have to be defined. Setting the threshold value, neither too less nor too much
data should be accepted. Accepting very few data leads to sharp transition between
the lung and the diaphragm because not much motion is allowed in the reconstruction
process. On the other hand, disturbed signal intensity can be observed because of
under-sampling artifacts due to missing lines after gating. These artifacts can restrict
the diagnostic value of the reconstructions. Therefore, the selected threshold value
should lead to a fully sampled k-space after gating. This requirement can be used to
define the maximum threshold value for data acceptance. On the contrary, accepting
very much data leads to higher signal intensity but also to more distinctive motion
artifacts. In this case, the physician has to decide whether the motion artifacts affect
his diagnosis too much. A moderate threshold value leads to a fully sampled k-space
as well as good motion artifact compensation. This results in reconstructions that
are characterized by a sharp depiction of small vessels even near the diaphragm. For
this, threshold values leading to a data acceptance of about 40 % turned out to be
beneficial.
To avoid under-sampling artifacts because of retrospective gating, the imaging
volume has to be acquired several times. This ensures that enough data is available
for the final reconstruction whereas multiple accepted data is averaged. Averaging is
essential for the reconstruction of high resolution data sets because of the inherently
low proton density of the lung. Furthermore it leads to the reduction of ghost artifacts
as is shown using the example of heart motion in this work.
As no external measurement devices were used and the data was acquired under
free breathing conditions the examinations posed no problem for the patients within
this work. It was shown so far that the DC signal in combination with retrospective
gating can be used to reconstruct high resolution 3d lung data sets with a resolution
of 1.6 x 1.6 x 4 mm3 within 13 min., for instance. The applicability of the presented
method for motion compensation was shown for volunteers as well as patients.
Since as already described the imaging volume must be acquired several times, the
series of gradients for spatial encoding are repeated periodically. As the respiratory
cycle is periodically as well, correlations between the repeated measurements and the
breathing cycle can occur. Therefore, even after many repeated measurements large
areas of missing k-space lines can remain, leading to artifacts in the reconstructions.
This can be observed in the gating masks, showing the distribution of accepted and
missing lines in k-space, in case of conventional motion compensation used in this
work so far.
To avoid the aforementioned correlations, the periodicity in the repeated acquisitions
has to be interrupted because of suspending the periodic breathing pattern of
patients deliberately would be a serious intervention and is therefore ineligible. This
was accomplished by a quasi-random selection of the phase and partition encoding
gradients as quasi-random numbers are generated to fill the space as uniformly as possible regardless of their number. Therefore, accepted lines as well as missing lines
are uniformly distributed in k-space after retrospective gating.
A more uniform distribution of multiple accepted k-space lines in case of quasirandom
sampling leads to an improved reduction of Ghost-Artifacts compared to
conventional sampling. Furthermore, the more uniform distribution of missing kspace
lines leads a considerably more stable reconstruction of missing lines using
parallel imaging techniques (as iterative Grappa for example). This is getting more
distinct the higher the proportion of missing k-space lines is. The contiguous areas
of missing k-space lines are becoming increasingly large in case of conventional
sampling, making a successful reconstruction using iterative Grappa impossible. In
contrast, quasi-random sampling enables for the successful reconstruction of artifact
free images even when 40 % of the acquired lines were missing after retrospective
gating.
In addition, the stability of the iterative GRAPPA reconstructions in case of quasirandom
sampling allows for a substantial reduction of the total acquisition time.
Thus, an artifact free motion compensated data set of 2 x 2 x 5 mm3 resolution could
be reconstructed for a measurement time of only 74s. Furthermore, quasi-random
sampling in combination with iterative Grappa enables for the reconstruction of
data sets of different respiratory phases from inspiration to expiration (4d imaging).
Accordingly, 19 different respiratory phases could be reconstructed after 15min of
data acquisition. The percentage of missing lines was between 0 and 20 %. Hence, in
case of conventional sampling a considerably longer measurement time would have
been required to achieve similar results.
|
12 |
Quantitative Characterization of Lung Tissue Using Proton MRI / Quantitative Charakterisierung des Lungengewebes mithilfe von Proton-MRTCarinci, Flavio January 2017 (has links) (PDF)
The focus of the work concerned the development of a series of MRI techniques that were specifically designed and optimized to obtain quantitative and spatially resolved information about characteristic parameters of the lung. Three image acquisition techniques were developed. Each of them allows to quantify a different parameter of relevant diagnostic interest for the lung, as further described below:
1) The blood volume fraction, which represents the amount of lung water in the intravascular compartment expressed as a fraction of the total lung water. This parameter is related to lung perfusion.
2) The magnetization relaxation time T\(_2\) und T� *\(_2\)
, which represents the component of T\(_2\) associated with the diffusion of water molecules through the internal magnetic field gradients of the lung. Because the amplitude of these internal gradients is related to the alveolar size, T\(_2\) und T� *\(_2\) can be used to obtain information about the microstructure of the lung.
3) The broadening of the NMR spectral line of the lung. This parameter depends on lung inflation and on the concentration of oxygen in the alveoli. For this reason, the spectral line broadening can be regarded as a fingerprint for lung inflation; furthermore, in combination with oxygen enhancement, it provides a measure for lung ventilation. / Die Magnetresonanztomographie (MRT) stellt ein einzigartiges Verfahren im Bereich der
diagnostischen Bildgebung dar, da sie es ermöglicht, eine Vielzahl an diagnostischen Informationen
ohne die Verwendung von ionisierenden Strahlen zu erhalten. Die Anwendung
von MRT in der Lunge erlaubt es, räumlich aufgelöste Bildinformationen über Morphologie,
Funktionalität sowie über die Mikrostruktur des Lungengewebes zu erhalten und
diese miteinander zu kombinieren. Für die Diagnose und Charakterisierung von Lungenkrankheiten
sind diese Informationen von höchstem Interesse. Die Lungenbildgebung
stellt jedoch einen herausfordernden Bereich der MRT dar. Dies liegt in der niedrigen
Protondichte des Lungenparenchyms begründet sowie in den relativ kurzen Transversal-
Relaxationszeiten T\(_2\) und T� *\(_2\)
, die sowohl die Bildau� ösung als auch das Signal-zu-Rausch
Verhältnis beeinträchtigen. Des Weiteren benötigen die vielfältigen Ursachen von physiologischer
Bewegung, welche die Atmung, den Herzschlag und den Blut� uss in den Lungengefasen umfassen, die Anwendung von schnellen sowie relativ bewegungsunemp� ndlichen
Aufnahmeverfahren, um Risiken von Bildartefakten zu verringern. Aus diesen Gründen
werden Computertomographie (CT) und Nuklearmedizin nach wie vor als Goldstandardverfahren
gehandhabt, um räumlich aufgelöste Bildinformationen sowohl über die Morphologie
als auch die Funktionalität der Lunge zu erhalten. Dennoch stellt die Lungen-
MRT aufgrund ihrer Flexibilität sowohl eine vielversprechende Alternative zu den anderen
Bildgebungsverfahren als auch eine mögliche Quelle zusätzlicher diagnostischer Informationen
dar. ...
