• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 4
  • 3
  • 3
  • 2
  • Tagged with
  • 27
  • 27
  • 12
  • 9
  • 8
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

P-adic Gross-Zagier formula for Heegner points on Shimura curves over totally real fields / Formule de Gross-Zagier P-adique pour les points de Heegner sur les courbes de Shimura sur corps totalement réels

Ma, Li 30 September 2014 (has links)
Le résultat principal de ce texte est une généralisation de la formule de Gross-Zagier p-adique de Perrin-Riou au cas de courbes de Shimura sur les corps totalement réels. Soit F un corps totalement réel. Soit f une forme modulaire de Hilbert sur F de poids parallel 2, qui est une forme nouvelle et est ordinaire en p. Soit E est une extension quadratique totalement imaginaire de F de discriminant premier à p et au conducteur de f. On peut construire une fonction L p-adique qui interpole valeurs spéciales de la fonction L complexe associée à f, E et caractères de Hecke d'ordre fini de E. La formule p-adique de Gross-Zagier relie la dérivée centrale de cette fonction L p-adique à la hauteur d'un divisor de Heegner sur une certaine courbe de Shimura. La stratégie de la preuve est proche de celle du travail original de Perrin-Riou. Dans la partie analytique, on construit le noyau analytique par calculs adéliques; dans la partie géométrique, on décompose le noyau géométrique en deux parties: places hors de p et places divisant p. Pour les places hors de p, les hauteurs p-adiques sont essentiellement des nombres d'intersection et sont calculées dans les travaux de S. Zhang, et il s'avère que cette partie est bien liée au noyau analytique. Pour les places divisant p, on utilise la méthode dans le travail de J. Nekovar pour montrer que la contribution de cette partie est nulle. / The main result of this text is a generalization of Perrin-Riou's p-adic Gross-Zagier formula to the case of Shimura curves over totally real fields. Let F be a totally real field. Let f be a Hilbert modular form over F of parallel weight 2, which is a new form and is ordinary at p. Let E be a totally imaginary quadratic extension of F of discriminant prime to p and to the conductor of f. We may construct a p-adic L function that interpolates special values of the complex L functions associated to f, E and finite order Hecke characters of E. The p-adic Gross-Zagier formula relates the central derivative of this p-adic L function to the p-adic height of a Heegner divisor on a certain Shimura curve. The strategy of the proof is close to that of the original work of Perrin-Riou. In the analytic part, we construct the analytic kernel via adelic computations, in the geometric part, we decompose the geometric kernel into two parts: places outside p and places dividing p. For places outside p, the p-adic heights are essentially intersection numbers and are computed in works of S. Zhang, and it turns out that this part is closely related to the analytic kernel. For places dividing p, we use the method in the work of J. Nekovar to show that the contribution of this part is zero.
22

On the main conjectures of Iwasawa theory for certain elliptic curves with complex multiplication

Kezuka, Yukako January 2017 (has links)
The conjecture of Birch and Swinnerton-Dyer is unquestionably one of the most important open problems in number theory today. Let $E$ be an elliptic curve defined over an imaginary quadratic field $K$ contained in $\mathbb{C}$, and suppose that $E$ has complex multiplication by the ring of integers of $K$. Let us assume the complex $L$-series $L(E/K,s)$ of $E$ over $K$ does not vanish at $s=1$. K. Rubin showed, using Iwasawa theory, that the $p$-part of Birch and Swinnerton-Dyer conjecture holds for $E$ for all prime numbers $p$ which do not divide the order of the group of roots of unity in $K$. In this thesis, we discuss extensions of this result. In Chapter $2$, we study infinite families of quadratic and cubic twists of the elliptic curve $A = X_0(27)$, so that they have complex multiplication by the ring of integers of $\mathbb{Q}(\sqrt{-3})$. For the family of quadratic twists, we establish a lower bound for the $2$-adic valuation of the algebraic part of the complex $L$-series at $s=1$, and, for the family of cubic twists, we establish a lower bound for the $3$-adic valuation of the algebraic part of the same $L$-value. We show that our lower bounds are precisely those predicted by Birch and Swinnerton-Dyer. In the remaining chapters, we let $K=\mathbb{Q}(\sqrt{-q})$, where $q$ is any prime number congruent to $7$ modulo $8$. Denote by $H$ the Hilbert class field of $K$. \mbox{B. Gross} proved the existence of an elliptic curve $A(q)$ defined over $H$ with complex multiplication by the ring of integers of $K$ and minimal discriminant $-q^3$. We consider twists $E$ of $A(q)$ by quadratic extensions of $K$. In the case $q=7$, we have $A(q)=X_0(49)$, and Gonzalez-Aviles and Rubin proved, again using Iwasawa theory, that if $L(E/\mathbb{Q},1)$ is nonzero then the full Birch--Swinnerton-Dyer conjecture holds for $E$. Suppose $p$ is a prime number which splits in $K$, say $p=\mathfrak{p}\mathfrak{p}^*$, and $E$ has good reduction at all primes of $H$ above $p$. Let $H_\infty=HK_\infty$, where $K_\infty$ is the unique $\mathbb{Z}_p$-extension of $K$ unramified outside $\mathfrak{p}$. We establish in this thesis the main conjecture for the extension $H_\infty/H$. Furthermore, we provide the necessary ingredients to state and prove the main conjecture for $E/H$ and $p$, and discuss its relation to the main conjecture for $H_\infty/H$ and the $p$-part of the Birch--Swinnerton-Dyer conjecture for $E/H$.
23

