• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2001
  • 450
  • 314
  • 289
  • 254
  • 91
  • 73
  • 67
  • 31
  • 22
  • 21
  • 21
  • 21
  • 21
  • 21
  • Tagged with
  • 4345
  • 1304
  • 480
  • 345
  • 327
  • 301
  • 287
  • 282
  • 260
  • 257
  • 243
  • 233
  • 227
  • 219
  • 218
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
621

Measurement and Characterization of Heat and Mass Diffusion in PEMFC Porous Media

Unsworth, Grant January 2012 (has links)
A single polymer electrolyte membrane fuel cell (PEMFC) is comprised of several sub-millimetre thick layers of varying porosity sandwiched together. The thickness of each layer, which typically ranges from 10 to 200μm, is kept small in order to minimize the transport resistance of heat, mass, electrons, and protons, that limit reaction rate. However, the thickness of these materials presents a significant challenge to engineers characterizing the transport properties through them, which is of considerable importance to the development and optimization of fuel cells. The objective of this research is to address the challenges associated with measuring the heat conduction and gas diffusion transport properties of thin porous media used in PEMFCs. An improvement in the accuracy of the guarded heat flow technique for measuring thermal conductivity and the modified Loschmidt Cell technique for measuring gas diffusivity are presented for porous media with a sub-millimetre thickness. The improvement in accuracy is achieved by analyzing parameters in each apparatus that are sensitive to measurement error and have the largest contribution to measurement uncertainty, and then developing ways to minimize the error. The experimental apparatuses are used to investigate the transport properties of the gas diffusion layer (GDL) and the microporous layer (MPL), while the methods would also be useful in the study of the catalyst layer (CL). Gas diffusion through porous media is critical for the high current density operation of a PEMFC, where the electrochemical reaction becomes rate-limited by the diffusive flux of reactants reaching reaction sites. However, geometric models that predict diffusivity of the GDL have been identified as inaccurate in current literature. Experimental results give a better estimate of diffusivity, but published works to date have been limited by high measurement uncertainty. In this thesis, the effective diffusivity of various GDLs are measured using a modified Loschmidt cell and the relative differences between GDLs are explained using scanning electron microscopy and the method of standard porosimetry. The experimental results from this study and others in current literature are used to develop a generalized correlation for predicting diffusivity as a function of porosity in the through-plane direction of a GDL. The thermal conductivity and contact resistance of porous media are important for accurate thermal analysis of a fuel cell, especially at high current densities where the heat flux becomes large. In this thesis, the effective through-plane thermal conductivity and contact resistance of the GDL and MPL are measured. GDL samples with and without a MPL and coated with 30%-wt. PTFE are measured using the guarded steady-state heat flow technique described in the ASTM standard E 1225-04. Thermal contact resistance of the MPL with the iron clamping surface was found to be negligible, owing to the high surface contact area. Thermal conductivity and thickness of the MPL remained constant for compression pressures up to 15bar at 0.30W/m°K and 55μm, respectively. The thermal conductivity of the GDL substrate containing 30%−wt. PTFE varied from 0.30 to 0.56W/m°K as compression was increased from 4 to 15bar. As a result, the GDL contain- ing MPL had a lower effective thermal conductivity at high compression than the GDL without MPL. At low compression, differences were negligible. The constant thickness of the MPL suggests that the porosity, as well as heat and mass transport properties, remain independent of the inhomogeneous compression by the bipolar plate. Despite the low effective thermal conductivity of the MPL, thermal performance of the GDL can be improved by exploiting the excellent surface contact resistance of the MPL while minimizing its thickness.
622

Enhancement of the Response Range and Longevity of Microparticle-based Glucose Sensors