|
13 |
Verbesserung von Echoplanarer Bildgebung durch Phasenkorrektur / Improvement of echoplanar imaging by phase correctionKraus, Philip January 2017 (has links) (PDF)
Die Arbeit liefert eine Übersicht zu möglichen Korrekturen dynamischer Off-Resonanzen in dichtegewichteten und kartesischen echoplanaren funktionellen MRT Sequenzen. / This scientific work gives an overview about potential corrections of dynamic off-resonances in k-space in density weighted and cartesian MRI sequences.
|
14 |
Dynamisch-kernspintomographische Definition der Flexions-Extensionsachse des Kniegelenks / Dynamic magnetic resonance imaged definition of the axis about the knee flexes and extendsHaug, Lukas January 2019 (has links) (PDF)
Es sollte eine dynamische MRT Methode entwickelt werden, welche die Berechnung und Darstellung einer Achse einer komplexen Bewegung ermöglicht. Dabei war die eigens auferlegte Definition von „Dynamik“, dass ein kompletter Bewegungsablauf als dreidimensionaler Datensatz im Zeitverlauf erfasst und ausgewertet werden soll (4 Dimensionen).
Diese Methode sollte auf die komplexe Bewegung des Kniegelenks angewendet werden und mit einem Knie-Modell verglichen werden.
Schlussendlich sollte die Flexion-Extensionsbewegung als vereinfacht monoaxial verifiziert werden.
Für diese Ziele wurden folgende Schritte durchgeführt:
Es wurden zunächst 10 Kadaver-Knie präpariert und hierbei u.a. kontrastmittelhaltige Kugeln als Tracker eingebracht. Die Knie wurden dann im Rahmen des Versuchsaufbaus in einer speziellen, pneumatischen Bewegungsschiene befestigt, welche dann automatisiert eine passive Bewegung vollzog. Diese wurde mit einer dynamischen MRT Methode festgehalten. Der entstandene 4D-Datensatz wurde eingelesen und die Kugelpositionen ausgewertet. Die Koordinaten der Positionen dienten dann als Grundlage für spezielle mathematische Algorithmen, welche die Flexion-Extensionsachse und ggf. die Innen- und Außenrotationsachse berechneten und schließlich eine graphische Darstellung ermöglichten. Zur Überprüfung wurde zudem ein Knie-Modell herangezogen und von diesem die gleichen Berechnungen durchgeführt. / A dynamic MRI method should be developed which allowed the calculation and presentation of the axis of a complex motion. The specially imposed definition of "dynamics" was that a complete sequence of movement should be recorded and evaluated over time as a three-dimensional data set (4 dimensions).
This method should be applied to the complex movement of the knee joint and compared with a knee model.
Finally, the flexion extension movement should be verified as simplified monoaxially.
The following steps have been performed:
First, 10 cadaver knees were prepared and were, among other steps, provided with contrast media filled spheres as tracker. The knees were then mounted in a special pneumatic movement device as part of the experimental set-up, which then automatically performed a passive movement. This was recorded using a dynamic MRI method. The resulting 4D data set was read in and the positions of the spheres were evaluated. The coordinates of the positions then served as a basis for special mathematical algorithms, which calculated the flexion extension axis and, depending on the algorithm, the inner and outer rotational axis and finally allowed a graphical presentation. For verification, the same calculations were performed with a knee model.
|
15 |
MR imaging of tumors: Approaches for functional and fast morphological characterization / MR-Bildgebung von Tumoren: Ansätze zur funktionellen und schnellen morphologischen CharakterisierungSchmitt, Peter January 2013 (has links) (PDF)
The subject of this work was to develop, implement, optimize and apply methods for quantitative MR imaging of tumors. In the context of functional and physiological characterization, this implied transferring techniques established in tumor model research to human subjects and assessing their feasibility for use in patients. In the context of the morphologic assessment and parameter imaging of tumors, novel concepts and techniques were developed, which facilitated the simultaneous quantification of multiple MR parameters, the generation of “synthetic” MR images with various contrasts, and the fast single-shot acquisition of purely T2-weighted images. / Gegenstand dieser Arbeit war die Entwicklung, Implementierung, Optimierung und Anwendung von Methoden für die quantitative MR-Bildgebung an Tumoren. In Bezug auf eine funktionelle und physiologische Charakterisierung wurden in der Forschung an Tumormodellen etablierte Verfahren für den Einsatz am Menschen adaptiert und ihre Anwendbarkeit zur Untersuchung von Tumoren wurde an Patienten erforscht. Im Bereich der morphologischen Untersuchung und Parameterbildgebung an Tumoren wurden neue Konzepte und Verfahren entwickelt, welche die simultane Quantifizierung mehrerer MR-Parameter, die Generierung "synthetischer" MR-Bilder mit unterschiedlichen Kontrasten, sowie die schnelle "Single-Shot"-Akquisition rein T2-gewichteter Bilder ermöglichen.
|
16 |
T1 und T2*-Quantifizierung in der menschlichen Lunge / T1 and T2* quantification in the human lungTriphan, Simon January 2015 (has links) (PDF)
In dieser Arbeit werden für die Anwendung in der menschlichen Lunge
optimierte Methoden zur Bestimmung von T1- und T2*-Karten diskutiert:
Dc-Gating ermöglicht die Quantifizierung in freier Atmung, wobei für die
T1-Quantifizierung mittels Inversion Recovery eine Korrektur des dc-Signals
entwickelt wurde. Dies hat den Vorteil, dass Parameterkarten aus mehreren
Messungen anhand ihrer dc-Signale passend überlagert werden können. Da T1
und T2* auf unterschiedliche Art und Weise von der Sauerstoffkonzentration
abhängen, verbessert dies die Möglichkeit, ΔT1- und ΔT2*- Differenzkarten aus
Messungen mit unterschiedlichen O2-Konzentrationen im Atemgas zu erstellen.
