• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 376
  • 164
  • 66
  • 60
  • 41
  • 15
  • 10
  • 10
  • 10
  • 10
  • 10
  • 10
  • 8
  • 7
  • 4
  • Tagged with
  • 888
  • 417
  • 132
  • 108
  • 107
  • 89
  • 83
  • 74
  • 72
  • 68
  • 63
  • 60
  • 58
  • 52
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
461

Nonequilibrium quantum many-body physics in ultracold atoms subject to dissipation / 冷却原子系における散逸を伴う非平衡量子多体物理

Yamamoto, Kazuki 23 March 2023 (has links)
付記する学位プログラム名: 京都大学卓越大学院プログラム「先端光・電子デバイス創成学」 / 京都大学 / 新制・課程博士 / 博士(理学) / 甲第24402号 / 理博第4901号 / 新制||理||1700(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)教授 川上 則雄, 教授 佐々 真一, 教授 高橋 義朗 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
462

High entropy oxide electrodes with ionic liquid electrolyte / Högentropioxidelektroder med jonisk vätskaelektrolyt

Abraham, Saron January 2022 (has links)
Metal-based high entropy oxides are considered promising electrode materials for use in Li- ion batteries. In this work, the most widely studied high entropy oxide Mg0.2Ni0.2Cu0.2Co0.2Zn0.2O (M-HEO) with rock salt structure was successfully synthesized by Modified Pechini synthesis, characterized by X-ray diffraction analysis, and investigated as anode active material (negative electrode) in a coin cell. M-HEO has the concept of entropy stabilisation of crystal structure in oxide system with the configurational entropy value of 1,6R which confirmed that M-HEO classified as high entropy oxide.  To test the electrochemical performance, full cells comprising M-HEO as anode, lithium manganese oxide (LMO) as cathode together with ionic liquid electrolyte were assembled to explore their potential for practical applications. The electrochemical cycling performance was studied by two electrochemical experiments which are three-electrode cyclic voltammetry and galvanostatic charge/discharge. The cyclic voltammetry measurement was used to determine the behaviour of the system such as potential window and scan rate, while galvanostatic charge/discharge was used to determine the performance of the battery over time by applying constant current.  The results demonstrate that high entropy oxide possess a stable structure. This points out the direction for the preparation of M-HEOs with stable structure and excellent performance and provides a promising candidate for anode materials for LIBs. / Metallbaserade högentropioxider anses vara lämpliga för användning av elektrodmaterial för litium-jon batterier. I detta arbete syntetiserades den första högentropioxiden Mg0.2Ni0.2Cu0.2Co0.2Zn0.2O (M-HEO) som har stensaltstruktur genom Modifierad Pechini- syntesmetod, karakteriserad av röntgendiffraktionsanalys och undersöktes som aktivt material i den negativa elektroden. M-HEO har konceptet av entropistabilisering av kristallstrukturen i oxidsystem som har det konfigurerade entropivärdet av 1,6R. Detta bekräftade att M-HEO klassificerades som högentropioxid.  För att testa den elektrokemiska prestandan, användes fullceller bestående av M-HEO som anod, litiummanganoxid (LMO) som katod tillsammans med jonisk flytande elektrolyt. Detta gjordes för att undersöka M-HEO potentiella praktiska tillämpningar. Den elektrokemiska cyklingsprestandan studerades genom två elektrokemiska experiment, cyklisk voltammetri med tre-elektroder och galvanostatisk laddning/urladdning med knapp-celler. Den cykliska voltammetri mätningen användes för att bestämma vart i systemet sker redox reaktion för att sedan kunna identifiera på vilka potentialintervall samt skanningshastighet, medan galvanostatisk laddning/urladdning användes för att bestämma batteriets prestanda över tid genom att applicera konstant ström. Resultaten visar sig att hög entropi oxider har en stabil stensaltstruktur. Detta bidrar till att M-HEO som har en stabil struktur kan vara ett lämpligt anodmaterial i litium-jon batterier.
463

Preparation and Experimental Investigation of the Tribological Properties of Conductive Grease Containing Ionic Liquids