Singh, Saurabh 2010 May 1900 (has links)
Luminescent microspheres encapsulating glucose oxidase and an oxygensensitive lumophore have recently been reported as potential implantable sensors for in vivo glucose monitoring. However, there are two main issues that must be addressed for enzymatic systems such as these to realize the goal of minimally-invasive glucose monitoring. The first issue is related to the short response range of such sensors, less than 200 mg/dL, which must be extended to cover the full physiological range (0-600 mg/dL) of glucose possible for diabetics. The second issue is concerning the short operating lifetime of these systems due to enzyme degradation (less than 7 days). Two approaches were considered for increasing the range of the sensor response; nanofilm coatings and particle porosity. In the first approach, microparticle sensors were coated with layer-by-layer deposited thin nanofilms to increase the response range. It was observed that, a precise control on the response range of such sensors can be achieved by manipulating different characteristics (e.g., thickness, deposition condition, and the outermost capping layer) of the nanofilms. However, even with 15 bilayers of poly(allylamine hydrochloride)/poly(styrene sulfonate) (PAH/PSS) nanofilm, limited range was achieved (less than 200 mg/dL). By performing extrapolation on the data obtained for the experimentally-determined response range versus the number of PAH/PSS bilayers, it was predicted that a nanofilm coating comprising of more than 60 PAH/PSS bilayers will be needed to achieve a linear response up to 600 mg/dL. Using modeling, it was realized that a more effective method for achieving a linear response up to 600 mg/dL is to employ microparticles with higher porosity. Sensors were prepared from highly porous silica microparticles (diameter = 7 mu m, porosity = 0.6) and their experimental response was determined. Not surprisingly, the experimentally determined response range of such sensors was found to be higher than 600 mg/dL. To improve the longevity of these sensors, two approaches were employed; incorporation of catalase and increasing the loading of glucose oxidase. Catalase was incorporated into microparticles, which protects the enzyme from peroxide-mediated deactivation, and thus improves the stability of such sensors. Sensors incorporating catalase were found to ~5 times more stable than the GOx-only sensors. It was theoretically predicted, that by maximizing the loading of glucose oxidase within the microparticles, the longevity of such sensors can be substantially improved. Based on this understanding, sensors were fabricated using highly porous microparticles; response range did not vary even after one month of continuous operation under normal physiological conditions. Modeling predicts that 1 mM of glucose oxidase and 1 mM of catalase would extend the operating lifetime to more than 90 days.
623

Observations of Tidal-Current Profiles

Shi, Mon-Shen 31 January 2002 (has links)
This study aims to better understand the characteristics of the tidal- current profiles and the near-bed boundary layer structures off the southwestern coast of Taiwan. The velocity profile is measured by a bottom-mounted ADCP. Six experiments were conducted, each lasted 10~20 days and the water depth ranging 12~18 m. Twenty-minute averaged velocity profiles have been fitted to a logarithmic form with 4% accuracy. The friction velocity (u*) and roughness length (z0) are then derived from the slope and intercept of the best-fitted straight lines. Our results show that the profile shape and friction velocity vary tidally, the latter reaches O(0.06)ms-1 during peak current flow. The magnitude of z0 is large and scattered, but it shows a general trend of decrease with increasing flow speed. The observed log-layer height increases, and the bottom drag coefficient (CD) decrease, respectively with increasing flow speed. Measurements also show that water turbidity increases with rainfall, as a result the z0 and CD also increase. Finally, harmonic analysis of the tidal currents indicate significant changes between winter (homogeneous) and summer (stratified) conditions. In winter the vertical variation of orientation and phase is small, whereas in summer there was a 150 orientation and 250 phase difference (the bottom currents lead the surface currents) between the near surface and near bed regions.
624

Computational studies of fully submerged bodies, propulsors, and body/propulsor interactions

Cash, Allison Nicole. January 2001 (has links)
Thesis (M.S.)--Mississippi State University. Department of Aerospace Engineering. / Title from title screen. Includes bibliographical references.
625

Flow, turbulence, and dispersion above and within the roughness sublayer field observations and laboratory modeling /