Die Parameterquantifizierung ist in erster Linie für die Beobachtung von
Krankheitsverläufen interessant, da T1 und T2* absolute, vergleichbare Zahlen
sind. Da T2* deutlich vom Atemzustand abhängt, ist es auch hierfür sinnvoll,
durch Gating identische Atemzustände abzubilden. Um die unterschiedlichen
Einflüsse des Sauerstoffs auf T1 und T2* besser vergleichbar zu machen, wurde
in dieser Arbeit weiterhin eine kombinierte Messung für beide Parameter
implementiert: Da auch diese in freier Atmung stattfindet, profitieren nicht
nur die Differenzkarten von der Überlagerung der Bilder, sondern auch der
Vergleich der ΔT1- und ΔT2*-Karten untereinander.
Messungen mit einer konventionellen kartesischen Methode an COPD-Patienten
unter Raumluft- und 100% Sauerstoffatmung ergaben bei Verwendung identischer
Atemmasken ein deutlich geringeres ΔT1 als in gesunden Probanden. Dass T1 in
der Lunge nicht nur von der Sauerstoffkonzentration sondern auch von der
Gewebezusammensetzung und insbesondere auch dem Blutvolumenanteil abhängt,
zeigte sich hierbei aber auch an den bei COPD im Mittel sehr viel kürzeren
T1-Zeiten bei Raumluft. Die aufgrund emphysematischer Veränderung noch
zusätzlich reduzierte Protonendichte im Parenchym kranker Lungen macht diese
Messungen allerdings besonders schwierig.
Die oben erwähnten Optimierungen der T1-Quantifizierung zielen daher auch
darauf ab, das Signal aus der Lunge zu maximieren, um Patientenmessungen
einfacher zu machen: Messungen in freier Atmung sind für Patienten nicht nur
einfacher, sondern erlauben effektiv auch längere Messzeiten. Insbesondere
wurde aber durch die Entwicklung einer radialen Methode die Echozeit zur
Messung reduziert, um die kurze T2*-Zeit in der Lunge auszugleichen.
Schließlich wurde durch Implementation einer 2D UTE Sequenz die Messung bei
der kürzesten vom Scanner erlaubten Echozeit ermöglicht.
Die Messungen bei ultrakurzen Echozeiten in Probanden zeigten allerdings
deutlich kürzere T1-Zeiten als die zuvor gefundenen oder in der Literatur
dokumentierten. In weiteren Experimenten wurde das sichtbare T1 zu mehreren
Echozeiten mit Hilfe der zur kombinierten Quantifizierung entwickelten
Methode bestimmt. Dabei ergab sich eine Zunahme des gemessenen T1 mit der
Echozeit. Aus diesem Verhalten sowie den gefundenen kürzesten und längsten T1
lässt sich schließen, dass das intra- und extravaskuläre Lungenwasser, also
Blut bzw. das umgebende Gewebe, mit unterschiedlichen T1- und T2*-Zeiten zum
Signal und damit auch dem effektiven T1 beitragen.
Dass das TE der Messung die Gewichtung dieser Kompartimente bestimmt, hat
dabei mehrere Auswirkungen: Einerseits bedeutet dies, dass beim Vergleich von
T1-Messungen in der Lunge stets auch das TE mitbetrachtet werden muss, bei
dem diese durchgeführt wurden. Andererseits lässt sich die Möglichkeit, die
Messung auf die unterschiedlichen Kompartimente abzustimmen, potentiell
ausnutzen, um zusätzliche diagnostische Informationen zu gewinnen: Da T1 vom
Blutvolumenanteil und der Gewebezusammensetzung abhängt, könnte dieser Effekt
helfen, diese beiden Einflüsse zu differenzieren.
Während die in dieser Arbeit beschriebenen Experimente die TE-Abhängigkeit
des sichtbaren T1 in Probanden aufzeigen, liefern sie allerdings noch keine
genaue Erklärung für die möglichen Ursprünge dieses Effekts. Um diese weiter
zu untersuchen, könnten allerdings gezielte Phantom- und in vivo-Experimente
Aufschluss geben: Ein Aufbau, der die Feldverzerrung durch luftgefüllte
Alveolen in Lösungen mit entsprechenden verschiedenen Suszeptibilitäten
nachbildet, reduziert den Unterschied zwischen den Kompartimenten auf T1 und
χ. Eine in vivo-Messung mit möglichst großer Differenz zwischen Ex- und
Inspiration hingegen könnte den Einfluss der Abstände der Kompartimente vom
Gasraum aufzeigen, da die Alveolarwände in tiefer Inspiration am weitesten
gedehnt und daher am dünnsten sind. / In this work, methods for the local measurement of T1 and T2* maps optimized
for the application in the human lungs are discussed: Quantification during
free breathing was enabled by applying dc-gating, where a correction for the
dc-signal acquired during T1-quantification using a inversion recovery was
introduced. This is especially useful to achieve parameter maps in identical
breathing states from multiple measurements using their dc-signals. Since T1
and T2* depend on the oxygen concentration through different mechanisms, this
is especially interesting to produce ΔT1- and ΔT2*-difference maps at varying
O2-concentrations in the breathing gas.
Parameter quantification is primarily interesting for the monitoring of the
courses of disease or therapy since T1 and T2* are absolute, comparable
numbers. As T2* depends significantly on the respiratory state, ensuring
identical states via gating is relevant there as well. To further improve the
comparison of oxygen influence on T1 and T2* a method for the combined
measurement of both parameters was implemented: Since this is also employs
gating, not only the difference maps benefit from image coregistration, but
the comparison of the ΔT1 and ΔT2* maps to each other as well.