Johansson Segervall, Gabriella January 2022 (has links)
This thesis project was executed at ABB AB. The purpose of the thesis was to formulate aselection of ionic liquids with different thickeners as greases and experimentally understand thetribological characteristics and electrical properties. The performance of four ionic liquids, 1-Ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide (IL6), 1-Butyl-3-methylimidazoliumbis(trifluoromethylsulfonyl)imide (IL2), 1-Hexyl-3-methylimidazoliumbis(trifluoromethylsulfonyl)imide (IL3), and 1-Hexyl-1-methylpyrrolidiniumbis(trifluoromethylsulfonyl)imide (IL4) and two thickeners, polytetrafluoroethylene (PTFE)powder and lithium stearate were evaluated for tribological and electrical properties. Two ionicliquids, 1-Ethyl-3-methylimidazolium dicyanamide, 1-Butyl-3-methylimidazolium dicyanamidefailed to form stable greases due to poor miscibility with the thickeners. Frictional tests for all thecomposed grease were performed and afterwards analyzed with a light optical microscope forassessment of the wear tracks. Electrical conductivity was measured with a contact resistancetest setup. Moreover, the dropping point for the greases was measured to ensure theformulations were qualified as lubricant greases. Ionic liquid greases containing PTFE as athickener show better thermal stability than those containing lithium stearate. In regards to antiwearand friction reduction, the results indicate better tribological properties for the IL3 and IL4with the 25 wt% of PTFE and lithium stearate. The electrical conductivities were similar for allthe ionic liquid grease formulations which were higher than the general purpose grease as thereference. The work has paved the way for further investigation of ionic liquid based greaseswhich show potential in mitigation of bearing current in electric machines.
464

Quantitative Assessment of the effects of Microbial Degradation of a Simple Hydrocarbon Mixture

Kindell, Jessica 01 January 2015 (has links)
Ignitable liquids consist of either a single organic compound or a complex organic mixture. In regards to fire debris analysis, the analyst is responsible for determining if an ignitable liquid residue is present. However, when extracted from soil-containing fire debris evidence, chemical degradation from microorganisms is observed to result in the loss of compounds based on chemical structure. It can also happen when the evidence container is stored at room temperature before analysis. This can present a challenge to the fire debris analyst when identifying and classifying the ignitable liquid residue based on the criteria established by standard test methods. The purpose of this research was to observe the microbial degradation of fourteen compounds, at room temperature over a period of time, for possible by-product formation that could coincide with compounds normally present in an ignitable liquid. Additionally, a quantitative assessment was performed to observe and record the loss rate of compounds in a representative simple mixture. Finally, the loss rate from the simple mixture was compared to commercially available ignitable liquids. Degradation studies were conducted to observe the microbial degradation of a representative compounds (individually and in a simple mixture, both weathered and unweathered) and seven ignitable liquids of different ASTM E1618 classifications. Potting soil was spiked with 20 µL of a liquid/compound and was allowed to stand at room temperature for a period of time. The simple mixture was evaporated to 50% and 90% using a steady nitrogen gas flow to compare the degradation process to the unweathered mixture. All samples were extracted and analyzed using passive-headspace concentration and gas chromatography-mass spectrometry. The formation of by-products was not observed when degrading the compounds from the simple mixture individually as seen in other research. The simple mixture, unweathered and 50% weathered, resulted in rapid degradation of their oxygenated compounds. The straight-chained alkanes and toluene were observed to be more susceptible to microbial attack than the highly-substituted aromatics and the branched and cyclic alkanes. The 90% weathered mixture followed the same degradation trend as the unweathered and 50% weathered samples, although it only contained two compounds. The loss rates/half-lives for each simple mixture sample (unweathered, 50% weathered, and 90% weathered) were determined to be approximately 3.5, 3.5, and 0.84 days. The unweathered and 50% weathered sample half-lives were similar due to containing compounds with similar susceptibility to degradation, while the 90% weathered sample contained one compound that was more highly susceptible to degradation. When comparing the 3.5 day half-life to the seven different ASTM class liquids, the isoparaffinic product and the naphthenic-paraffinic product had similar rates of degradation while aromatic solvent and normal alkane classes had the shortest half-lives. When observing the degradation of the gasoline, medium petroleum distillate and the miscellaneous, the constituent compounds were seen to exhibit a range of degradation rates that corresponded to half-lives less than and greater than 3.5 days.
465