Statistique des zéros non-triviaux de fonctions L de formes modulaires / Statistics on non-trivial zeros of modular L-functions

Bernard, Damien 09 December 2013 (has links)
Cette thèse se propose d’obtenir des résultats statistiques sur les zéros non-triviaux de fonctions L. Dans le cas des fonctions L de formes modulaires, on prouve qu’une proportion positive explicite de zéros non-triviaux se situe sur la droite critique. Afin d’arriver à ce résultat, il nous faut préalablement étendre un théorème sur les problèmes de convolution avec décalage additif en moyenne de manière à déterminer le comportement asymptotique du second moment intégral ramolli d’une fonction L de forme modulaire au voisinage de la droite critique. Une autre partie de cette thèse, indépendante de la précédente, est consacrée à l'étude du plus petit zéro non-trivial d’une famille de fonctions L. Ces résultats sont en particulier appliqués aux fonctions L de puissance symétrique. / The purpose of this dissertation is to get some statistical results related to nontrivial zeros of L-functions. In the modular case, we prove and determine an explicit positive proportion of non-trivial zeros lying on the critical line. In order to obtain this result, we need to extend a theorem on shifted convolution sums on average to be able to determine the asymptotic behaviour of the mollified second integral moment of a modular L-function close to the critical line. Independently of these results, we study the smallest non-trivial zero in a family of L-functions. These results are applied to symmetric power L-functions.
24

Approaches to Boyd’s conjectures and their applications

Wu, Gang 12 1900 (has links)
Dans cette thèse, nous considérons quatre cas de conjectures de Boyd pour la mesure de Mahler de polynômes. Le premier cas concerne un polynôme associé à une courbe de genre 1, deux autres cas couvrent des courbes de genre 2, et le dernier cas traite d’une courbe de genre 3. Pour le cas de la courbe de genre 1, nous étudions une identité conjecturée par Boyd et prouvée par Boyd et Rodriguez-Villegas. On trouve un expression de la mesure de Mahler donnée par une combinaison linéaire de certaines valeurs du dilogarithme de Bloch-Wigner. En combinant cela avec le résultat prouvé par Boyd et Rodriguez-Villegas, nous pouvons établir certaines identités entre différentes valeurs du dilogarithme de Bloch-Wigner. Pour les problèmes liés aux courbes de genre 2, nous utilisons le régulateur elliptique pour récupérer des identités entre les mesures de Mahler des certaines familles de courbes de genre 2 qui ont ́eté conjecturées par Boyd et prouvèes par Bertin et Zudilin en différenciant le paramètre des formules de la mesure de Mahler et en utilisant des identités hypergéométriques. Pour le cas impliquant la courbe de genre 3, nous utilisons le régulateur elliptique pour prouver une identité entièrement nouvelle entre les mesures de Mahler d’une famille polynomiale de genre 3 et d’une famille polynomiale de genre 1 qui à été initialement conjectur ́ee par Liu et Qin. Comme nos preuves pour les cas des courbes des genres 2 et 3 impliquent le régulateur, elles éclairent la relation des mesures de Mahler des familles des genres 2 ou 3 avec des valeurs spéciales des fonctions L associées aux familles de genre 1. / In this dissertation, we consider four cases of Boyd’s conjectures for the Mahler measure of polynomials. The first case involves a polyno- mial defining a genus 1 curve, two other cases cover genus 2 curves, and the final case deals with a genus 3 curve. For the case of the genus 1 curve, we study an identity conjectured by Boyd and proven by Boyd and Rodriguez-Villegas. We find an expression of the Mahler measure given by a linear combination of some values of the Bloch-Wigner dilogarithm. Combining this with the result proven by Boyd and Rodriguez-Villegas, we can establish some identities among different values of the Bloch-Wigner dilogarithm. For the problems related to the genus 2 curves, we use the elliptic regulator to recover some identities between Mahler measures involving certain families of genus 2 curves that were conjectured by Boyd and proven by Bertin and Zudilin by differentiating the parameter in the Mahler measure formulas and using hypergeometric identities. For the case involving the genus 3 curve, we use the elliptic regulator to prove an entirely new identity between the Mahler measures of a genus 3 polynomial family and of a genus 1 polynomial family that was initially conjectured by Liu and Qin. Since our proofs for the cases of genus 2 and 3 curves involve the regulator, they yield light into the relation of the Mahler measures of the genus 2 or 3 families with special values of the L-functions associ- ated to the genus 1 families.
25

