• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Novel Model Reduction Techniques for Control of Machine Tools

Benner, Peter, Bonin, Thomas, Faßbender, Heike, Saak, Jens, Soppa, Andreas, Zaeh, Michael 13 November 2009 (has links) (PDF)
Computational methods for reducing the complexity of Finite Element (FE) models in structural dynamics are usually based on modal analysis. Classical approaches such as modal truncation, static condensation (Craig-Bampton, Guyan), and component mode synthesis (CMS) are available in many CAE tools such as ANSYS. In other disciplines, different techniques for Model Order Reduction (MOR) have been developed in the previous 2 decades. Krylov subspace methods are one possible choice and often lead to much smaller models than modal truncation methods given the same prescribed tolerance threshold. They have become available to ANSYS users through the tool mor4ansys. A disadvantage is that neither modal truncation nor CMS nor Krylov subspace methods preserve properties important to control design. System-theoretic methods like balanced truncation approximation (BTA), on the other hand, are directed towards reduced-order models for use in closed-loop control. So far, these methods are considered to be too expensive for large-scale structural models. We show that recent algorithmic advantages lead to MOR methods that are applicable to FE models in structural dynamics and that can easily be integrated into CAE software. We will demonstrate the efficiency of the proposed MOR method based on BTA using a control system including as plant the FE model of a machine tool.
2

Regularization Methods for Ill-posed Problems

Neuman, Arthur James, III 15 June 2010 (has links)
No description available.
3

A rational SHIRA method for the Hamiltonian eigenvalue problem

Benner, Peter, Effenberger, Cedric 07 January 2009 (has links) (PDF)
The SHIRA method of Mehrmann and Watkins belongs among the structure preserving Krylov subspace methods for solving skew-Hamiltonian eigenvalue problems. It can also be applied to Hamiltonian eigenproblems by considering a suitable transformation. Structure induced shift-and-invert techniques are employed to steer the algorithm towards the interesting region of the spectrum. However, the shift cannot be altered in the middle of the computation without discarding the information that has been accumulated so far. This paper shows how SHIRA can be combined with ideas from Ruhe's Rational Krylov algorithm to yield a method that permits an adjustment of shift after every step of the computation, adding greatly to the flexibility of the algorithm. We call this new method rational SHIRA. A numerical example is presented to demonstrate its efficiency.
4

NEW COMPUTATIONAL METHODS FOR OPTIMAL CONTROL OF PARTIAL DIFFERENTIAL EQUATIONS

Liu, Jun 01 August 2015 (has links)
Partial differential equations are the chief means of providing mathematical models in science, engineering and other fields. Optimal control of partial differential equations (PDEs) has tremendous applications in engineering and science, such as shape optimization, image processing, fluid dynamics, and chemical processes. In this thesis, we develop and analyze several efficient numerical methods for the optimal control problems governed by elliptic PDE, parabolic PDE, and wave PDE, respectively. The thesis consists of six chapters. In Chapter 1, we briefly introduce a few motivating applications and summarize some theoretical and computational foundations of our following developed approaches. In Chapter 2, we establish a new multigrid algorithm to accelerate the semi-smooth Newton method that is applied to the first-order necessary optimality system arising from semi-linear control-constrained elliptic optimal control problems. Under suitable assumptions, the discretized Jacobian matrix is proved to have a uniformly bounded inverse with respect to mesh size. Different from current available approaches, a new strategy that leads to a robust multigrid solver is employed to define the coarse grid operator. Numerical simulations are provided to illustrate the efficiency of the proposed method, which shows to be computationally more efficient than the popular full approximation storage (FAS) multigrid method. In particular, our proposed approach achieves a mesh-independent convergence and its performance is highly robust with respect to the regularization parameter. In Chaper 3, we present a new second-order leapfrog finite difference scheme in time for solving the first-order necessary optimality system of the linear parabolic optimal control problems. The new leapfrog scheme is shown to be unconditionally stable and it provides a second-order accuracy, while the classical leapfrog scheme usually is well-known to be unstable. A mathematical proof for the convergence of the proposed scheme is provided under a suitable norm. Moreover, the proposed leapfrog scheme gives a favorable structure that leads to an effective implementation of a fast solver under the multigrid framework. Numerical examples show that the proposed scheme significantly outperforms the widely used second-order backward time differentiation approach, and the resultant fast solver demonstrates a mesh-independent convergence as well as a linear time complexity. In Chapter 4, we develop a new semi-smooth Newton multigrid algorithm for solving the discretized first-order necessary optimality system that characterizes the optimal solution of semi-linear parabolic PDE optimal control problems with control constraints. A new leapfrog discretization scheme in time associated with the standard five-point stencil in space is established to achieve a second-order accuracy. The convergence (or unconditional stability) of the proposed scheme is proved when time-periodic solutions are considered. Moreover, the derived well-structured discretized Jacobian matrices greatly facilitate the development of an effective smoother in our multigrid algorithm. Numerical simulations are provided to illustrate the effectiveness of the proposed method, which validates the second-order accuracy in solution approximations as well as the optimal linear complexity of computing time. In Chapter 5, we offer a new implicit finite difference scheme in time for solving the first-order necessary optimality system arising in optimal control of wave equations. With a five-point central finite difference scheme in space, the full discretization is proved to be unconditionally convergent with a second-order accuracy, which is not restricted by the classical Courant-Friedrichs-Lewy (CFL) stability condition on the spatial and temporal step sizes. Moreover, based on its advantageous developed structure, an efficient preconditioned Krylov subspace method is provided and analyzed for solving the discretized sparse linear system. Numerical examples are presented to confirm our theoretical conclusions and demonstrate the promising performance of proposed preconditioned iterative solver. Finally, brief summaries and future research perspectives are given in Chapter 6.
5

