• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 8
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The effects of hypolimnetic oxygenation on the chemical, physical, and biological properties of a shallow drinking water reservoir

Browne, Richard Gregory 20 September 2013 (has links)
Hypolimnetic anoxia can result in higher internal phosphorus (P) loads from the sediments to the water column, thereby increasing nutrient availability, making preventing anoxia a major goal for lake managers to improve water quality. Side-stream saturation (SSS), a type of hypolimnetic oxygenation system, has been developed to maintain oxygenated conditions at the sediments by withdrawing oxygen-depleted water from the hypolimnion to an on-site facility and injecting it with oxygen under high pressure before returning it to the hypolimnion. While this technique has been studied in select water bodies, to date it has not been successfully deployed in a shallow lake. This study investigated the effects of an SSS system deployed at Falling Creek Reservoir, a shallow drinking water reservoir located in Vinton, Virginia, USA. Specifically, we examined the effects of the SSS system on several chemical, physical, and biological response variables to ascertain the short-term impacts of hypolimnetic oxygenation on reservoir water quality. We found that the SSS system was successful in increasing dissolved oxygen concentrations in the reservoir hypolimnion without weakening stratification, warming the sediments, or increasing turbidity; however, we were unable to detect any short-term effects of SSS operation on P concentrations, P loading, pH, chlorophyll a, or algal density. Interestingly, we also observed an increase in oxygen demand in response to SSS operation, which must be taken into account when deploying oxygenation systems in the future. Continued monitoring is necessary to more completely assess the long-term impacts of SSS operation on water quality at Falling Creek Reservoir. / Master of Science
2

Diffuser Operations at Spring Hollow Reservoir

Gantzer, Paul Anthony 28 May 2002 (has links)
Stratification is a natural occurrence in deep lakes and reservoirs. This phenomenon results in two distinct layers, the warmer, less dense epilimnion on top and the colder, denser, hypolimnion on the bottom. The epilimnion remains saturated with dissolved oxygen (DO) from mass transfer with the atmosphere, while the hypolimnion continues to undergo oxygen-depleting processes. During seasons of high oxygen demand the hypolimnion often becomes anoxic and results in the release of compounds, such as Iron, Manganese, Hydrogen Sulfide, and Phosphorous from the sediment. Iron, Manganese, and Hydrogen Sulfide can require addition Chlorine for water treatment plants, thus increasing cost and the potential production of DBP's, while the release of phosphorous results in algal blooms the following year. Spring Hollow Reservoir, located in Roanoke County, Virginia is a deep reservoir that undergoes stratification during the summer months. During 1997 Roanoke County purchased a bubble-plume diffuser from Tennessee Valley Authority (TVA) to oxygenate the hypolimnion to maintain long-term water quality. Spring Hollow currently operates the diffuser, with compressed air, during late summer months when DO levels in the hypolimnion reach approximately 4 mg/L. Observations during oxygenation have identified changing DO addition rates during diffuser operation and changing DO depletion rates following termination of oxygenation. Future research should focus on developing a quantitative understanding of the changing rates as they are related to diffuser induced oxygen demand. / Master of Science
3

Controlling Dissolved Oxygen, Iron and Manganese in Water-Supply Reservoirs using Hypolimnetic Oxygenation

