• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 263
  • 90
  • 56
  • 55
  • 49
  • 17
  • 12
  • 9
  • 8
  • 7
  • 5
  • 4
  • 3
  • 2
  • 2
  • Tagged with
  • 788
  • 115
  • 103
  • 71
  • 58
  • 56
  • 56
  • 54
  • 53
  • 52
  • 50
  • 45
  • 43
  • 43
  • 42
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

Experimental investigation of unsteady wake structure of bluff bodies

Rahimpour, Mostafa 30 September 2020 (has links)
The interaction between a bluff body and the impinging fluid flow, can involve detached boundary layers, massive flow separations, free shear layers, development of recirculation zones and formation of a highly disturbed and complex region downstream of the bluff body, which can be categorized as wake. The present research aims to experimentally investigate such fluid-structure interaction and provide insight into the wake structure of two bluff bodies. To this end, the airwake over the helicopter platform of a Canadian Coast Guard (CCG) polar icebreaker was studied using high-speed particle image velocimetry (PIV). The experiments were conducted on a scaled model of the polar icebreaker situated on a costume-built and computer-controlled turntable, which provided the ability to accurately change the incidence angle of the impinging flow with a given rate of change for incidence angle. Quantitative flow field data were obtained in several vertical and horizontal planes. The obtained velocity field was then used to calculate the time-averaged flow structure and turbulence metrics over the helicopter platform of the vessel. The present work compared the effects of two types of inflow conditions: (i) a uniform flow and (ii) a simulated atmospheric boundary layer (ABL) on the flow structure over the helicopter platform of the ship. Moreover, for the bluff scaled model, the effects of the Reynolds number on the wake structure and the flow patterns were investigated. The incidence angle (α) between the oncoming flow and the orientation of the ship varied between 0° to 330° with the increment of 30°. It was observed that higher maximum values of the turbulence intensity were associated with the simulated ABL. Moreover, it was found that for both inflow conditions, the incidence angle of 300o corresponded to the highest turbulence levels over the helicopter platform. Building on the results obtained for a stationary vessel in the simulated ABL, this work aimed to quantify the effects of the unsteady change in the direction of the impinging wind, simulated by rotating the model at a certain rate, . It was observed that the increase of the rate of change of the inflow direction resulted in an increase of the turbulent intensity over the helicopter platform. However, an exception was observed for the case of α = 60°, where clockwise rotation of the ship model with respect to the inflow exposed the helicopter platform to increased turbulent velocity fluctuations, while counterclockwise rotation diminished the flow unsteadiness over the helicopter platform. Moreover, aiming to identify the origins of the unsteady forces applied on bluff elongated plates with high chord-to thickness ratio (c/t = 23) at zero incidence, direct force measurement as well as PIV were used to identify the effect of transverse perforations on the flow-induced loading on the flow structure in the near-wake of the plates. The experiments were conducted in a water channel, where the plates were located at the center of channel, parallel to the upstream flow direction. Plates with various characteristic diameter of the perforation as well as a reference case without perforations were considered. The spectra of the trailing-edge vortex shedding and flow-induced forces were compared and it was observed that the vortex shedding frequencies were in very good agreement with those of the measured flow-induced forces for all considered perforation patterns. Thus, it was determined that the trailing-edge vortex shedding was the main mechanism of generating the unsteady loading on the plates. The staggered patterns of the perforations created a three-dimensional flow structure at the vicinity of the trailing edge and in the near wake, which was investigated using PIV at several data acquisition planes. It was found that in the cross-sectional planes corresponding to the close proximity of the perforations to the downstream edge, the periodic trailing-edge vortex shedding were suppressed. Furthermore, it was observed that for small perforations, the velocity fluctuations in the near wake were enhanced. However, further increase of the perforation diameter led to suppression of the velocity fluctuations. / Graduate
152

Problèmes d'interface en présence de métamatériaux : modélisation, analyse et simulations / Interface problems with metamaterials : modelling, analysis and simulations