Li, Xiangyi. January 2009 (has links)
Thesis (Ph. D.)--University of California, Riverside, 2009. / Includes abstract. Also issued in print. Includes bibliographical references. Available via ProQuest Digital Dissertations.
626

Modelling and Simulation of Electrostatic Precipitators with a Dust Layer

Ivanenko, Yevhen January 2015 (has links)
A dust layer, especially based on high-resistivity dust, at the collecting electrodes may cause a back corona discharge in electrostatic precipitators (ESP). It can significantly reduce the ESP efficiency and as a result cause ecological damages. To study the dust layer influence inside ESPs, it is necessary to derive an adequate model of the ESP precipitation process with a dust layer at the collecting electrode. The research of the present thesis is focused on stationary studies of the precipitation process with a dust layer at the collecting electrode in ESPs. Three mathematical models are proposed as a description of the precipitation process with a dust layer at the collecting electrode. The models are based on Maxwell’s equations and the finite element method (FEM). COMSOL Multiphysics software is used for their implementation. In all models the dust layer has constant conductivity and the air region has constant ion mobility. In the first model there are no coupling conditions, which is required in mathematics, are given between the two regions. The solution found by COMSOL Multiphysics does not provide physically acceptable coupling conditions. In the second model, a continuous transition zone is introduced between the two regions so that no coupling conditions are required. With the large derivatives in the transition zone, the nonlinear solver in COMSOL Multiphysics does not converge. Finally, in the third model, the dust layer and the grounded collecting electrode are replaced with a boundary condition for the air region. The properties of the third model are investigated, and these models can be used to study the influence of the dust layer. The results of these investigations are reported and discussed.
627

Design and Fabrication of a Membrane Integrated Microfluidic Cell Culture Device Suitable for High-Resolution Imaging

Epshteyn, Alla 31 December 2010 (has links)
Malaria remains a serious concern for people living and traveling to warm climates in Africa, Asia, and some parts of America. Understanding the mechanism of the malaria parasite in the liver phase could lead to important discoveries for preventative and treatment therapeutics before the disease develops into the blood stage. While in vitro liver cell culture models have been explored, a device that mimics the liver cell architecture with the capability of high-resolution imaging has never been created. In this research, a cell culture microfluidic device was designed and fabricated with a membrane integrated design to mimic the architecture of a liver, cell chamber dimensions affable for high-resolution imaging, and fluidic port design for optical access to both sides of the membrane for the study of malaria parasite invasion.
628

Atomic layer deposition of zinc tin oxide buffer layers for Cu(In,Ga)Se2 solar cells

Lindahl, Johan January 2015 (has links)
The aim of this thesis is to provide an in-depth investigation of zinc tin oxide, Zn1-xSnxOy or ZTO, grown by atomic layer deposition (ALD) as a buffer layer in Cu(In,Ga)Se2 (CIGS) solar cells. The thesis analyzes how changes in the ALD process influence the material properties of ZTO, and how these in turn affect the performance of CIGS solar cells. It is shown that ZTO grows uniformly and conformably on CIGS and that the interface between ZTO and CIGS is sharp with little or no interdiffusion between the layers. The band gap and conduction band energy level of ZTO are dependent both on the [Sn]/([Zn]+[Sn]) composition and on the deposition temperature. The influence by changes in composition is non-trivial, and the highest band gap and conduction band energy level are obtained at a [Sn]/([Zn]+[Sn]) composition of 0.2 at 120  °C. An increase in optical band gap is observed at decreasing deposition temperatures and is associated with quantum confinement effects caused by a decrease in crystallite size. The ability to change the conduction band energy level of ZTO enables the formation of suitable conduction band offsets between ZTO and CIGS with varying Ga-content. It is found that 15 nm thin ZTO buffer layers are sufficient to fabricate CIGS solar cells with conversion efficiencies up to 18.2 %. The JSC is in general 2 mA/cm2 higher, and the VOC 30 mV lower, for cells with the ZTO buffer layer as compared to cells with the traditional CdS buffer layer. In the end comparable efficiencies are obtained for the two different buffer layers. The gain in JSC for the ZTO buffer layer is associated with lower parasitic absorption in the UV-blue region of the solar spectrum and it is shown that the JSC can be increased further by making changes to the other layers in the traditional CdS/i-ZnO/ZnO:Al window layer structure. The ZTO is highly resistive, and it is found that the shunt preventing i-ZnO layer can be omitted, which further increases the JSC. Moreover, an additional increase in JSC is obtained by replacing the sputtered ZnO:Al front contact with In2O3 deposited by ALD. The large gain in JSC for the ZTO/In2O3 window layer stack compensates for the lower VOC related to the ZTO buffer layer, and it is demonstrated that the ZTO/In2O3 window layer structure yields 0.6 % (absolute) higher conversion efficiency than the CdS/i-ZnO/ZnO:Al window layer structure.
629