Experimental Analysis Of The Hydrogen Sulfide Absortion Phenomena In Brine/oil Mixtures As A Function Of System Pressure And H2s

Zea, Luis 01 January 2008 (has links)
In underground oil reservoirs, Hydrogen sulfide is usually found coexisting with the oil due to bacteria reduction over a long period of time. The amount of H2S in the oil varies from place to place around the globe. When the oil extraction process begins, the presence of Hydrogen sulfide becomes noticeable as drilling tools, piping and other equipment suffer from sulfide stress cracking, electrochemical corrosion and corrosion fatigue. For this reason, the oil industry invests millions of dollars per year trying to find better ways to reduce the amount of H2S in oil. An important part of the current investigations deals with brine (sea water)/oil mixtures. The reasons are two-fold: 1) one way of extracting the petroleum from the reservoir is by injecting brine into it and since it has a higher density than oil, the latter will be ejected up to the surface. Taking into account the complex fluid flow occurring within the reservoir it is easy to understand that some brine will also be present as part of the ejected fluid; 2) brine is already present in the reservoir, so independent of the extraction method used, there will be a brine/oil mixture in the ejected flow. When brine and oil have absorbed H2S under pressure in the reservoir and then suffer a decompression during the extraction process, a certain amount of H2S is released from the liquid phase. In order to have a better prediction of how much Hydrogen sulfide can be liberated a good understanding of H2S absorption by these liquids is necessary. The amount of gas a solvent absorbs is a function of pressure, original gas concentration and temperature as described by Henry's Law. The purpose of this thesis is to experimentally analyze how much of the corrosive gas is absorbed into different brine/oil mixtures, and brine and oil, separately. In order to find sufficient data for a thorough analysis, different reservoir simulation scenarios were created. The liquids were mixed from pure brine to pure oil, resulting in 33% and 66% water cuts. Data were obtained at 2 pressures of 20atm and 70atm at room temperature. H2S concentration was also a variable, changing the original gas concentration through different values: 50, 100, and 300ppm. These experiments were conducted in an autoclave system and will better explain the hydrostatic process that occurs inside the reservoir. It was found that throughout all the water cuts, the role that total pressure plays in the absorption phenomena is of less importance as the original H2S concentration is increased. In the same manner it was observed that the highest mass-absorption ratios are always found between 50 and 100ppm and the lowest at 300ppm, this is observed for all water cuts and total pressures. Another important finding was that the ability to absorb the corrosive gas decreases as the original H2S concentration increases and this proves to be true for all water cuts and system pressures. After conducting these different reservoir scenarios, tests were conducted to simulate 300m of the horizontal section of the pipe that connects the head of the well with the platform. This was done with a high pressure 300-meter long loop. It was found that the corrosive gas is absorbed at a higher rate when there is a flow, opposite to a hydrostatic case. Henry's Law constant was identified for each water cut and each pressure, however, the test procedure could not be validated since the gas being studied was not in its pure form. Understanding the absorption phenomena of Hydrogen sulfide in different water cuts will definitely be of great help to the oil industry to make better forecasts of H2S concentrations being ejected from each well.
466

Constructing Poly(Ionic Liquid)s-Based Composite Solid State Electrolytes and Application in Lithium Metal Batteries