Measurements using the conventional cartesian method on COPD patients under
room air and pure oxygen conditions resulted in much lower ΔT1 than in
healthy volunteers when using identical oxygen masks. The much lower average
T1 times at room air found there demonstrate that T1 in the lungs not only
depends on the oxygen concentration but also on tissue composition and
especially the blood volume fraction. Proton densities that were reduced even
further due to emphysematous destruction made these measurements additionally
difficult.
Accordingly, the optimizations for T1 quantification mentioned above are
intended to maximize signal from the lung parenchyma to improve patient
measurements: Measurements during free breathing are not only easier for
patients but effectively also allow for longer acquisition times. In
particular the developement of a radial method provides a shorter echo time
to help compensate for the short T2* in the lungs. Finally, the
implementation of a 2D UTE sequence enables the measurement at the shortest
echo time available on the scanner hardware.
However, the measurements at ultra short echo times in volunteers showed
significantly shorter T1 times than those found previously and those reported
in the literature. In further experiments, the observable T1 was determined
at multiple echo times using the method developed for simultaneous
quantification. This revealed a gradual increase of the measured T1 with the
echo time. From this behaviour as well as the shortest and longest times
found, it can be concluded that the intra- and extravascular compartments of
lung water, essentially blood and the surrounding tissue, contribute with
different T1 and T2* times to the MR signal and thus also the effective T1.
That the echo time of the measurement determines the weighting of these
compartments has multiple consequences: Firstly, this means that when
comparing T1 measurements in the lungs, the echo time that was used to
acquire them also has to be considered. Secondly, the possiblity to focus the
measurement on these different compartments might be used to gain additional
diagnostic information: Since T1 depends on blood volume content and tissue
composition, this effect might help to differentiate these two influences.
While the experiments described in this work demonstrate the echo time
dependence of the observed T1 in volunteers, they do not yet provide an
explanation for the exact origins of this effect. To examine these further,
appropriate phantom and in vivo experiments could be insightful: A phantom
design that simulates the field distortion caused by air-filled alveoli in
solutions with suitable susceptibilites would reduce the difference between
the compartments to T1 and χ. A in vivo measurement with an especially large
difference between ex- and inspiration could help to show the influence of
the distance of the compartments from the gas space, since the alveolar walls
are most dilated and thus thinnest during deep inspiration.
|
17 |
Untersuchung des Einflusses von Myokardinfarkten auf die Wandbewegungsgeschwindigkeit der linken midventrikulären Segmente mittels Phasenkontrast-MRT / Investigation of the influence of myocardial infarction on the wall motion velocity of the left midventricular segments using phase contrast MRILankl, Sebastian January 2024 (has links) (PDF)
Die Letalität des Myokardinfarktes ist in Deutschland rückläufig, die Bedeutung von Folgeerkrankungen des Myokardinfarktes nimmt daher zu. Durch pathologische Umbauprozesse (Remodeling) nach Myokardinfarkten kann die Mechanik des linken Ventrikels beeinträchtigt werden, sodass eine ischämische Kardiomyopathie entsteht. Im Rahmen dieser Arbeit wurde der Einfluss von Myokardinfarkten auf die Wandbewegungsgeschwindigkeit des linken Ventrikels mittels Tissue Phase Mapping untersucht. Tissue Phase Mapping ist eine MRT-basierte Untersuchungstechnik, welche die Wandbewegung des linken Ventrikels als Gewebegeschwindigkeit mit hoher zeitlicher und räumlicher Auflösung in drei Dimensionen quantifiziert. Bisher durchgeführte Tissue Phase Mapping-Studien bei Infarktpatienten werden in ihrer Aussagekraft durch eine veraltete Sequenztechnik und ein heterogenes Patientenkollektiv limitiert. In dieser Arbeit wurden daher selektiv Patienten mit stattgehabtem Vorderwandinfarkt mit einem bisher unveröffentlichten aktuellen Tissue Phase Mapping-Protokoll untersucht und mit einer Kontrollgruppe verglichen. Hierbei wurden statistisch signifikante pathologische Veränderungen der lokalen myokardialen Rotation und der diastolischen Expansion in radialer Richtung in postischämisch vernarbten Segmenten identifiziert. Aus anderen MRT-basierten Messmethoden (unter anderem Strain-Encoded Magnetic Resonance und Displacement Encoding With Stimulated Echos) ist bereits bekannt, dass die Rotationsbewegung in postischämisch vernarbten Segmenten pathologisch verändert ist. In dieser Arbeit wurde jedoch erstmals eine Reduktion und zum Teil eine Umkehr der lokalen myokardialen Rotation in vernarbten Segmenten mittels Tissue Phase Mapping nachgewiesen. Limitationen dieser Arbeit sind insbesondere die hohe Messzeit und die Anfälligkeit der Untersuchungstechnik für Bewegungsartefakte. Zudem konnten in anderen Studien Veränderungen der linksventrikulären Mechanik in vernarbten Segmenten mittels Strain-Parametern mit höherer Sensitivität erfasst werden. Nichtsdestotrotz könnten Weiterentwicklungen des Tissue Phase Mappings in Zukunft dazu beitragen, die linksventrikuläre Mechanik im Rahmen des Remodelings besser zu verstehen und die ischämische Kardiomyopathie früher zu diagnostizieren. / The mortality rate of myocardial infarction is declining in Germany, so the relevance of secondary diseases of myocardial infarction is increasing. Pathological remodelling processes after myocardial infarction can impair the mechanics of the left ventricle, resulting in ischaemic cardiomyopathy. In this study, the influence of myocardial infarction on the wall motion velocity of the left ventricle was investigated using tissue phase mapping. Tissue phase mapping is an MRI-based examination technique that quantifies the wall motion of the left ventricle as tissue velocity with high temporal and spatial resolution in three dimensions. Tissue phase mapping studies performed so far in infarct patients are limited in their significance by an outdated sequencing technique and a heterogeneous patient population. In this study, therefore, patients with a previous anterior wall infarction were selectively examined using a previously unpublished, up-to-date tissue phase mapping protocol and compared with a control group. Statistically significant pathological changes in local myocardial rotation and diastolic expansion in the radial direction were identified in post-ischaemic scarred segments. It is already known from other MRI-based imaging techniques (including strain-encoded magnetic resonance and displacement encoding with stimulated echoes) that the rotational motion in post-ischaemic scarred segments is pathologically altered. In this study, however, a reduction and partial reversal of local myocardial rotation in scarred segments was demonstrated for the first time using tissue phase mapping. The main limitations of this study are the long measurement time and the susceptibility of the examination technique to movement artefacts. In addition, other studies have been able to detect changes in left ventricular mechanics in scarred segments using strain parameters with higher sensitivity. Nevertheless, further developments in tissue phase mapping might contribute to a better understanding of left ventricular mechanics in the context of remodelling and to earlier diagnosis of ischaemic cardiomyopathy.