Gantzer, Paul Anthony 23 April 2008 (has links)
Hypolimnetic oxygenation systems, such as linear bubble-plume diffusers, are used to improve raw water quality. Linear bubble-plume diffusers were installed in Spring Hollow Reservoir (SHR) and Carvins Cove Reservoir (CCR). Diffusers induce mixing that aids distribution of oxygen throughout the hypolimnion. The induced mixing also creates an undesirable effect by increasing hypolimnetic oxygen demand (HOD). Nevertheless, oxygenation systems are commonly used and long-term oxygenation is hypothesized to actually decrease HOD. Increased oxygen concentrations in combination with the induced mixing affect the location of the oxic/anoxic boundary relative to the sediment water interface. If the oxic/anoxic boundary is pushed beneath the sediment/water interface, the concentrations of soluble iron and manganese in the bulk water are reduced. This work was performed to further validate a recently published bubble-plume model that predicts oxygen addition rates and the elevation in the reservoir where the majority of the oxygen is added. Also, the first field observations of a theoretically expected secondary plume are presented. Model predicted addition rates were compared to observed accumulation rates to evaluate HOD over a wide range of applied gas flow rates. Observations in both reservoirs showed evidence of horizontal spreading that correlated well with plume-model predictions and of vertical spreading below diffuser elevations, showing oxygen penetration into the sediment. Experimental observations of a theoretically expected secondary plume structure also correlated well with model predictions. Plume-induced mixing was shown to be a function of applied gas flow rates, and was observed to increase HOD. HOD was also observed to be independent of bulk hypolimnion oxygen concentration, indicating that the increase in oxygen concentration is not the cause of the increased HOD. Long-term oxygenation resulted in an overall decrease in background HOD as well as a decrease in induced HOD during diffuser operation. Elevated oxygen concentrations and mixing, which occur naturally during destratification and artificially during oxygenation, were observed to coincide with low dissolved metal concentrations in CCR. Movement of the oxic/anoxic boundary out of the sediment, which is also common during stratified periods, appears to facilitate transport of reduced Mn to the overlying waters. Hypolimnetic oxygenation increased oxygen concentrations throughout the hypolimnion, including down to the SWI, and induced mixing, although not to the extent observed during destratification. Subsequently, elevated Mn concentrations were observed to be restricted to the benthic waters located immediately over the sediments, while bulk (hypolimnion) water Mn concentrations remained low. The good agreement between the model and the experimental data show that the model can be used as a predictive tool when designing and operating bubble-plume diffusers. Linear bubble-plume diffusers provide sufficient horizontal and vertical spreading to enable oxygen to reach the sediments. Hypolimnetic oxygenation, despite the increased HOD, is a viable method to manage the negative consequences of hypolimnetic anoxia in water-supply reservoirs. / Ph. D.
4

Ecology of kinetoplastid flagellates in freshwater deep lakes of Japan / キネトプラスチド鞭毛虫の日本の深い淡水湖沼での生態

Indranil, Mukherjee 23 September 2016 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第19960号 / 理博第4227号 / 新制||理||1607(附属図書館) / 33056 / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 中野 伸一, 教授 木庭 啓介, 教授 沼田 英治 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DGAM
5