Li, Jiajia January 1900 (has links)
The pursuit of reliable and high-performance batteries has fueled extensive research into new battery chemistries and materials, aiming to enhance the current lithium-ion battery technologies in terms of energy density and safety. Among the potential advancements, solid-state batteries (SSBs) have captured significant attention as the next-generation energy storage technology. One key factor contributing to their appeal is the utilization of solid-state electrolytes (SSEs) with a wide electrochemical stability window (ESW), making SSBs compatible with high-voltage cathodes. The energy density of SSBs can be further improved by employing the “holy-grail” anode, Li-metal, which boasts the lowest working voltage (-3.04 V vs. Li+/Li) and an ultrahigh theoretical capacity (3860 mAh g−1). Consequently, these batteries are referred to as lithium metal batteries (LMBs). However, realizing the full potential of LMBs presents formidable challenge, including the low ionic conductivity of current SSEs, large interfacial resistance between SSE and electrodes, uncontrollable interfacial reactions, and the growth of Li dendrites.  Typically, SSEs can be categorized into three types. Among these, solid composite electrolytes (SCEs) are considered the most promising choice for solid-state LMBs due to their combination of high ionic conductivity and excellent mechanical strength from inorganic solid electrolytes (ISEs) and the flexibility and good interface compatibility provided by solid polymer electrolytes (SPEs). Polymeric ionic liquids (PolyILs), which contain both ionic liquid-like moieties and polymer frameworks, have emerged as highly attractive alternatives to traditional polymers in SCEs.  The overall objective of this thesis was to develop PolyIL-based SCEs with enhanced ionic conductivity, wide ESW, high Li+ transference number, and reduced electrodes/electrolyte interface resistance. The main progress achieved in this thesis is as follows: 1. We selected three F-based Li-salts to prepare SPEs using poly(ethylene oxide) and polyimide. The investigation focused on assessing the impact of molecular size, F content, and chemical structures (F-connecting bonds) of these Li-salts. Additionally, we aimed to uncover the formation process of LiF in the solid electrolyte interphase (SEI). The result revealed that the F-connecting bond plays a more significant role than the molecular size and F element content, resulting in slightly better cell performance using LiPFSI compared to LiTFSI and substantially better performance compared to LiFSI. The preferential breakage of bonds in LiPFSI was found to be related to its position to Li anode. Consequently, we proposed the LiPFSI reduction mechanism based on these findings. 2. Using the template method, we synthesized a monolayer SCE with enhanced Li+ transference number and high ionic conductivity. In this study, boron nitride (BN) nanosheets with a high specific surface area and richly porous structure were employed as inert inorganic filler. These BN nanosheets played a crucial role in homogenizing the Li+ flux and facilitating the Li+ transmission to suppress Li dendrite growth. When integrated into a LiFePO4//Li cell with the optimized SCE, the assembled battery demonstrated remarkable cycling performance.  3. A monolayer GSCE with multifunctionality was synthesized via a natural sedimentation and subsequent UV-curing polymerization technique. This innovative method capitalizes on intrinsic gravity, allowing for the integration of multiple functions within a single layer, thereby eliminating the additional interlayer resistance. The developed GSCE provides an optimum Li+ transportation path and enhanced Li+ transference number, leading to an enhanced ionic conductivity and a long cycle life of Li//Li cells and SSLMBs. Compared with the monolayer uniform SCEs, the gradient structure also alleviates the uncoordinated thermal expansion between fillers and PolyIL, avoiding increased stress during the cycle and battery capacity fade.
467

Novel chiral phosphonium ionic liquids as solvents and catalysts for cycloadditions. Investigation of the Diels-Alder reaction of a series of dienes and dienophiles in novel chiral phosphonium ionic liquids.

Yu, Jianguo January 2009 (has links)
The use of ionic liquids (ILs) as both reagents and solvents is widely recognised. ILs offer a number of advantages compared to regular molecular solvents. These advantages include: chemical and thermal stability, no measurable vapour pressure, no or lower toxicity, non-flammability, catalytic ability, high polarity and they can be recycled. There are a number of research groups investigating the various applications of this reaction medium and most studies have focused on solvents derived from the imidazolium cation. The use of the imidazolium-based ILs in the Diels-Alder reaction has been studied in detail and higher yields compared to conventional methods have been reported. The IL affects the rate and interesting selectivities have been observed. However, not much attention has been paid to the scope and limitations of phosphonium ILs (PILs). Therefore the focus of this thesis is the synthesis and application of novel chiral PILs as environmentally benign, task-specific solvents for the Diels-Alder reaction. In addition, this research seeks alternative ways to eliminate the use of toxic heavy metal catalysts and to exploit methodologies which reduce the energy consumption of the Diels-Alder reaction. A series of CILs were synthesised from the chiral pool and they were characterised by thermogravimetric analysis, differential scanning calorimetry and spectroscopy. They were then investigated as solvents and catalysts in the Diels-Alder reactions of a series of dienes (cyclopentadiene, isoprene, 2,3-dimethylbuta-1,3-diene, furan, pyrrole, N-methyl pyrrole) and dienophiles (methyl acrylate, methyl vinyl ketone, acrylonitrile, dimethyl maleate, acrolein, dimethylacetylene dicarboxylate, maleic anhydride and maleimide). Investigation of the effect of PILs in the presence of three heterogeneous catalysts Al2O3, SiO2 and K-10 montmorillonite were studied. Ultrasound and microwave-assisted Diels-Alder reactions in the PILs, in the absence and presence of the catalysts, were also studied. The reactions of these prototypical substrates illustrated that the solvents are indeed task-specific. / University of Bradford
468