Direct numerical simulation of microjets for turbulent boundary layer control

Lee, Conrad Yuan Yuen 28 August 2008 (has links)
Not available / text
630

Έλεγχος του οριακού στρώματος : η μέθοδος απορρόφησης - έγχυσης

Κορμανιώτης, Ευάγγελος 28 August 2008 (has links)
Η εν λόγω διπλωματική εργασία αναφέρεται σε κάποια γενικά στοιχεία των μεθόδων ελέγχου του οριακού στρώματος και εστιάζεται στον έλεγχο του οριακού στρώματος με εφαρμογή της μεθόδου απορρόφησης – έγχυσης. Πιο συγκεκριμένα, στο πρώτο κεφάλαιο, με γενικό τίτλο “Οριακό Στρώμα”, αναφέρονται κάποια σύντομα ιστορικά στοιχεία και εισάγεται η έννοια του οριακού στρώματος. Στη συνέχεια, και αφού αποσαφηνιστεί η έννοια του οριακού στρώματος με τη βοήθεια εικόνων και γραφικών, εισάγονται τα χαρακτηριστικά μεγέθη αυτού. Το κεφάλαιο κλείνει με μια περιγραφή του φαινομένου της αποκόλλησης του οριακού στρώματος και των συνεπειών που η αποκόλληση αυτή επιφέρει στη ροή. Στο δεύτερο κεφάλαιο, με γενικό τίτλο “Έλεγχος του Οριακού Στρώματος”, περιγράφονται συνοπτικά οι βασικές μέθοδοι ελέγχου του οριακού στρώματος καθώς και τα πιο διαδεδομένα πεδία εφαρμογής της κάθε μιας εξ’ αυτών. Συγκεκριμένα, αναφέρονται οι μέθοδοι Κίνησης του Στερεού Ορίου (Motion of the Solid Wall), Επιτάχυνσης του Οριακού Στρώματος (Acceleration of the Boundary Layer - Blowing), Ψύξης του Τοιχώματος (Cooling of the Wall), Έγχυσης Διαφορετικού Αερίου (Injection of a Different Gas), Πρόληψης της μετάπτωσης της ροής σε τυρβώδη με κατάλληλη διαμόρφωση της γεωμετρίας του στερεού (Laminar Aerofoils) και η παράγραφος κλείνει με μια πιο εκτενή περιγραφή της μεθόδου της Απορρόφησης (Suction). Στο τρίτο κεφάλαιο, που φέρει το γενικό τίτλο “Εξισώσεις Κίνησης και Εξισώσεις Οριακού Στρώματος για Ομογενή, Ασυμπίεστα, Πραγματικά Ρευστά”, παρατίθενται οι εν λόγω εξισώσεις, ώστε να χρησιμοποιηθούν στη συνέχεια, και γίνεται μια σύντομη αναφορά στον τρόπο που, ιστορικά, αυτές παρήχθησαν. Το τέταρτο κεφάλαιο, με τίτλο “Θεωρητική Μελέτη της Μεθόδου της Απορρόφησης”, προχωράει τη μελέτη της μεθόδου απορρόφησης/έγχυσης σε επίπεδο μαθηματικών εξισώσεων. Πιο συγκεκριμένα, εισάγονται τα βασικά στοιχεία της θεωρίας και στη συνέχεια, με ένα συνδυασμό αναλυτικών και αριθμητικών διαδικασιών, πραγματοποιείται η μελέτη της απορρόφησης σε δύο συγκεκριμένα παραδείγματα. Τέλος, στο πέμπτο κεφάλαιο, με τίτλο “Εφαρμογή Απορρόφησης/Έγχυσης σε Μαγνητοϋδροδυναμική Συμπιεστή Ροή Στρωτού Οριακού Στρώματος”, μελετάται η μόνιμη, στρωτή, διδιάστατη, μαγνητοϋδροδυναμική ροή, συμπιεστού οριακού στρώματος που δημιουργείται πάνω από λεπτή, επίπεδη επιφάνεια (πλάκα), με αντίξοη βαθμίδα πίεσης και μεταφορά θερμότητας και μάζας, καθώς και τα αποτελέσματα της εφαρμογής απορρόφησης ή έγχυσης στο παραπάνω πρόβλημα. Πιο συγκεκριμένα, μετά από μια σύντομη ιστορική εισαγωγή επί του θέματος, ακολουθεί η περιγραφή του προβλήματος, καθώς και η αδιαστατοποίηση των εξισώσεων που το διέπουν. Στη συνέχεια, ακολουθεί η περιγραφή