• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • Tagged with
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Ecology of kinetoplastid flagellates in freshwater deep lakes of Japan / キネトプラスチド鞭毛虫の日本の深い淡水湖沼での生態

Indranil, Mukherjee 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19960号 / 理博第4227号 / 新制||理||1607(附属図書館) / 33056 / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 中野 伸一, 教授 木庭 啓介, 教授 沼田 英治 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
2

Structural study of mRNA translation in kinetoplastids by Cryo-electron microscopy / Etude structurale de la traduction de ARNm chez les kinétoplastides par cryomicroscopie électronique

Brito Querido, Jailson Fernando 11 December 2017 (has links)
Les kinétoplastides sont un groupe de protozoaires, et qui menace plus de 400 millions de personnes dans le monde entier. Ils possèdent des segments d'expansion d'ARNr (SE) inhabituellement plus larges dans les sous-unités 40S. Ici, nous avons purifié à partir de lysats de cellules de T. cruzi des complexes d'initiation natifs (48S IC) et des sous-unités de 40S natives que nous avons ensuite analysées par cryo-ME. La structure des 48S IC révèle certains des aspects spécifiques de la traduction aux kinétoplastides, tels qu'un réseau d’interaction complexe entre eIF3 et SEs. En outre, notre structure met en évidence le rôle de DDX60 dans l'initiation de la traduction chez les kinétoplastides. La structure d'une sous-unité 40S native révèle l'existence d'un facteur non caractérisé (appelé ηF). Le site de liaison de ηF suggère un rôle dans le contrôle de la traduction. De plus, nous avons rapporté́ la structure d’une nouvelle protéine ribosomale (-r) spécifique des kinétoplastides (KSRP). Notre travail pose les premières bases structurales des aspects spécifiques de l'initiation de la traduction chez les kinétoplastides. / Kinetoplastid is a group of flagellated protozoans, which threatens more than 400 million people world-wide. They possess unusual large rRNA expansion segments (ES) in the 40S, such as ES6S, ES7S and ES9S and their location suggests an involvement in the initiation process. Furthermore, all mature mRNAs possess a conserved 5’ spliced-leader. Here, we purified from T. cruzi cell lysates native initiation complexes and native 40S subunits that we then analysed by cryo-EM. The structure of native initiation complexes reveals several kinetoplastid-specific aspects of translation, such as an intricate interaction network between eIF3 and ES6S and ES7S. Furthermore, it reveals the role of DDX60 in translation initiation in kinetoplastids. The structure of native 40S subunits reveals the existence of an uncharacterized factor (termed ηF) bound at platform of the 40S. The binding site of ηF suggests a role in translational control. Moreover, we reported a novel kinetoplastid-specific ribosomal (r-) protein (KSRP) bound to the 40S subunit. Our work represents the first structural characterization of kinetoplastids-specific aspects of translation initiation.
3