A rational SHIRA method for the Hamiltonian eigenvalue problem

Benner, Peter, Effenberger, Cedric 07 January 2009 (has links)
The SHIRA method of Mehrmann and Watkins belongs among the structure preserving Krylov subspace methods for solving skew-Hamiltonian eigenvalue problems. It can also be applied to Hamiltonian eigenproblems by considering a suitable transformation. Structure induced shift-and-invert techniques are employed to steer the algorithm towards the interesting region of the spectrum. However, the shift cannot be altered in the middle of the computation without discarding the information that has been accumulated so far. This paper shows how SHIRA can be combined with ideas from Ruhe's Rational Krylov algorithm to yield a method that permits an adjustment of shift after every step of the computation, adding greatly to the flexibility of the algorithm. We call this new method rational SHIRA. A numerical example is presented to demonstrate its efficiency.
6

Novel Model Reduction Techniques for Control of Machine Tools

Benner, Peter, Bonin, Thomas, Faßbender, Heike, Saak, Jens, Soppa, Andreas, Zaeh, Michael 13 November 2009 (has links)
Computational methods for reducing the complexity of Finite Element (FE) models in structural dynamics are usually based on modal analysis. Classical approaches such as modal truncation, static condensation (Craig-Bampton, Guyan), and component mode synthesis (CMS) are available in many CAE tools such as ANSYS. In other disciplines, different techniques for Model Order Reduction (MOR) have been developed in the previous 2 decades. Krylov subspace methods are one possible choice and often lead to much smaller models than modal truncation methods given the same prescribed tolerance threshold. They have become available to ANSYS users through the tool mor4ansys. A disadvantage is that neither modal truncation nor CMS nor Krylov subspace methods preserve properties important to control design. System-theoretic methods like balanced truncation approximation (BTA), on the other hand, are directed towards reduced-order models for use in closed-loop control. So far, these methods are considered to be too expensive for large-scale structural models. We show that recent algorithmic advantages lead to MOR methods that are applicable to FE models in structural dynamics and that can easily be integrated into CAE software. We will demonstrate the efficiency of the proposed MOR method based on BTA using a control system including as plant the FE model of a machine tool.
7