Parameterization of Ionic Liquids and Applications in Various Chemical Systems

Vazquez Cervantes, Jose Enrique 12 1900 (has links)
In this work, the development of parameters for a series of imidazolium-based ionic liquids molecules, now included in the AMOEBA force field, is discussed. The quality of obtained parameters is tested in a variety of calculations to reproduce structural, thermodynamic, and transport properties. First, it is proposed a novel method to parameterize in a faster, and more efficient way parameters for the AMOEBA force field that can be applied to any imidazolim-based cation. Second, AMOEBA-IL polarizable force field is applied to study the N-tert-butyloxycarbonylation of aniline reaction mechanism in water/[EMIM][BF4] solvent via QM/MM approach and compared with the reaction carried out in gas-phase and implicit solvent media. Third, AMOEBA-IL force field is applied in alchemical calculations. Free energies of solvation for selected solutes solvated in [EMIm][OTf] are calculated via BAR method implemented in TINKER considering the effect of polarization as well as the methodology to perform the sampling of the alchemical process. Finally, QM/MM calculations using AMOEBA to get more insights into the catalytic reaction mechanism of horseradish peroxidase enzyme, particularly the structures involved in the transition from Cp I to Cp II.
469

INCORPORATION OF BIO-BASED MOLECULES IN SILICONES THROUGH MICHAEL ADDITIONS

Lu, Guanhua 24 November 2023 (has links)
Silicone stands as an indispensable material for numerous applications; however, its high energy-cost synthesis poses significant environmental challenges. To address these concerns, bio-based silicone has gained considerable attention, showcasing its potential to dilute energy density while offering inherent functional benefits. Despite promising prospects, existing incorporation methods often involve protecting groups, rare metal catalysts, and multistep synthesis, which contradict green chemistry principles. The aza- Michael reaction emerges as a superior choice due to its high atom economy and mild reaction conditions. However, it still suffers from prolonged reaction times, hindering its overall efficiency and sustainability. This thesis utilizes self-activated beta-hydroxy acrylates to greatly enhance aza-Michael kinetics, achieving a 3-fold rate enhancement in solvent-free silicone synthesis. This fast aza-Michael reaction acts as the platform for the incorporation of Vitamin C and amino acids into silicone materials. Vitamin C-modified silicone demonstrates the potential for controlled antioxidant activity release, while amino acid-functionalized silicones are synthesized using choline amino acid ionic liquids, presenting a protecting-group-free and solvent-free synthesis method. Moreover, the synthesized choline amino acid-functional polymers and elastomers are investigated for their dielectric properties revealing promising potential for dielectric elastomer actuator applications. These innovative methods offer green alternatives for incorporating hydrophilic biomolecules into hydrophobic silicone systems, providing new functionalities that address both environmental and functional requirements. / Thesis / Doctor of Science (PhD)
470