|
18 |
Physiological and metabolical high-resolution MRI of plants / Physiologische und metabolische hochaufgelöste Pflanzen-MagnetresonanzbildgebungMunz, Eberhard January 2018 (has links) (PDF)
The noninvasive magnetic resonance imaging technique allows for the investigation of functional processes in the living plant. For this purpose during this work, different NMR imaging methods were further developed and applied.
For the localisation of the intrusion of water into the germinating rape seed with the simultaneous depiction of the lipid-rich tissue via a 3D rendering, in Chap. 5 the technique of interleaved chemical selective acquisition of water and lipid was used in the germinating seed. The utilization of high-resolution MR images of germinated seeds enabled the localization of a predetermined water gap in the lipid-rich aleurone layer, which resides directly under the seed coat. The for a long time in biology prevalent discussion, whether such a gap exists or the seed soaks up the water from all sides, rather like a sponge, could hereby, at least for the rapeseed seed, be answered clearly. Furthermore, the segmentation and 3D visualization of the vascular tissue in the rapeseed seeds was enabled by the high-resolution datasets, a multiply branched structure preconstructed in the seed could be shown. The water is directed by the vascular tissue and thus awakens the seed gradually to life. This re-awakening could as well be tracked by means of invasive imaging via an oxygen sensor. In the re-awakened seeds, the lipid degradation starts, other than expected, not in the lipid-rich cotyledons but in the residual endosperm remaining from seed development and in the aleurone layer which previously protected the embryo. Within this layer, the degradation could be verified in the high-resolution MR datasets.
The method presented in Chap. 6 provides a further characteristic trait for phenotyping of seeds and lipid containing plants in general. The visualization of the compounds of fatty acids in plant seeds and fruits could be achieved by the distinct utilization of chemical shift-selective imaging techniques. Via the application of a CSI sequence the fatty acid compounds in an olive were localized in a 2D slice. In conjunction with an individually adjusted CHESS presaturation module Haa85 the high-resolution 3D visualization of saturated and unsaturated fatty acid compounds in different seeds was achieved. The ratio maps calculated from these datasets allow to draw conclusions from the developmental stage or the type of seed. Furthermore, it could be shown that the storage condition of two soybean seeds with different storage time durations lead to no degradation of the fatty acid content.
Additional structural information from inside of dry seeds are now accessible via MRI. In this work the imaging of cereal seeds could be significantly improved by the application of the UTE sequence. The hitherto existing depictions of the lipid distribution, acquired with the spin echo sequence, were always sufficient for examinations of the lipid content, yet defects in the starchy endosperm or differences in the starch concentration within the seed remained constantly unseen with this technique. In a direct comparison of the datasets acquired with the previous imaging technique (spin echo) and with UTE imaging, the advantage of data acquisition with UTE could be shown. By investigating the potential seed compounds (starch, proteins, sugar) in pure form, the constituent parts contributing to the signal could be identified as bound water (residual moisture) and starch. The application of a bi-exponential fit on the datasets of the barley seed enabled the separate mapping of magnetization and of relaxation time of two components contributing to the NMR signal. The direct comparison with histological stainings verified the previous results, thus this technique can be used for the selective imaging of starch in dry seeds.
Conclusions on the translocation characteristics in plants can be drawn by the technique proposed in Chap. 8. The associated translocation velocities can now, even in the range of several um/h, be determined in the living plant. Based on calculated concentrations of an MR contrast agent, which was taken up by the plant, these translocation velocities were estimated both in longitudinal direction, thus along the vascular bundle, and in horizontal direction, thus out of the bundle. The latter velocity is located below the contrast agent's velocity value of free diffusion. By adjusting a dynamic contrast-enhancing imaging technique (DCE-Imaging, Tof91) the acquisition duration of a T1-map was significantly reduced. By means of these maps, local concentrations of the contrast agent in plant stems and the siliques of the rapeseed plant could be determined.
Numerous questions in plant science can only be answered by non-invasive techniques such as MRI. For this reason, besides the experimental results achieved in this work, further NMR methods were tested and provided for the investigation of plants.
As an example, the study on the imaging of magnetic exchange processes are mentioned, which provided the groundwork for a possible transfer of CEST experiments (Chemical Exchange Saturation Transfer) to the plant. The results are presented in the bachelor thesis of A. Jäger Jae17, which was performed under my supervision, they find great interest under biologists.
The development of new technologies, which extend the possibilities for the investigation of living organisms, is of great importance. For this reason, I have contributed to the development of the currently unpublished method RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]). By rephasing the transferred magnetization the utilization of properties which have not been available in chemical "`exchange"' experiments is enabled. With this method a positive contrast is generated, thus a reference experiment is not mandatory. Furthermore, the image phase, which in classical experiments contains no information about the exchanged protons, can be used for the distinct identification of multiple substances which have been excited simultaneously.
This recently at the Department of Experimental Physics V developed method can be used in particular for the identification of lipids and for the localization of sugars and amino acids, thus it can serve the enhancement and improvement of non-invasive analytical methods. / Die nicht-invasive Bildgebungstechnik der Magnetresonanz ermöglicht es, funktionelle Prozesse in Pflanzen am lebenden Objekt zu untersuchen. Hierfür wurden im Rahmen dieser Arbeit verschiedene NMR-Bildgebungsmethoden weiterentwickelt und angewendet. Da Pflanzen ein magnetisch sehr inhomogenes Gewebe besitzen, bedingt durch Lufteinschlüsse und das Vorhandensein verschiedenster gelöster Stoffe im Pflanzengewebe, wurden daher hauptsächlich Spin-Echo-Methoden für die Bildgebung verwendet.
