• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 1
  • 1
  • Tagged with
  • 14
  • 12
  • 11
  • 7
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Traitement symptomatique de la maladie de Parkinson chez le modèle simien MPTP : approches dopaminergiques, estrogéniques et neurostéroïdiennes

Bélanger, Nancy 11 April 2018 (has links)
La maladie de Parkinson est caractérisée par la dégénérescence des neurones dopaminergiques situés dans la substance noire pars compacta au sein des noyaux gris centraux du système nerveux central. Cela se traduit par un malfonctionnement moteur dont les trois principaux signes idiopathiques sont : les troubles de la posture, la bradykinésie et le tremblement. Cette perte importante de motricité est directement reliée au débalancement des voies directe et indirecte en charge de la modulation et de la régulation des noyaux grix centraux. L'absence de dopamine empêche donc le contrôle adéquat des afférences GABAergiques, ce qui se traduit par une surinhibition au niveau du thalamus et par le fait même, d'une atteinte importante du comportement moteur. Le traitement classique demeure encore la L-Dopa qui permet le soulagement des patients et leur permet de se mouvoir un peu plus normalement. Par contre, ce traitement entraîne des effets secondaires, à moyen et long terme, très importants dont : l'akinésie de fin de dose (wearing-off), l'effet transitoire de la L-Dopa (effet on-off) et les dyskinésies. Ces dernières surviennent après la prise de la L-Dopa et se manifestent sous forme de mouvements anormaux et involontaires. Nous avons utilisé comme modèle animal le singe cynomolgus (Macaca fascicularis). L'induction du syndrome parkinsonien stable chez ce modèle requiert l'installation d'une pompe Alzet, sous cutanée, contenant une toxine dérivée de lopéridine, le l-méthyl-4- phényl-l,2,3,6-tetrahydropyridine. Nous avons étudié l'impact de l'administration de la L-Dopa dans la genèse des dyskinésies en comparaison avec l'effet de la cabergoline, un agoniste D2 à longue durée d'action. Le but étant de voir s'il était possible de prévenir les dyskinésies en interagissant sur les récepteurs D2 pré- et postsynaptiques. Nos résultats ont démontré que la stimulation en continue des récepteurs dopaminergiques permettait, significativement, la prévention de l'apparition des dyskinésies induites par la dopathérapie en agissant sur les récepteurs D2 postsynaptiques, mais peut-être aussi en inhibant les afférences glutamatergiques corticostriatale via les autorécepteurs D2 situé en présynaptique. Nous avons également étudié l'effet de composés hormonaux tel que le 17p-estradiol, le raloxifène et la déhydroépiandrostérone. Nos résultats ont démontré que chacun d'entre eux était en mesure d'améliorer, significativement, l'état parkinsonien seul ou combiné à une dose seuil de L-Dopa, voire même de prolonger l'effet de la dopathérapie. Une implication des systèmes GABAergiques est postulée dans ces effets, dans le cas du DHEA, car c'est un modulateur négatif des récepteurs GABAA présents dans les noyaux gris centraux.
12

La lévodopa est-elle néfaste pour la cognition dans la maladie de Parkinson? : étude pilote

Sid-Otmane, Lamia 11 1900 (has links)
Introduction et objectifs : Alors que l'effet moteur de la lévodopa (L-dopa) dans la maladie de Parkinson (MP) est clair et établi, son effet sur la cognition demeure incertain. Les troubles cognitifs ont un impact important sur la qualité de vie et les études évaluant l'effet cognitif de ce médicament donnent des résultats encore divergents. L’objectif primaire de cette étude pilote est d’observer l’impact des doses cliniques de lévodopa sur la cognition. Un second objectif sera d'établir une courbe dose-réponse pour observer les différences potentielles. Méthodes : Cinq patients avec MP ont été évalués à l’aide de 2 tests cognitifs (CPT-II et Stroop) et 2 tests moteurs (Finger Tapping et UPDRS-III) en OFF (sevrage minimal de 12 heures) et en ON avec des doses croissantes de lévodopa (commençant à 50mg avec une augmentation de dose de 50mg par visite) jusqu’à l'observation d'une performance cognitive optimale ou d'effets secondaires. Une