Study of cox1 trans-splicing in Diplonema papillatum mitochondria

Yan, Yifei 07 1900 (has links)
Diplonema papillatum est un organisme unicellulaire qui vit dans l’océan. Son génome mitochondrial possède une caractéristique spéciale: tous les gènes sont brisés en de multiples fragments qui s’appellent modules. Chaque module est codé par un chromosome différent. L’expression d’un gène exige des épissages-en-trans qui assemblent un ARN messager complet à partir de tous les modules du gène. Nous avons précédemment montré que le gène cox1 est encodé dans neuf modules avec six Us non encodés entre le module 4 et le module 5 de l’ARN messager mature [1]. Nous n’avons identifié aucune séquence consensus connue de site d’épissage près des modules. Nous spéculons qu’un ARN guide (gRNA) a dirigé l’épissage-en-trans du gène cox1 par un mécanisme qui est semblable à l’édition d’ARN par l’insertion/la suppression des Us chez les kinétoplastides, le groupe sœur des diplonémides. Nous avons trouvé que les six Us sont ajoutés au bout 3’ de l’ARN d’une façon semblable à ceux ajoutés par le TUTase lors de l’édition de l’insertion des Us chez les kinétoplastides. Nous avons construit des profils de gRNA de l’épissage-en-trans avec les expressions régulières basé sur notre connaissance des gRNAs dans l’édition d’ARN chez les kinétoplastides. Selon la complémentarité partielle entre le gRNA et les deux modules adjacents, nous avons généré des amorces pour RT-PCR visant à détecter des séquences qui sont assorties à un des profils de gRNA. Une expérience pilote in vitro n’a pas permis de reconstituer l’épissage-en-trans des modules 3, 4, et 5, suggérant que nous devons améliorer nos techniques. / Diplonema papillatum is a single cellular organism that lives in the ocean. Its mitochondrial genome possesses a special feature: all genes are fragmented in multiple pieces that are called modules and each module is encoded by a different chromosome. Expression of a gene requires trans-splicing that successfully assemble a full-length mRNA from all modules of the gene. It was previously shown that the cox1 gene is encoded in nine modules that are all located on different chromosomes; moreover, a stretch of six non-encoded Us exist between Module 4 and 5 in the mature mRNA [1]. No consensus sequence of known splicing sites was identified near the modules. We speculate that trans-splicing of the cox1 gene is directed by guide RNAs (gRNAs) via a mechanism that is similar to U-insertion/deletion editing in kinetoplastids, the sister group of diplonemids. We have detected populations of small RNA molecules that could come from mitochondrial. We found that the six Us were added to the 3’ end of Module 4 in a similar way to the Us added by the TUTase in kinetoplastid U-insertional editing. Sequence profiles of possible trans-splicing gRNAs were constructed in regular expressions based on our knowledge of known gRNAs in kinetoplastid RNA editing. According to the complementarity between the gRNA and the two adjacent modules, primers were designed for RT-PCR that aims to detect gRNA sequences. Among the results, we identified sequences that match or partially match the gRNA profiles. A pilot in vitro assay did not reconstitute trans-splicing of module 3, 4 and 5, suggesting that further technical improvements are needed.
4

Analysis Of Protein Evolution And Its Implications In Remote Homology Detection And Function Recognition

Gowri, V S 10 1900 (has links)
One of the major outcomes of a genome sequencing project is the availability of amino acid sequences of all the proteins encoded in the genome of the organism concerned. However, most commonly, for a substantial proportion of the proteins encoded in the genome no information in function is available either from experimental studies or by inference on the basis of homology with a protein of known function. Even if the general function of a protein is known, the region of the protein corresponding to the function might be a domain and there may be additional regions of considerable length in the protein with no known function. In such cases the information on function is incomplete. Lack of understanding of the repertoire of functions of proteins encoded in the genome limits the utility of the genomic data. While there are many experimental approaches available for deciphering functions of proteins at the genomic scale, bioinformatics approaches form a good early step in obtaining clues about functions of proteins at the genomic scale (Koonin et al, 1998). One of the common bioinformatics approaches is recognition of function by homology (Bork et al, 1994). If the evolutionary relationship between two proteins, one with known function and the other with unknown function, could be established it raises the possibility of common function and 3-D structure for these proteins(Bork and Gibson, 1996). While this approach is effective its utility is limited by the ability of the bioinformatics approach to identify related proteins when their evolutionary divergence is high leading to low amino acid sequence similarity which is typical of two unrelated proteins (Bork and Koonin, 1998). Use of 3-D structural information, obtained by predictive methods such as fold recognition, has offered approaches towards increasing the sensitivity of remote homology detection 9e.g., Kelley et al, 2000; Shi et al, 2001; Gough et al, 2001). The work embodied in this thesis has the general objective of analysis of evolution of structural features and functions of families of proteins and design of new bioinformatics approaches for recognizing distantly related proteins and their applications. After an introductory chapter, a few chapters report analysis of functional and structural features of homologous protein domains. Further chapters report development and assessment of new remote homology detection approaches and applications to the proteins encoded in two protozoan organisms. A further chapter is presented on the analysis of proteins involved in methylglyoxal detoxification pathways in kinetoplastid organisms. Chapter I of the thesis presents a brief introduction, based on the information available in the literature, to protein structures, classification, methods for structure comparison, popular methods for remote homology detection and homology-based methods for function annotation. Chapter 2 describes the steps involved in the update and improvements made in this database. In addition to the update, the domain structural families are integrated with the homologous sequences from the sequence databases. Thus, every family in PALI is enriched with a substantial volume of sequence information from proteins with no known structural information. Chapter 3 reports investigations on the inter-relationships between sequence, structure and functions of closely-related homologous enzyme domain families. Chapter 4 describes the investigations on the unusual differences in the lengths of closely-related homologous protein domains, accommodation of additional lengths in protein 3-D structures and their functional implications. Chapter 5 reports the development and assessment of a new approach for remote homology detection using dynamic multiple profiles of homologous protein domain families. Chapter 6 describes development of another remote homology detection approach which are multiple, static profiles generated using the bonafide members of the family. A rigorous assessment of the approach and strategies for improving the detection of distant homologues using the multiple profile approach are discussed in this chapter. Chapter 7 describes results of searches made in the database of multiple family profiles (MulPSSM database) in order to recognize the functions of hypothetical proteins encoded in two parasitic protozoa. Chapter 8 describes the sequence and structural analyses of two glyoxalase pathway proteins from the kinetoplastid organism Leishmania donovani which causes Leishmaniases. An alternate enzyme, which would probably substitute the glyoxalase pathway enzymes in certain kinetoplastid organisms which lack the glyoxalase enzymes are also discussed. Chapter 9 summarises the important findings from the various analyses discussed in this thesis. Appendix describes an analysis on the correlation between a measure of hydrophobicity of amino acid residues aligned in a multiple sequence alignment and residue depth in 3-D structures of proteins.
5