Exotic Ground States and Dynamics in Constrained Systems

Placke, Benedikt Andreas 05 September 2023 (has links)
The overarching theme of this thesis is the question of how constraints influence collective behavior. Constraints are crucial in shaping both static and dynamic properties of systems across diverse areas within condensed matter physics and beyond. For example, the simple geometric constraint that hard particles cannot overlap at high density leads to slow dynamics and jamming in glass formers. Constraints also arise effectively at low temperature as a consequence of strong competing interactions in magnetic materials, where they give rise to emergent gauge theories and unconventional magnetic order. Enforcing constraints artificially in turn can be used to protect otherwise fragile quantum information from external noise. This thesis in particular contains progress on the realization of different unconventional phases of matter in constrained systems. The presentation of individual results is organized by the stage of realization of the respective phase. Novel physical phenomena after conceptualization are often exemplified in simple, heuristic models bearing little resemblance of actual matter, but which are interesting enough to motivate efforts with the final goal of realizing them in some way in the lab. One form of progress is then to devise refined models, which retain a degree of simplification while still realizing the same physics and improving the degree of realism in some direction. Finally, direct efforts in realizing either the original models or some refined version in experiment today are mostly two-fold. One route, having grown in importance rapidly during the last two decades, is via the engineering of artificial systems realizing suitable models. The other, more conventional way is to search for realizations of novel phases in materials. The thesis is divided into three parts, where Part I is devoted to the study of two simple models, while artificial systems and real materials are the subject of Part II and Part III respectively. Below, the content of each part is summarized in more detail. After a general introduction to entropic ordering and slow dynamics we present a family of models devised as a lattice analog of hard spheres. These are often studied to explore whether low-dimensional analogues of mean-field glass- and jamming transitions exist, but also serve as the canonical model systems for slow dynamics in granular materials more generally. Arguably the models in this family do not offer a close resemblance of actual granular materials. However, by studying their behavior far from equilibrium, we observe the onset of slow dynamics and a kinetic arrest for which, importantly, we obtain an essentially complete analytical and numerical understanding. Particularly interesting is the fact that this understanding hinges on the (in-)ability to anneal topological defects in the presence of a hardcore constraints, which resonates with some previous proposals for an understanding of the glass transition. As another example of anomalous dynamics arising in a magnetic system, we also present a detailed study of a two-dimensional fracton spin liquid. The model is an Ising system with an energy function designed to give rise to an emergent higher-rank gauge theory at low energy. We show explicitly that the number of zero-energy states in the model scales exponentially with the system size, establishing a finite residual entropy. A purpose-built cluster Monte-Carlo algorithm makes it possible to study the behavior of the model as a function of temperature. We show evidence for a first order transition from a high-temperature paramagnet to a low-temperature phase where correlations match predictions of a higher-rank coulomb phase. Turning away from heuristic models, the second part of the thesis begins with an introduction to quantum error correction, a scheme where constraints are artificially imposed in a quantum system through measurement and feedback. This is done in order to preserve quantum information in the presence of external noise, and is widely believed to be necessary in order to one day harness the full power of quantum computers. Given a certain error-correcting code as well as a noise model, a particularly interesting quantity is the threshold of the code, that is the critical amount of external noise below which quantum error correction becomes possible. For the toric code under independent bit- and phase-flip noise for example, the threshold is well known to map to the paramagnet to ferromagnet transition of the two-dimensional random-bond Ising model along the Nishimori line. Here, we present the first generalization of this mapping to a family of codes with finite rate, that is a family where the number of encoded logical qubits grows linearly with the number of physical qubits. In particular, we show that the threshold of hyperbolic surface codes maps to a paramagnet to ferromagnet transition in what we call the 'dual'' random-bond Ising model on regular tessellations of compact hyperbolic manifolds. This model is related to the usual random-bond Ising model by the Kramers-Wannier duality but distinct from it even on self-dual tessellations. As a corollary, we clarify long-standing issues regarding self-duality of the Ising model in hyperbolic space. The final part of the thesis is devoted to the study of material candidates of quantum spin ice, a three-dimensional quantum spin liquid. The work presented here was done in close collaboration with experiment and focuses on a particular family of materials called dipolar-octupolar pyrochlores. This family of materials is particularly interesting because they might realize novel exotic quantum states such as octupolar spin liquids, while at the same time being described by a relatively simple model Hamiltonian. This thesis contains a detailed study of ground state selection in dipolar-octupolar pyrochlore magnets and its signatures as observable in neutron scattering. First, we present evidence that the two compounds Ce2Zr2O7 and Ce2Sn2O7 despite their similar chemical composition realize an exotic quantum spin liquid state and an ordered state respectively. Then, we also study the ground-state selection in dipolar-octupolar pyrochlores in a magnetic field. Most importantly, we show that the well-known effective one-dimensional physics -- arising when the field is applied along a certain crystallographic axis -- is expected to be stable at experimentally relevant temperatures. Finally, we make predictions for neutron scattering in the large-field phase and compare these to measurements on Ce2Zr2O7.

Page generated in 0.0192 seconds