Hypolimnetic Mixing in Lake Michigan

David J Cannon (8066834) 02 December 2019 (has links)
<p>Little work has been done to estimate turbulence characteristics in the hypolimnetic waters of large lakes, where the magnitude and vertical structure of turbulent parameters have important implications for nutrient cycling and benthic exchange. In this thesis, hypolimnetic mixing is investigated over the annual stratification cycle in a large lake using a series of experiments in Lake Michigan that utilize acoustic Doppler velocimeters, thermistors, and microstructure profilers to characterize mean flow and turbulence throughout the water column. More than 500 days of physical limnological data were collected and analyzed over the course of this study, creating the most comprehensive data set of its kind in the Laurentian Great Lakes. While we found that bottom boundary layer turbulence and mean flow follow law-of-the-wall predictions in the mean, individual estimates were shown to deviate significantly from canonical expectations, with deviations linked to weakly energetic flow conditions (i.e. low speeds) and seiche-scale flow unsteadiness. Bottom boundary layer characteristics, including the mean current speed (U<sub>50</sub>=3 cm/s), drag coefficient (Cd<sub>50</sub>=0.0052), and turbulent kinetic energy dissipation (ϵ<sub>50</sub> =10<sup>-8</sup> W/kg), showed very little seasonal variation, despite highly variable surface forcing (e.g. stratification, wind speeds). Full water column turbulence profiles measured during the stratified summer were largely buoyancy suppressed, with internal Poincaré waves driving enhanced turbulent kinetic energy dissipation (ϵ= 10<sup>-7</sup> W/kg) in the relatively compact thermocline and weak hypolimnetic mixing (turbulent scalar diffusivity: K<sub>z</sub>=10<sup>-6</sup> m<sup>2</sup>/s) limiting benthic nutrient delivery. Although small temperature gradients drove strong mixing over the isothermal period (K<sub>z</sub>=10<sup>-3</sup> m<sup>2</sup>/s), velocity shear was overwhelmed by weakly stable stratification (Richardson number:Ri≈0.2), limiting the development of the surface mixed layer and suppressing hypolimnetic turbulence (ϵ=10<sup>-9</sup> W/kg; K<sub>z</sub>=10<sup>-4</sup> m<sup>2</sup>/s). When surface temperatures fell below the temperature of maximum density (T<sub>MD</sub>≈ 4℃), radiative convection played a major role in driving vertical transport, with energetic full water column mixing throughout the day followed by surface cooling and restratification overnight. During this “convective winter” period, daily temperature instabilities were directly correlated with elevated turbulence levels (ϵ=10<sup>-7</sup> W/kg; K<sub>z</sub>≈10<sup>-1</sup> m<sup>2</sup>/s), and overnight turbulence characteristics were similar to those observed over the isothermal spring. Near surface dissipation and diffusivity measurements followed similarity scaling arguments, with wind shear and surface fluxes dominating production in the surface mixed layer during all three seasons. Together, these results are used to model the influence of invasive dreissenids over each forcing period, providing insight into the annual variability of effective filtration rates in the calm, hypolimnetic waters of Lake Michigan.</p><p></p>
6

Ecology of bacterioplankton specific to the oxygenated hypolimnia of deep freshwater lakes / 大水深淡水湖の有酸素深水層に特有な細菌の生態解明

Okazaki, Yusuke 26 March 2018 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第20953号 / 理博第4405号 / 新制||理||1633(附属図書館) / 京都大学大学院理学研究科生物科学専攻 / (主査)教授 中野 伸一, 教授 木庭 啓介, 教授 中川 尚史 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
7

Varved lake sediment used to assess anthropogenic and environmental change in Summit Lake, Akron, Ohio

Rego, Melissa 26 June 2022 (has links)
No description available.
8

Mechanisms Causing Ferric Staining in the Secondary Water System of Brigham City, Utah

Wallace, Robert Derring 26 May 2007 (has links)
Water from Mantua reservoir has, during some years, exhibited reddish-brown staining when used by Brigham City for irrigation. I propose that seasonal fluctuations in the reservoir chemistry create an environment conducive to dissolving iron from the iron-rich sediments, which subsequently precipitate during irrigation, resulting in a staining event. These conditions are produced by chemical and biological decomposition of organic matter, coupled with isolation of the hypolimnetic waters, which results in seasonal low concentrations of dissolved oxygen in these waters. Under these specific circumstances, anaerobic conditions develop creating a geochemical environment that causes iron and manganese reduction from Fe(III) to Fe(II) and Mn(IV) to Mn(II), respectively. These reducing conditions facilitate reduction-oxidation (redox) chemical reactions that convert insoluble forms of iron and manganese found in the reservoir sediments into more soluble forms. Consequently, relatively high amounts of dissolved iron and manganese are generated in the bottom waters immediately adjacent to the benthic sediments of the reservoir. Water withdrawn from a bottom intake pipe during these periods introduces iron-rich water into the distribution system. When this water is exposed to oxygen, reoxidation shifts redox equilibrium causing precipitation of soluble Fe(II) and Mn(III) back to highly insoluble Fe(III) and Mn(IV). The precipitant appears on contact surfaces as the aforementioned ferric stain. This research focuses specifically on the iron chemistry involved and evaluates this hypothesis using various measurements and models including field data collection, computer simulations, and bench-scale testing to validate the processes proposed.

Page generated in 0.0928 seconds