Study of cox1 trans-splicing in Diplonema papillatum mitochondria

Yan, Yifei 07 1900 (has links)
Diplonema papillatum est un organisme unicellulaire qui vit dans l’océan. Son génome mitochondrial possède une caractéristique spéciale: tous les gènes sont brisés en de multiples fragments qui s’appellent modules. Chaque module est codé par un chromosome différent. L’expression d’un gène exige des épissages-en-trans qui assemblent un ARN messager complet à partir de tous les modules du gène. Nous avons précédemment montré que le gène cox1 est encodé dans neuf modules avec six Us non encodés entre le module 4 et le module 5 de l’ARN messager mature [1]. Nous n’avons identifié aucune séquence consensus connue de site d’épissage près des modules. Nous spéculons qu’un ARN guide (gRNA) a dirigé l’épissage-en-trans du gène cox1 par un mécanisme qui est semblable à l’édition d’ARN par l’insertion/la suppression des Us chez les kinétoplastides, le groupe sœur des diplonémides. Nous avons trouvé que les six Us sont ajoutés au bout 3’ de l’ARN d’une façon semblable à ceux ajoutés par le TUTase lors de l’édition de l’insertion des Us chez les kinétoplastides. Nous avons construit des profils de gRNA de l’épissage-en-trans avec les expressions régulières basé sur notre connaissance des gRNAs dans l’édition d’ARN chez les kinétoplastides. Selon la complémentarité partielle entre le gRNA et les deux modules adjacents, nous avons généré des amorces pour RT-PCR visant à détecter des séquences qui sont assorties à un des profils de gRNA. Une expérience pilote in vitro n’a pas permis de reconstituer l’épissage-en-trans des modules 3, 4, et 5, suggérant que nous devons améliorer nos techniques. / Diplonema papillatum is a single cellular organism that lives in the ocean. Its mitochondrial genome possesses a special feature: all genes are fragmented in multiple pieces that are called modules and each module is encoded by a different chromosome. Expression of a gene requires trans-splicing that successfully assemble a full-length mRNA from all modules of the gene. It was previously shown that the cox1 gene is encoded in nine modules that are all located on different chromosomes; moreover, a stretch of six non-encoded Us exist between Module 4 and 5 in the mature mRNA [1]. No consensus sequence of known splicing sites was identified near the modules. We speculate that trans-splicing of the cox1 gene is directed by guide RNAs (gRNAs) via a mechanism that is similar to U-insertion/deletion editing in kinetoplastids, the sister group of diplonemids. We have detected populations of small RNA molecules that could come from mitochondrial. We found that the six Us were added to the 3’ end of Module 4 in a similar way to the Us added by the TUTase in kinetoplastid U-insertional editing. Sequence profiles of possible trans-splicing gRNAs were constructed in regular expressions based on our knowledge of known gRNAs in kinetoplastid RNA editing. According to the complementarity between the gRNA and the two adjacent modules, primers were designed for RT-PCR that aims to detect gRNA sequences. Among the results, we identified sequences that match or partially match the gRNA profiles. A pilot in vitro assay did not reconstitute trans-splicing of module 3, 4 and 5, suggesting that further technical improvements are needed.
6