της αριθμητικής μεθόδου που χρησιμοποιείται για την επίλυση των αδιαστατοποιημένων εξισώσεων και παρατίθενται τα αποτελέσματα που προκύπτουν από τη διαδικασία αυτή της αριθμητικής επίλυσης. Το κεφάλαιο κλείνει με μια συνοπτική παράθεση των συμπερασμάτων της μελέτης του κεντρικού προβλήματος του κεφαλαίου. / This master thesis refers to some general elements of boundary layer control methods and focuses on the method of suction-injection. In particular, in Chapter I, which is simply entitled “Boundary Layer”, a short reference to some historical facts associated with this subject is being made and the general idea of boundary layer is being introduced. Following, the idea of boundary layer is being clarified with the aid of some pictures and some graphics. The chapter ends with an introduction to the phenomenon of boundary layer separation. In Chapter II, carrying the general title “Boundary Layer Control”, a short description of some of the most basic methods of boundary layer control is given and the general conditions under which each method is more effective are being briefly stated. In particular, the methods which are brought up are Motion of the Solid Wall, Acceleration of the Boundary Layer – Blowing, Cooling of the Wall, Injection of a Different Gas, Laminar Aerofoils, and the chapter ends with a more extensive description of the method of Suction. In Chapter III, entitled “Equations of Motion and Boundary Layer Equations for Homogenous, Non-Compressible, Real Fluids”, the above equations are described, with the purpose of further use in the following chapters and a short reference to the way those equations were historically introduced is being made Chapter IV, with the general title “Theoretical Study of the Method of Suction”, carries the study of the method of suction-injection to the context of mathematical equations. More specifically, basic elements of the theory are being introduced and, after that, with a combination of analytical and arithmetical techniques, two simple examples are being studied. Finally, in Chapter V entitled “Application of Suction-Injection to Magnetohydrodynamic Compressible Flow of a Laminar Boundary Layer”, the steady, laminar, two dimensional, magnetohydrodynamic flow of the compressible boundary layer which is formed over a thin flat plate, with an adverse pressure gradient and mass and heat transfer is being studied along with the results of suction-injection in the above problem. In particular, after a short historical introduction follows the description of the problem and the normalization of the equations which describe it. Then follows the description of the arithmetical method and the program being used, and the results of this procedure are stated in the next paragraph. The chapter closes with a brief description of the facts which result from the general study of the main problem of this chapter.

Page generated in 0.0467 seconds