Um das erste Eindringen des Wassers in den keimenden Raps-Samen bei gleichzeitiger Darstellung des lipid-reichen Gewebes mittels einer 3D-Visualisierung zu lokalisieren, wurde in Kapitel 5 die Technik der verschachtelten, chemisch selektiven Aufnahme von Wasser und Lipid im keimenden Samen verwendet. Durch Verwendung von hochausgelösten MR-Aufnahmen an gekeimten Samen konnte weiterhin in der lipid-reichen Aleuron-Schicht, die sich direkt unter der Samenschale befindet, ein gezielt angelegter Einlass für das Wasser verortet werden. Die in der Biologie lange Zeit verbreitete Diskussion, ob es einen solchen Einlass gibt oder der keimende Samen das Wasser eher wie ein Schwamm von allen Seiten aufsaugt, konnte hierdurch, zumindest für den Raps-Samen, eindeutig beantwortet werden. Weiterhin konnte durch die hoch-aufgelösten Aufnahmen das vaskuläre Gewebe in den Raps-Samen segmentiert und in 3D veranschaulicht werden, es zeigte sich eine mehrfach verzweigte Struktur, die bereits im Samen angelegt ist. Das Wasser folgt hierbei dem vaskulären Gewebe und erweckt hierdurch den Samen schrittweise zum Leben. Dieses Wieder-Erwachen konnte ebenfalls durch die invasive Bildgebung mittels eines Sauerstoff-Sensors nachverfolgt werden. Im nun erwachten Samen selbst beginnt der Lipid-Abbau, anders als zunächst angenommen, nicht in den lipid-haltigen Kotyledonen sondern im von der Samen-Entwicklung verbliebenden Endosperm und in der den Keimling vormals schützenden Aleuron-Schicht. In dieser konnte der Abbau an gekeimten Samen durch hochaufgelöste MR-Aufnahmen nachgewiesen werden.
Die in Kapitel 6 vorgeschlagene Methode liefert ein weiteres Merkmal zur Phenotypisiserung von Samen und lipidhaltigen Pflanzenbestandteilen im Allgemeinen. Die Darstellung der Bestandteile ungesättigter Fettsäuren in Pflanzensamen und -Früchten konnte durch gezielte Verwendung von chemisch selektiven Bildgebungstechniken erreicht werden. Durch die Anwendung einer CSI-Sequenz konnten die Fettsäurebestandteile in Oliven in einer 2D-Schicht lokalisiert werden. In Verbindung mit einem jeweils angepassten CHESS-Vorsättigungsmodul Haa85 wurde die hochaufgelöste 3D-Darstellung von gesättigten und ungesättigten Fettsäurebestandteilen in unterschiedlichen Samen erreicht. Rückschlüsse über das Entwicklungsstadium sowie die Sorte der verwendeten Samen können aus den Verhältnis-Karten, die aus den jeweiligen Datensätzen berechnet wurden, gezogen werden. Dass in diesem Fall die Aufbewahrungsmethode zu keiner Degradation der Fettsäurezusammensetzung geführt hat, konnte weiterhin am Beispiel von zwei Sojasamen mit unterschiedlicher Lagerdauer gezeigt werden.
Zusätzliche strukturelle Informationen aus dem Inneren trockener Samen sind nun mittels MRT zugänglich. In dieser Arbeit konnte durch die UTE-Sequenz die Bildgebung von Getreidesamen deutlich vorangebracht werden. Die bisherigen Darstellungen der Lipid-Verteilung, aufgenommen mit einer Spin-Echo Sequenz, waren zwar für die Betrachtung des Lipid-Gehalts stets ausreichend, Defekte im stärkehaltigen Endosperm oder Unterschiede in der Stärke-Konzentration innerhalb des Samen blieben mit dieser Technik jedoch stets verborgen. Im direkten Vergleich der mit der bisherigen Technik (Spin-Echo) und der UTE-Bildgebung aufgenommenen Datensätze konnte der Vorteil der Datenaufnahme mit UTE gezeigt werden. Durch die Untersuchung der möglichen Samenbestandteile (Stärke, Proteine, Zucker) in Reinform konnten die zum Signal beitragen Bestandteile als gebundenes Wasser (Restfeuchte) und Stärke identifiziert werden. Die Verwendung bi-exponentiellen Fits and die Messdaten ermöglichte es im Gersten-Samen, zwei zum Signal beitragende Komponenten in getrennten Karten bezüglich ihrer Magnetisierung und Relaxationszeit zu trennen. Der Vergleich mit histologischen Färbungen bestätigte die bisherigen Ergebnisse, somit kann diese Technik zur selektiven Darstellung von Stärke in trockenen Samen verwendet werden.
Rückschlüsse auf das Transportverhalten in Pflanzen können durch die in Kapitel 8 vorgestellte Technik gezogen werden. Die zugehörigen Transportgeschwindigkeiten im lebenden Pflanzenobjekt können nun, selbst im Bereich von wenigen $\mu$m/h, bestimmt werden. Diese wurden anhand von berechneten Konzentrationen eines von der Pflanze aufgenommenen MR-Kontrastmittels sowohl in longitudinaler Richtung, also entlang des Leitgewebebündels, als auch in horizontaler Richtung, also aus dem Leitbündel heraus, abgeschätzt werden; Letztere Geschwindigkeit liegt deutlich unter dem Wert der freien Diffusionsgeschwindigkeit des Kontrastmittels. Hierfür wurden durch Anpassung einer dynamischen Kontrast-erhöhenden Bildgebungstechnik (DCE-Imaging, Tof91) die Aufnahmedauer einer für die weiteren Berechnungen benötigen T1-Karte deutlich reduziert. Mittels dieser Karten konnten die lokalen Konzentrationen des Kontrastmittels in Pflanzenstängeln und Schoten der Rapspflanze bestimmt werden.