administration répétée des tests cognitifs a été faite à la première visite pour limiter l’effet d’apprentissage. Résultats : Le temps de réaction (RT) mesuré en millisecondes au CPT-II a augmenté (médiane 3.03%) après la prise de médicament alors que les erreurs ont légèrement diminué (médiane -9.92%). Au Stroop, l’effet d’interférence évalué selon les changements au temps d’inhibition mesuré en secondes était légèrement moindre sans changement dans les erreurs. Avec les doses prescrites, le RT a augmenté de 3,50% et le nombre d’erreurs est resté stable alors que les doses inférieures ont eu une moindre augmentation du RT tout en diminuant les erreurs. Dans le Stroop, les doses faibles ont amélioré le temps de près de 19% alors que les doses prescrites ont quant à elles diminué les erreurs. Malgré une certaine variabilité, la courbe dose-réponse indique que les erreurs diminuaient aux doses faibles et fortes dans le CPT-II alors que le RT augmentait généralement, ce qui pourrait indiquer un style de performance plus prudent. L’effet de la lévodopa sur l’interférence dans le Stroop variait légèrement sans tendances fixes mis à part le bénéfice observé par les doses faibles. Une importante variabilité a été observée dans les évaluations motrices entre les sujets ainsi qu'au sein du même sujet. Conclusion : Ces résultats indiquent qu’en général, le médicament ne semble pas avoir d’effet néfaste important sur l’attention et les fonctions exécutives évaluées auprès de ce groupe de patients parkinsoniens. L'effet cognitif des doses plus faibles semble leur être bénéfique et meilleur que les doses cliniquement prescrites. La relation dose-réponse démontre un effet cognitif variable de la lévodopa entre les doses, n'indiquant toutefois pas de tendances claires. / Background and objectives: While levodopa’s effect on motor symptoms in Parkinson’s disease (PD) has been largely characterized, its cognitive effect still remains without definite conclusion. Since cognitive impairment is an important feature of PD that impacts patients’ quality of life, it is important to establish levodopa’s effect on cognitive functions. Multiple studies regarding this subject remained without specific consensus. The main goal pursued in this study is to observe the effect of clinical doses of levodopa on attention and executive functions. A dose-response curve is also made with the escalating doses evaluated. Methods: Five PD patients were investigated OFF (minimal withdrawal of 12 hours) and ON levodopa (starting dose of 50mg escalating by 50mg per visit) with 2 cognitive (CPT-II and Stroop) and 2 motor (finger tapping and UPDRS-III) tests until reaching an optimal cognitive performance or showing signs of side effects. Practice sessions of the cognitive tests were done at the first visit. Results: While reaction time (RT) in milliseconds increased (median 3.03%), errors slightly decreased (median -9.92%) after medication intake in the CPT-II. Errors however did not change in the Stroop while time evaluated in seconds decreased. The CPT-II showed slowing at the prescribed doses of levodopa (3.5%) while lower doses improved errors with less increase of the RT. These small doses also improved the performance in the Stroop test with a 19% reduction in time while the prescribed doses improved errors instead. The dose-response curve indicates a reduction of errors in the CPT-II for low and high doses while time usually increased, showing a more cautious style. Besides the beneficial effect of low doses, the dose-response curve for the Stroop test did not show any specific tendencies in levodopa’s effect on interference. An important variability was observed in motor evaluations between and within subjects. Conclusion: These results indicate that levodopa does not seem to have an important deleterious effect on attention and executive functions evaluated in this group of parkinsonian patients and that low doses seem to even be beneficial and better than the ones usually taken by the patients. The dose-response curve showed that the cognitive effect of levodopa for these patients varies between the different doses without being clear on the tendencies.