Modellreduktion thermischer Felder unter Berücksichtigung der Wärmestrahlung

Rother, Stephan 15 November 2019 (has links)
Transiente Simulationen im Rahmen von Parameterstudien oder Optimierungsprozessen erfor-dern die Anwendung der Modellordnungsreduktion zur Minimierung der Berechnungs¬zeiten. Die aus der Wärmestrahlung resultierende Nichtlinearität bei der Analyse thermischer Felder wird hier als äußere Last betrachtet, wodurch die entkoppelte Ermittlung der strahlungs-beding¬ten Wärmeströme gelingt. Darüber hinaus ermöglichen die infolgedessen konstanten System¬matrizen die Reduktion des Temperaturvektors mit etablierten Verfahren für lineare Systeme, wie beispielsweise den Krylov-Unterraummethoden. Die aus der in der Regel großflächigen Verteilung der thermischen Lasten folgende hohe Anzahl von Systemeingängen limitiert allerdings die erzielbare reduzierte Dimension. Deshalb werden zustandsunabhängige, sich synchron verändernde Lasten zu einem Eingang zusammengefasst. Die aus der Strahlung resultierenden Wärmeströme sind im Gegensatz dazu durch die aktuelle Temperaturverteilung bestimmt und lassen sich nicht derart gruppieren. Vor diesem Hintergrund wird ein Ansatz basierend auf der Singulärwertzerlegung von aus Trai¬ningssimulationen gewonnenen Beispiellastvektoren vorgeschlagen. Auf diese Weise gelingt eine erhebliche Verringerung der Eingangsanzahl, sodass im reduzierten System ein sehr geringer Freiheitsgrad erreicht wird. Im Vergleich zur Proper Orthogonal Decomposition (POD) genügen dabei deutlich weniger Trainingsdaten, was den Rechenaufwand während der Offline-Phase erheblich vermindert. Darüber hinaus dehnt das entwickelte Verfahren die Gültigkeit des reduzierten Modells auf einen weiten Parameterbereich aus. Die Berechnung der strahlungsbedingten Wärmeströme in der Ausgangsdimension bestimmt dann den numerischen Aufwand. Mit der Discrete Empirical Interpolation Method (DEIM) wird die Auswertung der Nichtlinearität auf ausgewählte Modellknoten beschränkt. Schließlich erlaubt die Anwendung der POD auf die Wärmestrahlungsbilanz die schnelle Anpassung des Emissionsgrades. Somit hängt das reduzierte System nicht mehr vom ursprünglichen Freiheitsgrad ab und die Gesamt-simulationszeit verkürzt sich um mehrere Größenordnungen. / Transient simulations as part of parameter studies or optimization processes require the appli-cation of model order reduction to minimize computation times. Nonlinearity resulting from heat radiation in thermal analyses is considered here as an external load. Thereby, the determi-nation of the radiation-induced heat flows is decoupled from the temperature equation. Hence, the system matrices become invariant and established algorithms for linear systems, such as Krylov Subspace Methods, can be used for the reduction of the temperature vector. However, in general the achievable reduced dimension is limited as the thermal loads distributed over large parts of the surface lead to a high number of system inputs. Therefore, state-independent, synchronously changing loads are combined into one input. In contrast, the heat flows resulting from radiation are determined by the current temperature distribution and cannot be grouped in this way. Against this background, an approach based on the singular value decomposition of snapshots obtained from training simulations is proposed allowing a considerable decreased input number and a very low degree of freedom in the reduced system. Compared to Proper Orthogonal Decomposition (POD), significantly less training data is required reducing the computational costs during the offline phase. In addition, the developed method extends the validity of the reduced model to a wide parameter range. The computation of the radiation-induced heat flows, which is performed in the original dimension, then determines the numerical effort. The Discrete Empirical Interpolation Method (DEIM) restricts the evaluation of the nonlinearity to selected model nodes. Finally, the application of the POD to the heat radiation equation enables a rapid adjustment of the emissivity. Thus, the reduced system is no longer dependent on the original degree of freedom and the total simulation time is shortened by several orders of magnitude.
8

On Methods for Solving Symmetric Systems of Linear Equations Arising in Optimization