Zahlreiche Fragen in der Pflanzenforschung können nur durch nicht-invasive Techniken wie MRT beantwortet werden. Deswegen wurden, neben den experimentellen Ergebnissen, die mittels dieser Arbeit erreicht wurden, auch weitere NMR Methoden für die Untersuchung von Pflanzen getestet und zur Verfügung gestellt.
Als Beispiel seien hier die Untersuchungen zur Bildgebung von magnetischen Austauschprozessen genannt, welche eine Vorarbeit zur möglichen Übertragung con CEST-Experimenten (Chemical Exchange Saturation Transfer) auf das Modell Pflanze liefern. Die Ergebnisse sind in der Bachelor-Arbeit von A. Jäger \cite{jaeger17}, an deren Durchführung ich als Betreuer maßgeblich beteiligt war, dargestellt und finden großes Interesse bei Biologen.
Von besonderer Wichtigkeit sind auch die Entwicklungen neuer Technologien, die die Möglichkeiten zur Untersuchung von lebenden Organismen erweitern können. Deswegen habe ich zu der Entwicklung der bislang unveröffentlichten Methode RACETE (Refocused Acquisition of Chemical Exchange Transferred Excitations [Jak17, Reu17, Gut18a]) beigetragen. Durch das Rephasieren der transferierten Magnetisierung können Eigenschaften, die bislang in chemischen "`Austausch"'-Experimenten nicht zur Verfügung stehen, ausgenutzt werden. Mit dieser Methode wird ein positiver Kontrast erzeugt, sie ist deshalb nicht zwingend auf ein Referenz-Experiment angewiesen. Weiterhin kann die Bildphase, welche in klassichen CEST-Experimenten keine Information über die ausgetauschten Protonen enthält, zur eindeutigen Identifizierung mehrerer parallel angeregter Substanzen verwendet werden.
|
19 |
Neue Methoden der physiologischen Magnet-Resonanz-Tomographie: Modellbasierte T1-Messungen und Darstellung von chemischem Austausch mit positivem Kontrast / Novell Methods for Physiological MRI: Model based T1-Quantification and Positive Contrast Chemical Exchange MeasurementsGutjahr, Fabian Tobias January 2019 (has links) (PDF)
Ziel dieser Arbeit war es, neue quantitative Messmethoden am Kleintier, insbesondere die Perfusionsmessung am Mäuseherz, zu etablieren. Hierfür wurde eine retrospektiv getriggerte T1-Messmethode entwickelt. Da bei retrospektiven Methoden keine vollständige Abtastung garantiert werden kann, wurde ein Verfahren gefunden, das mit Hilfe von Vorwissen über das gemessene Modell sehr effizient die fehlenden Daten interpolieren kann.
Mit Hilfe dieser Technik werden dynamische T1-Messungen mit hoher räumlicher und zeitlicher Auflösung möglich.
Dank der hohen Genauigkeit der T1-Messmethode lässt sich diese für die nichtinvasive Perfusionsmessung am Mäuseherz mittels der FAIR-ASL-Technik nutzen. Da auf Grund der retrospektiven Triggerung Daten an allen Positionen im Herzzyklus akquiriert werden, konnten T1- und Perfusionskarten nach der Messung zu beliebigen Punkten im Herzzyklus rekonstruiert werden.
Es bietet sich an, Techniken, die für die myokardiale Perfusion angewandt werden, auch für die Nierenperfusionsmessung zu verwenden, da die Niere in ihrer Rinde (Cortex) eine ähnlich hohe
Perfusion aufweist wie das Myokard. Gleichzeitig führen Nierenerkrankungen oftmals zu schlechter Kontrastmittelverträglichkeit, da diese bei Niereninsuffizienz u.U. zu lange im Körper verweilen und die Niere weiter schädigen. Auch deshalb sind die kontrastmittelfreien Spin-Labeling-Methoden hier interessant. Die FAIR-ASL-Technik ist jedoch an Mäusen in koronaler Ansicht für die Niere schlecht geeignet auf Grund des geringen Unterschieds zwischen dem markierten und dem Vergleichsexperiment. Als Lösung für dieses Problem wurde vorgeschlagen, die Markierungsschicht senkrecht zur Messschicht zu orientieren. Hiermit konnte die Sensitivität gesteigert und gleichzeitig die Variabilität der Methode deutlich verringert werden.
Mit Hilfe von kontrastmittelgestützten Messungen konnten auch das regionale Blutvolumen und das Extrazellularvolumen bestimmt werden. In den letzten Jahren hat das Interesse an Extrazellularvolumenmessungen zugenommen, da das Extrazellularvolumen stellvertretend für diffuse Fibrose gemessen werden kann, die bis dahin nichtinvasiven Methoden nicht zugänglich war. Die bisher in der Literatur verwendeten Quantifizierungsmethoden missachten den Einfluss, den das Hämatokrit auf den ECV-Wert hat. Es wurde eine neue Korrektur vorgeschlagen, die allerdings zusätzlich zur ECV-Messung auch eine RBV-Messung benötigt. Durch gleichzeitige Messung beider Volumenanteile konnte auch erstmals das Extrazellulare-Extravaskuläre-Volumen bestimmt werden.
Eine gänzlich andere kontrastmittelbasierte Methode in der MRT ist die Messung des chemischen Austauschs. Hierbei wirkt das Kontrastmittel nicht direkt beschleunigend auf die Relaxation, sondern der Effekt des Kontrastmittels wird gezielt durch HF-Pulse an- und ausgeschaltet. Durch den chemischen Austausch kann die Auswirkung der HF-Pulse akkumuliert werden. Bislang wurde bei solchen Messungen ein negativer Kontrast erzeugt, der ohne zusätzliche Vergleichsmessungen schwer detektierbar war. Im letzten Teil dieser Arbeit konnte eine neue Methode zur Messung des chemischen Austauschs gezeigt werden, die entgegen der aus der Literatur bekannten Methoden nicht Sättigung, sondern Anregung überträgt. Diese Änderung erlaubt es, einen echten positiven chemischen Austausch-Kontrast zu erzeugen, der nicht zwingend ein Vergleichsbild benötigt. Gleichzeitig ermöglicht die Technik, dadurch dass Anregung übertragen wird, die Phase der Anregung zu kontrollieren und nutzen. Eine mögliche Anwendung ist die Unterscheidung verschiedener Substanzen in einer Messung.