13

Les systèmes monoaminergiques : implication dans la physiopathologie et la thérapie de la maladie de Parkinson / Monoaminergic systems : involvement in the pathophysiology and therapy of parkinson’s disease

Faggiani, Emilie 03 December 2014 (has links)
La maladie de Parkinson est caractérisée par la manifestation de symptômes moteursprincipalement dus à la dégénérescence du système dopaminergique. Malgré l'accent mis surles déficits moteurs, la maladie de Parkinson est également caractérisée par des symptômesnon moteurs, incluant l'anxiété et la dépression, qui sont sous-étudiés et de ce fait pas bientraités. Alors que certaines études cliniques ont suggéré que l'anxiété et la dépressionpourraient être associées à la dégénérescence des neurones dopaminergiques, d'autres ontsuggéré l'implication de la dégénérescence des neurones noradrénergiques etsérotoninergiques dans les troubles observés mais également dans les effets induits par laLévodopa et la stimulation cérébrale profonde du noyau sous-thalamique.Dans un premier temps, nous avons étudié le rôle respectif de la dopamine, de lanoradrénaline et de la sérotonine dans la manifestation des déficits parkinsoniens moteurs etnon moteurs chez le rat. L’ensemble de nos résultats démontre que malgré l’importance dusystème dopaminergique, la perturbation des trois systèmes monoaminergiques joue un rôleimportant à la fois dans la manifestation des troubles moteurs et non moteurs.Nous avons également étudier l’impact des monoamines sur l’efficacité des traitementsantiparkinsoniens, à savoir, la Lévodopa et la stimulation cérébrale profonde du noyau sousthalamique,sur les troubles observés. Nos résultats montrent que la déplétion combinée dessystèmes monoaminergiques peut altérer l’efficacité de la Lévodopa ainsi que de lastimulation cérébrale profonde sur certains troubles. Ces résultats peuvent expliquer lemanque d’efficacité des traitements antiparkinsoniens chez certains patients et la difficulté àtraiter tous les symptômes.Pour finir, nous avons voulu mettre en évidence le lien entre le noyau sous-thalamique,structure excitatrice des ganglions de la base et les troubles moteurs, ainsi que l’amygdalebasolatérale et l’habénula latérale, structures impliquées dans les comportements émotionnels,et les troubles non moteurs. Nous avons mis en évidence le parallèle existant entre lesmodifications du mode de décharge des neurones du NST et les troubles moteurs, leschangements de l’amygdale basolatérale et les troubles anxieux ainsi que ceux de l’habénulalatérale et les troubles dépressifs.Les résultats de ces travaux de thèse ont donc permis d’apporter de nouvelles évidences surl’implication des trois systèmes monoaminergiques dans la physiopathologie et la thérapie dela maladie de Parkinson. / Parkinson’s disease is characterized by the manifestation of motor symptoms mostlyassociated with the degeneration of dopaminergic neurons. While Parkinson’s disease is oftenfocused on motor deficits, the disease is also characterized by non-motor deficits, includinganxiety and depression, which are under studied and consequently are not well treated.Whereas some clinical studies suggested that anxiety and depression could be linked to thedegeneration of dopaminergic neurons, others suggested the involvement of norepinephrineand serotonin in the observed symptoms and also in the efficacy of Levodopa and deep brainstimulation of the subthalamic nucleus.In a first time, we investigated the respective role of the neuronal degeneration of dopamine,noradrenaline and serotonin in the manifestation of motor and non-motor parkinsonian-likedisorders in the rat. Our results demonstrate that despite the importance of the dopaminergicsystem, the disturbances in the three-monoaminergic systems play a key role in themanifestation of motor and non-motor deficits.In a second time, we studied the impact of monoamine depletions on the efficacy ofantiparkinsonian treatments, the Levodopa and deep brain stimulation of the subthalamicnucleus. Our results showed that the combined depletions could deteriorate the efficacy of theLevodopa and of the deep brain stimulation on some deficits. Together, these results canexplain the lack of efficacy of the antiparkinsonian treatments in some patients and thedifficulty to treat all the symptoms.Finally, we investigated the link between the subthalamic nucleus, which is an excitatorystructure of the basal ganglia, and the motor deficits, as well as the involvement of thebasolateral amygdala and the lateral habenula in emotional control of the behavior, and nonmotordeficits. We showed the parallel between changes in the neuronal activity of thesubthalamic nucleus and the motor deficits, of the basolateral amygdala and anxiety and ofthe lateral habenula and depression.Results from this thesis provide new evidences on the involvement of the threemonoaminergicsystems in the pathophysiology and the therapy of Parkinson’s disease.