Vinoles, Valentin 08 September 2016 (has links)
Nous nous intéressons à des problèmes de transmission entre diélectriques et métamatériaux, milieux présentant des propriétés électromagnétiques inhabituelles comme des caractéristiques effectives négatives à certaines fréquences. Par exemple, ces milieux peuvent être construits comme des assemblages périodiques de microstructures résonantes et dans ce cas la théorie de l'homogénéisation permet de justifier mathématiquement ces propriétés effectives. En régime harmonique et dans des géométries à variables séparables, des calculs analytiques peuvent être menés. Ils révèlent dans des cas dits critiques des difficultés mathématiques: les solutions n'ont pas la régularité standard, voire le problème peut être mal posé.La première partie étudie ces problèmes de transmission en régime temporel pour lequel les métamatériaux sont modélisés par des modèles dispersifs (modèle de Drude ou de Lorentz). Les difficultés résident dans le choix d'un schéma de discrétisation mais surtout dans la construction de conditions absorbantes. La méthode retenue ici est celle des Perfectly Matched Layers (PMLs). Comme les PMLs classiques sont instables pour ces modèles du fait de la présence d'ondes inverses, nous proposons une nouvelle classe de PMLs pour lesquelles nous menons une analyse de stabilité. Cette dernière permet de construire des PMLs stables. Elles sont ensuite utilisées pour simuler le comportement en temps long d'un problème de transmission; nous illustrons alors le fait que le principe d'amplitude limite peut être mis en défaut en raison de résonances d'interface.La deuxième partie vise à pallier ces phénomènes d'interface en régime harmonique en revenant sur le processus d'homogénéisation classique, pour un milieu dissipatif. Pour des problèmes de transmission, il est connu que les modèles issus de cette méthode perdent en précision du fait de la présence de couches limites à l'interface. Nous proposons un modèle enrichi au niveau de l'interface. En combinant la méthode d'homogénéisation double-échelle et celle des développements asymptotiques raccordés, nous construisons des conditions de transmission non standards faisant intervenir des opérateurs différentiels le long de l'interface. Le calcul de ces conditions nécessite la résolution de problèmes de cellule et de problèmes non standards posés dans des bandes périodiques infinies. Une analyse d'erreur confirme l'amélioration de la précision du modèle. Des simulations numériques illustrent l'efficacité de ces nouvelles conditions. Enfin, cette démarche est reproduite formellement dans le cas des matériaux à fort contraste se comportant comme des métamatériaux. Nous montrons alors que ces nouvelles conditions permettent de régulariser le problème de transmission dans les cas critiques. / We are interested in transmission problems between dielectrics and metamaterials, that is to say media with unusual electromagnetic properties such as negative constants at some frequencies. These media are often made of periodic assemblies of resonant micro-structures and in this case the homogenization theory can justify mathematically these effective properties. A preliminary part deals with these problems in the harmonic domain and in geometry with separation of variables.Analytical computations are done and reveal in the so-called critical cases some mathematical diffculties: the solutions do not have the standard regularity and the problem can even be ill-posed.The first part examines these transmission problems in the time domain for which metamaterials are modelled by dispersive models (Drude model or Lorentz model for instance). The diffculties reside in the choice of a discretization scheme but especially in the construction of absorbing conditions. The method used here is the use of Perfectly Matched Layers (PMLs). Since classical PMLs are unstable for these models due to the presence of backward waves, we propose a new class of PMLs for which we conduct a stability analysis. The latter allows us to build stable PMLs. They are then used to simulate the long-time behaviour of a transmission problem; we illustrate the fact that the limit amplitude principle can be faulted because of interface resonances.The second part aims to overcome these phenomena by coming back to the classical homogenization in the harmonic domain, for dissipative media. For transmission problems, it is known that models resulting from this method lose accuracy due to the presence of boundary layers at the interface. We propose an enriched model at the interface: by combining the method of two-scale homogenization and that of matched asymptotic expansions, we build non-standard transmission conditions involving tangential derivatives along the interface (Laplace-Beltrami operators). This requires to solve cell problems and non-standardproblems in infinite periodic bands. An error analysis confirms the improvement of the accuracy of the model and numerical simulations show the effectiveness of these new conditions. Finally, this approach is formally reproduced in the case of high contrast materials which behave like metamaterials. We show that these new conditions regularise the transmission problem in the critical cases.
153

[pt] CÉLULAS SOLARES DE BANDA INTERMEDIÁRIA DE PONTOS QUÂNTICOS DE INAS EM INGAP / [en] INAS QUANTUM DOT INTERMEDIATE BAND SOLAR CELLS IN INGAP