Odland, Tove January 2015 (has links)
In this thesis we present research on mathematical properties of methods for solv- ing symmetric systems of linear equations that arise in various optimization problem formulations and in methods for solving such problems. In the first and third paper (Paper A and Paper C), we consider the connection be- tween the method of conjugate gradients and quasi-Newton methods on strictly convex quadratic optimization problems or equivalently on a symmetric system of linear equa- tions with a positive definite matrix. We state conditions on the quasi-Newton matrix and the update matrix such that the search directions generated by the corresponding quasi-Newton method and the method of conjugate gradients respectively are parallel. In paper A, we derive such conditions on the update matrix based on a sufficient condition to obtain mutually conjugate search directions. These conditions are shown to be equivalent to the one-parameter Broyden family. Further, we derive a one-to-one correspondence between the Broyden parameter and the scaling between the search directions from the method of conjugate gradients and a quasi-Newton method em- ploying some well-defined update scheme in the one-parameter Broyden family. In paper C, we give necessary and sufficient conditions on the quasi-Newton ma- trix and on the update matrix such that equivalence with the method of conjugate gra- dients hold for the corresponding quasi-Newton method. We show that the set of quasi- Newton schemes admitted by these necessary and sufficient conditions is strictly larger than the one-parameter Broyden family. In addition, we show that this set of quasi- Newton schemes includes an infinite number of symmetric rank-one update schemes. In the second paper (Paper B), we utilize an unnormalized Krylov subspace frame- work for solving symmetric systems of linear equations. These systems may be incom- patible and the matrix may be indefinite/singular. Such systems of symmetric linear equations arise in constrained optimization. In the case of an incompatible symmetric system of linear equations we give a certificate of incompatibility based on a projection on the null space of the symmetric matrix and characterize a minimum-residual solu- tion. Further we derive a minimum-residual method, give explicit recursions for the minimum-residual iterates and characterize a minimum-residual solution of minimum Euclidean norm. / I denna avhandling betraktar vi matematiska egenskaper hos metoder för att lösa symmetriska linjära ekvationssystem som uppkommer i formuleringar och metoder för en mängd olika optimeringsproblem. I första och tredje artikeln (Paper A och Paper C), undersöks kopplingen mellan konjugerade gradientmetoden och kvasi-Newtonmetoder när dessa appliceras på strikt konvexa kvadratiska optimeringsproblem utan bivillkor eller ekvivalent på ett symmet- risk linjärt ekvationssystem med en positivt definit symmetrisk matris. Vi ställer upp villkor på kvasi-Newtonmatrisen och uppdateringsmatrisen så att sökriktningen som fås från motsvarande kvasi-Newtonmetod blir parallell med den sökriktning som fås från konjugerade gradientmetoden. I den första artikeln (Paper A), härleds villkor på uppdateringsmatrisen baserade på ett tillräckligt villkor för att få ömsesidigt konjugerade sökriktningar. Dessa villkor på kvasi-Newtonmetoden visas vara ekvivalenta med att uppdateringsstrategin tillhör Broydens enparameterfamilj. Vi tar också fram en ett-till-ett överensstämmelse mellan Broydenparametern och skalningen mellan sökriktningarna från konjugerade gradient- metoden och en kvasi-Newtonmetod som använder någon väldefinierad uppdaterings- strategi från Broydens enparameterfamilj. I den tredje artikeln (Paper C), ger vi tillräckliga och nödvändiga villkor på en kvasi-Newtonmetod så att nämnda ekvivalens med konjugerade gradientmetoden er- hålls. Mängden kvasi-Newtonstrategier som uppfyller dessa villkor är strikt större än Broydens enparameterfamilj. Vi visar också att denna mängd kvasi-Newtonstrategier innehåller ett oändligt antal uppdateringsstrategier där uppdateringsmatrisen är en sym- metrisk matris av rang ett. I den andra artikeln (Paper B), används ett ramverk för icke-normaliserade Krylov- underrumsmetoder för att lösa symmetriska linjära ekvationssystem. Dessa ekvations- system kan sakna lösning och matrisen kan vara indefinit/singulär. Denna typ av sym- metriska linjära ekvationssystem uppkommer i en mängd formuleringar och metoder för optimeringsproblem med bivillkor. I fallet då det symmetriska linjära ekvations- systemet saknar lösning ger vi ett certifikat för detta baserat på en projektion på noll- rummet för den symmetriska matrisen och karaktäriserar en minimum-residuallösning. Vi härleder även en minimum-residualmetod i detta ramverk samt ger explicita rekur- sionsformler för denna metod. I fallet då det symmetriska linjära ekvationssystemet saknar lösning så karaktäriserar vi en minimum-residuallösning av minsta euklidiska norm. / <p>QC 20150519</p>

Page generated in 0.0802 seconds