14

Étude par pharmacologie quantitative du système dopaminergique des ganglions de la base pour l’optimisation de la pharmacothérapie. Modèle unificateur pour la maladie de Parkinson et le TDAH

Véronneau-Veilleux, Florence 04 1900 (has links)
La dopamine est un neurotransmetteur important dans le fonctionnement des ganglions de la base, région du cerveau impliquée dans la fonction motrice et l’apprentissage. Un dérèglement de la dynamique de la dopamine peut être à l’origine de différentes pathologies neurologiques, telles que la maladie de Parkinson et le trouble de déficit de l’attention avec ou sans hyperactivité (TDAH). La lévodopa, un précurseur de la dopamine, est utilisée pour réduire les symptômes associés à la maladie de Parkinson, sans action directe sur ses causes. La lévodopa est très efficace au début de la maladie, mais la durée de son effet ainsi que son index thérapeutique diminuent avec la progression de la dénervation induite par la maladie. Ces changements compliquent considérablement l’optimisation des régimes posologiques. Le méthylphénidate, quant à lui, est administré pour réduire les symptômes du TDAH et agit entre autres en bloquant la recapture de la dopamine. Bien que les données confirment une certaine implication de la dopamine dans le TDAH, son étiologie exacte demeure inconnue. Peu d’études ont cerné l’effet de la lévodopa sur le système dopaminergique des ganglions de la base et son évolution avec la progression de la maladie. Aussi, bien que le TDAH ait suscité beaucoup d’intérêt, rares sont les études quantitatives de nature mécanistiques sur le sujet. L’approche de modélisation mathématique utilisée dans cette thèse s’inscrit dans un effort global visant l’optimisation de la lévodopa et du méthylphénidate, appuyé par l’élucidation des mécanismes impliqués dans la maladie de Parkinson et dans le TDAH. En adoptant une approche de pharmacologie quantitative des systèmes (QSP), nous avons développé un modèle intégratif du système dopaminergique des ganglions de la base, avec l’objectif d’élucider les mécanismes impliqués, d’évaluer l’impact de la dopamine chez dessujets souffrant de Parkinson ou de TDAH, et recevant ou non un traitement, et enfin de guider objectivement l’exercice d’optimisation des régimes posologiques. À notre connaissance, c’est le premier cadre unificateur de modélisation qui s’adresse à ces deux pathologies. Le modèle développé dans cette thèse est composé de trois sous-modèles : le premier décrit la pharmacocinétique du médicament concerné, soit la lévodopa ou le méthylphénidate ; le deuxième exprime mathématiquement les différents mécanismes impliqués dans la dynamique de la dopamine ; le troisième représente la complexité de la neurotransmission dans les ganglions de la base. Avec des adaptations appropriées, nous avons appliqué ce même modèle au contexte de la maladie de Parkinson et au TDAH, ainsi qu’à leurs thérapies respectives. Pour représenter physiologiquement la maladie de Parkinson, nous avons intégré dans le modèle l’évolution de la perte neuronale ainsi que les différents mécanismes de compensation qui en résultent. La fréquence de tapotement des doigts est utilisée comme mesure clinique de la bradykinésie, définie comme le ralentissement des mouvements chez les patients parkinsoniens. Le modèle développé se base sur les connaissances actuelles de la pathophysiologie et pharmacologie du Parkinson, assurant ainsi sa validité en comparaison à des observations expérimentales et cliniques. Ensuite, à l’aide de ce modèle, les relations non-linéaires entre la concentration plasmatique de lévodopa, la concentration en dopamine dans le cerveau et la réponse à une tâche motrice sont étudiées. Le rétrécissement de l’index thérapeutique de la lévodopa au cours de la progression de la maladie dû à ces non-linéarités est investigué. Enfin, pour assurer l’aspect translationnel de notre approche, nous avons développé une application web à laquelle ce modèle a été intégré. Cette application sert de preuve de concept à un outil facilitant l’optimisation et l’individualisation des régimes posologiques. Pour l’étude du TDAH, nous avons adapté le modèle du système dopaminergique en y intégrant la libération tonique et phasique de la dopamine, cette dernière se produisant durant une tâche d’apprentissage par renforcement. Des individus virtuels ont été créés avec et sans déséquilibre du ratio tonique/phasique de la dopamine. En simulant une tâche de réponse à des stimuli dans un contexte de déséquilibre de la dopamine, le modèle nous a permis d’observer des symptômes similiaires à ceux de patients réels souffrant de TDAH. Finalement, la réponse au méthylphénidate résultant de l’inhibition de la recapture de la dopamine, à travers différents scénarios d’apprentissage a aussi été étudiée. Le développement d’une métrique nous a permis de différencier les répondants des non-répondants, et ainsi de mettre en évidence l’implication possible d’un apprentissage excessif chez les nonrépondants. Une meilleure compréhension de la réponse au méthylphénidate permettrait d’éviter la surmédication chez les non-répondants et d’aider les cliniciens dans leur pratique. Malgré la complexité du système dopaminergique et des traitements associés, cette thèse est un pas en avant dans la compréhension des mécanismes sous-jacents et de leur implication dans la