ELEONORA COMINATO WEINER 30 December 2021 (has links)
[pt] A célula solar de banda intermediária (IBSC) é um dispositivo de terceira geração alternativo à célula solar de junção única e permite atingir maior eficiência mantendo a simplicidade de ter apenas uma junção pn, garantindo baixo custo e baixa complexidade de fabricação. Nesta tese, um extenso trabalho experimental é apresentado, utilizando as técnicas de microscopia de força atômica, microscopia eletrônica de transmissão, catodoluminescência e fotoluminescência, além de extenso trabalho teórico baseado em simulações realizadas com os programas nextnano e SCAPS. Através dos dados obtidos, é discutida a escolha do InGaP para a matriz da célula solar e do InAs para os pontos quânticos; a inclusão das field damping layers, que minimizam o efeito negativo do campo elétrico sobre os pontos quânticos; o desordenamento do InGaP bulk; como pontos quânticos pequenos e com cap layers de menor espessura alteram a tendência de ordenamento das camadas subsequentes de InGaP; a inclusão de uma camada de GaP para garantir a qualidade das interfaces durante o crescimento da estrutura; e a otimização dos pontos quânticos para atingir a energia ideal teórica para a banda intermediária. Cinco estruturas completas de células solares de referência e de banda intermediária baseadas nas discussões apresentadas são então propostas para crescimento futuro. Estas estruturas de IBSC devem apresentar figuras de mérito interessantes, como VOC entre 1,32 eV e 1,44 eV (1; 2), aumento entre 5 por cento e 50 por cento na ISC (3) e baixos efeitos resistivos, garantindo FF alto e eficiências superiores à das células solares de referência. / [en] The intermediate band solar cell (IBSC), an alternative to the single junction solar cell, is a third generation device that achieves greater efficiency while maintaining the simplicity of having only one pn junction, guaranteeing low cost and low complexity to manufacture. In this thesis, an extensive experimental work is presented, using atomic force microscopy, transmission electron microscopy, cathodoluminescence and photoluminescence techniques, in addition to an extensive theoretical work based in simulations performed with nextnano and SCAPS softwares. Through the obtained data, the choice of InGaP for the solar cell matrix and InAs for the quantum dots; the inclusion of field damping layers to minimize the negative effect of the electric field on the quantum dots; the disordering of bulk InGaP; the way small quantum dots with thinner cap layers alter the ordering tendency of subsequent layers of InGaP; the inclusion of a GaP layer to ensure the interfaces’ quality during the structure s growth; and the quantum dots optimization to reach the intermediate band ideal theoretical energy are discussed. Five complete structures for reference and intermediate band solar cells based in the presented discussions are then proposed for future growth. These IBSC structures should present interesting figures of merit, such as a VOC ranging between 1,32 eV and 1,44 eV (1; 2), an increase between 5 per cent and 50 per cent in ISC (3) and low resistance effects, ensuring a high FF and efficiencies superior to the reference solar cells.
154

A Multi-instrument Investigation of Pigments, Binders and Varnishes from Egyptian Paintings (AD 1300-1900): Molecular and Elemental Analysis Using Raman, GC-MS and SEM-EDX Techniques

Abdel-Ghani, Mona H. January 2009 (has links)
The focus of this study was analytical investigations of Egyptian paintings, mainly Coptic icons and Islamic wooden ceilings, dating from 1300-1900 using multiinstrumental techniques. Twenty three Coptic icons and three wooden ceilings dated from different periods and painted by different painters in case of icons were examined. The materials used including pigments, media, varnishes, ground layers and gold layers. The surface stratigraphy of paint samples, their layered structured and the composition of materials used in each layer were analysed. Variations in painting techniques, pigments palettes, paint media and varnishes applied in Egyptian paintings according to painters, time and type of paintings were revealed. A total of twenty-eight organic and inorganic pigments were identified in this study, of which nine have never been previously included as a part of the Egyptian pigment palettes, namely; smalt, lapis lazuli, indigo, pararealgar, Prussian blue, chrome yellow, barium yellow, barium white and hydromagnesite. The identification of hydromagnesite, which has never been to date considered as a pigment either in Egypt or elsewhere and the identification of smalt from the mid-14th century, whose reported earliest large scale use was in the 16th century. Two types of resins were identified as a constituent of the oil/resin varnish applied on Coptic icons of which Venice turpentine has been identified for the first time as an ingredient of Egyptian varnishes. The identification of mosaic gold in an 18th C. icon, a novel usage of dammar resin and the multilayered structure of the white ground layers were revealed. / Egyptian Ministry of Higher Educations
155