In der Summe wurden im Rahmen dieser Arbeit verschiedene robuste Methoden eta-
bliert, die die Möglichkeiten der quantitativen physiologischen MRT erweitern. / The objective of this dissertation was to develop new methods for physiological magnetic resonance imaging. A new retrospectively triggered T1-method was developed. Due to the retrospectivity, full sampling of k-space can not be warranted. Therefore a model- based interpolation method was developed to reconstruct missing data efficiently. Using this technique, dynamic T1-measurements with high temporal and spatial resolution could be acquired.
Due to the high precision of the developed T1-method, perfusion could be quantified using Arterial Spin Labeling. In comparison to the method established previously in our laboratory, the resolution could be doubled. Retrospective triggering enables reconstruc- tion of parameter maps on arbitrary positions in the heart cycle, as data are acquired continuously over several heart cycles. The perfusion measurement benefits from recon- struction on the end systole, as partial volume effects are decreased, due to the increased myocardial wall thickness. This serves as an effective increase in resolution. Furthermore, the data distributed over the whole heart cycle could be used to accelerate and stabilize the measurement.
Cardiac and renal diseases can be directly related, as deficiency in one of the organs affects the other one. Additionally several diseases like hypertension or diabetes affect
both organs. Moreover, kidneys are highly perfused, similar to the myocardium. Renal insufficiency can also lead to contrast agent intolerance, as clearance rates can be redu- ced. Therefore the FAIR-ASL technique lends itself to kidney perfusion measurements. It can, however, be problematic in small animals in coronal view, as the control-experiment inadvertently labels much of the same tissue and blood, as the labeling experiment. A modified FAIR-ASL measurement could be shown to increase sensitivity and reduce in- ter-measurement-variability by repositioning the inversion slice of the control experiment orthogonally to the measurement slice.
The T1-method was used in combination with contrast agent based measurements to quantify the regional blood volume and the extracellular volume fraction. There has been an increased interest in extracellular volume fraction measurements as the extracel- lular volume is used as a proxy for the detection of diffuse fibrosis, which has previously been inaccessible to non-invasive methods. Several correction factors are used in volume fraction quantification, but the influence of hematocrit in ECV measurements has been neglected so far. In mice and rats, the regional blood volume is a major constituent of the ECV, leading to a significant influence of hematocrit. A new correction is proposed to account for the volume fraction taken up by hematocrit. For this ECV hematocrit correction, the RBV has to be measured as well. Using both measurements, the ex- tracellular volume fraction can be corrected and the extracellular-extravascular-volume- fraction quantified.
A fundamentally different contrast-mechanism can be utilized using the measurement of chemical exchange. Instead of shortening relaxation times, the contrast provided by chemical exchange agents can be turned on and off using frequency selective rf-pulses. Due to the chemical exchange the effect of these pulses can be accumulated. Measure- ments exploiting this accumulation effect in general produce a negative contrast requiring a control-experiment for further evaluation. In the last part of this dissertation, a new technique transferring excitation instead of saturation could be demonstrated. By ge- nerating a real positive contrast, no control experiment is required. Other properties unavailable to previously published chemical exchange transfer methods can be exploi- ted. One example demonstrated in this dissertation is the separation of simultaneously excited compounds by their respective phase information imprinted by the excitation pulses.
In summary, several robust methods could be implemented to further the capabilities of quantitative physiological MRI.
|
20 |
Neue Methoden der Spin-Lock-basierten Magnetresonanztomographie: Myokardiale T\(_{1ρ}\)-Quantifizierung und Detektion magnetischer Oszillationen im nT-Bereich / New methods of spin-lock-based magnetic resonance imaging: myocardial T\(_{1ρ}\) quantification and detection of magnetic oscillations in the nT rangeGram, Maximilian January 2023 (has links) (PDF)
Das Ziel der vorliegenden Arbeit war die Entwicklung neuer, robuster Methoden der Spin-Lock-basierten MRT. Im Fokus stand hierbei vorerst die T1ρ-Quantifizierung des Myokards im Kleintiermodell. Neben der T1ρ-Bildgebung bietet Spin-Locking jedoch zusätzlich die Möglichkeit der Detektion ultra-schwacher, magnetischer Feldoszillationen. Die Projekte und Ergebnisse, die im Rahmen dieses Promotionsvorhabens umgesetzt und erzielt wurden, decken daher ein breites Spektrum der Spin-lock basierten Bildgebung ab und können grob in drei Bereiche unterteilt werden. Im ersten Schritt wurde die grundlegende Pulssequenz des Spin-Lock-Experimentes durch die Einführung des balancierten Spin-Locks optimiert. Der zweite Schritt war die Entwicklung einer kardialen MRT-Sequenz für die robuste Quantifizierung der myokardialen T1ρ-Relaxationszeit an einem präklinischen Hochfeld-MRT. Im letzten Schritt wurden Konzepte der robusten T1ρ-Bildgebung auf die Methodik der Felddetektion mittels Spin-Locking übertragen. Hierbei wurden erste, erfolgreiche Messungen magnetischer Oszillationen im nT-Bereich, welche lokal im untersuchten Gewebe auftreten, an einem klinischen MRT-System im menschlichen Gehirn realisiert. / The main goal of the present work was to develop new, robust methods of spin-lock-based MRI. The initial focus was on T1ρ quantification of the myocardium in small animal models. However, in addition to T1ρ imaging, spin-locking offers the possibility of detecting ultra-weak magnetic field oscillations. The projects and results realized and obtained in this PhD project therefore cover a broad spectrum of spin-lock based imaging and can be roughly divided into three areas. The first step was to optimize the basic pulse sequence of the spin-lock experiment by introducing balanced spin-locking. The second step was to develop a cardiac MRI sequence for robust quantification of the myocardial T1ρ relaxation time on a preclinical high-field MRI scanner. In the final step, concepts of robust T1ρ imaging were adapted to spin-lock based magnetic field detection. First successful measurements of magnetic field oscillations in the nT range, which occur locally inside the tissue under investigation, were realized on a clinical MRI system in the human brain.
|
Page generated in 0.1216 seconds