thérapie. Ces avancées ont été réalisées en adoptant une approche de pharmacologie quantitative des systèmes, associée à une modélisation neurocomputationnelle du domaine du génie électrique, et complétée par un aspect de transfert au chevet du patient. Ce n’est qu’en transcendant ainsi les frontières disciplinaires qu’une visée aussi globale et intégrative est possible, afin de faire face aux défis multidimensionnels du système de la santé. / Dopamine is an important neurotransmitter of the basal ganglia, a region of the brain involved in motor function and learning. Disruption of dopamine dynamics can cause various neurological conditions, such as Parkinson’s disease and attention deficit hyperactivity disorder (ADHD). Levodopa, a dopamine precursor, is used to reduce the symptoms associated with Parkinson’s disease, without directly alleviating its causes. Levodopa is very effective in the early stages of the disease, but its effect duration along with its therapeutic index decrease with disease-induced denervation. These modifications further challenge determination of optimal dosing regimens of levodopa. In the case of ADHD, methylphenidate is administered to reduce its symptoms by, among other things, blocking dopamine recapture. Although evidence supports involvement of dopamine in ADHD, its exact etiology remains unknown. Few studies have investigated the effect of levodopa on the basal ganglia dopaminergic system and how it evolves with disease progression. Also, although ADHD has received a lot of interest, few quantitative studies of a mechanistic nature have been conducted on the subject. The mathematical modeling approach used in this thesis is part of an overall effort to optimize levodopa and methylphenidate, supported by the elucidation of the mechanisms involved in Parkinson’s disease and ADHD. Using a quantitative systems pharmacology (QSP) approach, we have developed an integrative model of the basal ganglia dopaminergic system, with the objective of elucidating the mechanisms involved, assessing the impact of dopamine in subjects with Parkinson’s or ADHD, with and without treatment, and objectively guiding the dosing regimens optimization. To the best of our knowledge, this is the first unifying modeling framework that addresses at the same time these two pathologies and their therapies. The model developed in this thesis includes three sub-models: the first one describes the drug pharmacokinetics, either levodopa or methylphenidate; the second one translates mathematically the different mechanisms involved in the dopamine dynamics; the third one is a computational representation of the complexity of neurotransmission in the basal ganglia. With appropriate adaptations, we have applied this same model to the context of Parkinson’s disease and ADHD, as well as to their respective pharmacotherapies. In order to physiologically represent Parkinson’s disease, we have integrated the denervation process in the model as well as the resulting compensation mechanisms. The finger tapping frequency is used as a clinical endpoint of bradykinesia, defined as the slowing of movements. The developed model is based on up-to-date knowledge of the pathophysiology and pharmacology of Parkinson’s disease, thus ensuring its validity in comparison with experimental and clinical observations. Using this model, the non-linear relationships between plasma levodopa concentration, dopamine concentration in the brain and response to a motor task were studied. The narrowing of levodopa therapeutic index during the progression of the disease due to these non-linearities was investigated. Finally, to ensure the translational aspect of our approach, we developed a web application in which this model was integrated. This application serves as a proof of concept for a tool aimed to facilitate the optimization and individualization of dosing regimens. For the study of ADHD, we adapted the developed model by integrating tonic and phasic dopamine release, the latter occurring during a reinforcement learning task. Virtual individuals were created with and without dopamine imbalance in the tonic/phasic ratio. By simulating a stimulus-response task, we observe ADHD-like symptoms among virtual patients with dopamine imbalance. Finally, the response to methylphenidate resulting from dopamine recapture inhibition, through different learning scenarios, was also studied. The development of a metric allowed us to differentiate responders from non-responders, and thus to highlight the possible implication of excessive learning in non-responders. A better understanding of methylphenidate response would help avoid overmedication in non-responders and assist clinicians in their practice. Despite the complexity of the dopaminergic system and its associated therapies, this thesis is a step forward in understanding the underlying mechanisms and their involvement in pharmacotherapy. These advances were achieved by adopting a quantitative systems pharmacology approach, combined with neurocomputational modeling borrowed from the electrical engineering field, and complemented by a translational bedside aspect. It is only by transcending disciplinary boundaries and adopting such an integrative approach that this ultimate goal of having a real impact on the multifaceted health system is possible.

Page generated in 0.0396 seconds