Layered Light : Exploring dynamic light patterns with textile as medium

Hahne Gadd, Jenny January 2015 (has links)
Layered light is a textile design project aiming to explore light as a design variable and its abilities to - in combination with layers of laser cut textiles - create dynamic patterns. The reason being to explore how light can be used to create the very pattern itself and what the textile quality can bring to the expression. Through a practice based working method, laser cutting has been used to manipulate different textile materials, that in combination with movement have resulted in range of design examples displaying various effects of the technique. Three of the found effects have been used to take forth a collection of patterns drawing inspiration from the elusive beauty of light in nature. One of which has been produced in a larger scale, exemplifying how the expression could be used in a spacial context. The result implicates the usefulness of integrating light early on in a design process and how textile and light can be combined to enhance each other all well as displaying a whole new expression for laser cut textiles.
156

Nutritional value of sorghum for poultry feed in West Africa

Issa, Salissou January 1900 (has links)
Doctor of Philosophy / Department of Animal Sciences and Industry / Joe D. Hancock / A total of 2,840 1-d-old broiler chicks and 450 1-d-old layer chicks were used in three experiments to determine the nutritional value of corn- and sorghum-based diets in poultry reared in West Africa. In the broiler experiments, birds fed corn had greater average daily gain (P < 0.001) with similar carcass weight and yield for birds fed corn- vs sorghum-based diets (P > 0.18). Particle size treatments did not affect growth performance or carcass characteristics (P > 0.20). In the layer experiment, birds fed sorghum had greater body weight at d 126 (P < 0.001), started laying earlier (P < 0.01), ate more feed (P < 0.01), and produced more eggs (P < 0.01) than birds fed the corn-based diet. However, there was no difference in average egg weight among birds fed corn vs sorghum (P > 0.85). In conclusion, sorghums produced in West Africa are a good alternative to corn when fed to broiler chicks and laying hens.
157

Applications of photolithographic techniques : materials modeling for double-exposure lithography and development of shape-encoded biosensor arrays

Lee, Shao-Chien 19 October 2009 (has links)
Double-exposure lithography has shown promise as potential resolu- tion enhancement technique that is attractive because it is much cheaper than double-patterning lithography and it can be deployed on existing imaging tools. However, this technology is not possible without the development of new materials with nonlinear response to exposure dose. Several materials have been proposed to implement a nonlinear response to exposure including re- versible contrast enhancement layers (rCELs), two-photon materials, interme- diate state two-photon (ISTP) materials, and optical threshold layers (OTLs). The performance of these materials in double-exposure applications was inves- tigated through computer simulation using a custom simulator. The results from the feasibility studies revealed that the ISTP and OTL types of materials showed much more promise than the rCEL and two-photon types of materi- als. Calculations show that two-photon materials will not be feasible unless achievable laser peak power in exposure tools can be signi¯cantly increased. Although rCEL materials demonstrated nonlinear behavior in double-exposure mode, only marginal image quality and process window improvements were ob- served. Using the results from the simulation work described herein, materials development work is currently ongoing to enable potential ISTP and OTL materials for manufacturing. A new biochip platform named \Mesoscale Unaddressed Functional- ized Features INdexed by Shape" (MUFFINS) was developed in the Willson Research Group at the University of Texas at Austin as a potential method to achieve a new low-cost biosensor system. The platform uses poly(ethylene glycol) hydrogels with bioprobes covalently cross-linked into the matrix for detection. Each sensor is shape-encoded with a unique pattern such that the information of the sensor is associated with the pattern and not its position. Large quantities of individual sensors can be produced separately and then self- assembled to form random arrays. Detection occurs through hybridization of the probes with °uorescently labeled targets. The key designs of the system include parallel batch fabrication using photolithography and self-assembly, in- creased information density using multiplexing, and enhanced shape-encoding with automated pattern recognition. The development of two aspects of the platform { self-assembly mechanics and pattern recognition algorithm, and a demonstration of all the key design elements using a single array are described herein. / text
158

Structural and spectroscopic studies of surfaces

Laitenberger, Peter January 1996 (has links)
No description available.
159

Photoconductive properties of conjugated polymers

Halls, Jonathan James Michael January 1997 (has links)
No description available.
160

The growth of thin film epitaxial oxide-metal heterostructures

Wang, Chao-Hsiung January 1998 (has links)
No description available.

Page generated in 0.0268 seconds