Synthèse et étude des relations structure-activité de nouvelles 3-nitroimidazo (1,2-a) pyridines anti-kinétoplastidés / Synthesis and structure-activity relationships study of new anti-kinetoplastid 3-nitroimidazo[1,2-a]pyridines

Fersing, Cyril 11 July 2018 (has links)
Les maladies tropicales négligées causées par les protozoaires kinétoplastidés du genre Leishmania et Trypanosoma représentent une menace pour près d’un demi-milliard de personnes en zone intertropicale, entrainant jusqu’à 50 000 décès par an. Parmi les molécules en développement clinique pour traiter ces pathologies, le fexinidazole est une prodrogue appartenant à la famille des 5-nitroimidazoles et qui exerce son action anti-infectieuse via une étape de bioactivation catalysée par des nitroréductases (NTR) parasitaires, enzymes dont le co-facteur est une flavine. Afin d’identifier de nouveaux nitrohétérocycles antiparasitaires substrats des NTR, une petite chimiothèque d’imidazo[1,2-a]pyridines synthétisées au laboratoire a subi un criblage in vitro ayant conduit à l’identification d’une molécule Hit, à la fois active sur Leishmania donovani et Trypanosoma brucei brucei. Ce composé a servi de point de départ à un travail de pharmacomodulation, dans un premier temps en position 8 du cycle imidazo[1,2-a]pyridine : l’introduction de groupements variés à l’aide de réactions de couplage pallado-catalysées de Suzuki-Miyaura, Sonogashira et Buchwald-Hartwig ou des réactions de SNAr, a permis de mettre en lumière plusieurs composés « tête de série » au profil biologique nettement amélioré. Dans un second temps, le travail de pharmacomodulation entrepris a été étendu aux positions 2, 3 et 6 du cycle imidazo[1,2-a]pyridine en vue de compléter les données de relations structure-activité, d’étudier en particulier l’impact du potentiel rédox et d’optimiser les paramètres physico-chimiques et pharmacocinétiques in vitro des meilleurs composés. / The kinetoplastids of the Leishmania and Trypanosoma genus are the causative agents of neglected tropical diseases that threaten nearly half a billion people in the intertropical zone, resulting in 50 000 deaths per year. Among the molecules in clinical development to treat these pathologies, fexinidazole is a prodrug belonging to the 5-nitroimidazoles family, which exerts its anti-infectious action via a bioactivation step catalyzed by parasitic nitroreductases (NTR), enzymes whose cofactor is a flavin. In order to identify novel nitroheterocycles as parasitic NTR substrates, a small chemical library of imidazo[1,2-a]pyridines synthesized by our laboratory was screened in vitro, leading to the identification of a Hit molecule active both on Leishmania donovani and Trypanosoma brucei brucei. This compound served as a starting point for a pharmacomodulation work, initially in position 8 of the imidazo[1,2-a]pyridine ring: the introduction of various chemical groups using the pallado-catalyzed coupling reactions of Suzuki-Miyaura, Sonogashira and Buchwald-Hartwig, or SNAr reactions, highlighted several "lead" compounds with a significantly improved biological profile. In a second step, the pharmacomodulation work was extended to positions 2, 3 and 6 of the imidazo[1,2-a]pyridine ring in order to complete the structure-activity relationship data, to study in particular the impact of the redox potential and to optimize the physicochemical and in vitro pharmacokinetic parameters of the best compounds in order to initiate the study of their in vivo activity on a trypanosomiasis mouse model.

Page generated in 0.0535 seconds