Topics in Analytic Number Theory

Powell, Kevin James 31 March 2009 (has links) (PDF)
The thesis is in two parts. The first part is the paper “The Distribution of k-free integers” that my advisor, Dr. Roger Baker, and I submitted in February 2009. The reader will note that I have inserted additional commentary and explanations which appear in smaller text. Dr. Baker and I improved the asymptotic formula for the number of k-free integers less than x by taking advantage of exponential sum techniques developed since the 1980's. Both of us made substantial contributions to the paper. I discovered the exponent in the error term for the cases k=3,4, and worked the case k=3 completely. Dr. Baker corrected my work for k=4 and proved the result for k=5. He then generalized our work into the paper as it now stands. We also discussed and both contributed to parts of section 3 on bounds for exponential sums. The second part represents my own work guided by my advisor. I study the zeros of derivatives of Dirichlet L-functions. The first theorem gives an analog for a result of Speiser on the zeros of ζ'(s). He proved that RH is equivalent to the hypothesis that ζ'(s) has no zeros with real part strictly between 0 and ½. The last two theorems discuss zero-free regions to the left and right for L^{(k)}(s,χ).
26

Sur la répartition des unités dans les corps quadratiques réels

Lacasse, Marc-André 12 1900 (has links)
Ce mémoire s'emploie à étudier les corps quadratiques réels ainsi qu'un élément particulier de tels corps quadratiques réels : l'unité fondamentale. Pour ce faire, le mémoire commence par présenter le plus clairement possible les connaissances sur différents sujets qui sont essentiels à la compréhension des calculs et des résultats de ma recherche. On introduit d'abord les corps quadratiques ainsi que l'anneau de ses entiers algébriques et on décrit ses unités. On parle ensuite des fractions continues puisqu'elles se retrouvent dans un algorithme de calcul de l'unité fondamentale. On traite ensuite des formes binaires quadratiques et de la formule du nombre de classes de Dirichlet, laquelle fait intervenir l'unité fondamentale en fonction d'autres variables. Une fois cette tâche accomplie, on présente nos calculs et nos résultats. Notre recherche concerne la répartition des unités fondamentales des corps quadratiques réels, la répartition des unités des corps quadratiques réels et les moments du logarithme de l'unité fondamentale. (Le logarithme de l'unité fondamentale est appelé le régulateur.) / This memoir aims to study real quadratic fields and a particular element of such real quadratic fields : the fundamental unit. To achieve this, the memoir begins by presenting as clearly as possible the state of knowledge on different subjects that are essential to understand the computations and results of my research. We first introduce quadratic fields and their rings of algebraic integers, and we describe their units. We then talk about continued fractions because they are present in an algorithm to compute the fundamental unit. Afterwards, we proceed with binary quadratic forms and Dirichlet's class number formula, which involves the fundamental unit as a function of other variables. Once the above tasks are done, we present our calculations and results. Our research concerns the distribution of fundamental units in real quadratic fields, the disbribution of units in real quadratic fields and the moments of the logarithm of the fundamental unit. (The logarithm of the fundamental unit is called the regulator.)
27

Sur la répartition des unités dans les corps quadratiques réels

Lacasse, Marc-André 12 1900 (has links)
Ce mémoire s'emploie à étudier les corps quadratiques réels ainsi qu'un élément particulier de tels corps quadratiques réels : l'unité fondamentale. Pour ce faire, le mémoire commence par présenter le plus clairement possible les connaissances sur différents sujets qui sont essentiels à la compréhension des calculs et des résultats de ma recherche. On introduit d'abord les corps quadratiques ainsi que l'anneau de ses entiers algébriques et on décrit ses unités. On parle ensuite des fractions continues puisqu'elles se retrouvent dans un algorithme de calcul de l'unité fondamentale. On traite ensuite des formes binaires quadratiques et de la formule du nombre de classes de Dirichlet, laquelle fait intervenir l'unité fondamentale en fonction d'autres variables. Une fois cette tâche accomplie, on présente nos calculs et nos résultats. Notre recherche concerne la répartition des unités fondamentales des corps quadratiques réels, la répartition des unités des corps quadratiques réels et les moments du logarithme de l'unité fondamentale. (Le logarithme de l'unité fondamentale est appelé le régulateur.) / This memoir aims to study real quadratic fields and a particular element of such real quadratic fields : the fundamental unit. To achieve this, the memoir begins by presenting as clearly as possible the state of knowledge on different subjects that are essential to understand the computations and results of my research. We first introduce quadratic fields and their rings of algebraic integers, and we describe their units. We then talk about continued fractions because they are present in an algorithm to compute the fundamental unit. Afterwards, we proceed with binary quadratic forms and Dirichlet's class number formula, which involves the fundamental unit as a function of other variables. Once the above tasks are done, we present our calculations and results. Our research concerns the distribution of fundamental units in real quadratic fields, the disbribution of units in real quadratic fields and the moments of the logarithm of the fundamental unit. (The logarithm of the fundamental unit is called the regulator.)

Page generated in 0.0756 seconds