11 |
Urban Landscape Assessment of the Mississippi and Alabama Gulf Coast using Landsat Imagery 1973-2015Sherif, Abdalla R 10 August 2018 (has links)
This study aims to conduct an assessment of the land cover change of the Mississippi and Alabama coastal region, an integral part of the Gulf Coast ecological makeup. Landsat satellite data were used to perform a supervised classification using the imagery captured by Landsat sensors including Landsat 1-2 Multispectral Scanner (MSS), Landsat 4-5 Thematic Mapper (TM), Landsat 7 Enhanced Thematic Mapper (ETM+), and Landsat 8 Operational Land Imager (OLI) from 1973 to 2015. The objective of this study is to build a long-term assessment of urban development and land cover change over the past four decades for the Alabama and Mississippi Gulf Coast and to characterize these changes using Landscape Metrics (LM). The findings of this study indicate that the urban land cover doubled in size between 1973 and 2015. This expansion was accompanied by a high degree of urban fragmentation during the first half of the study period and then a gradual leveling off. Local, state, and federal authorities can use the results of this study to build mitigation plans, coastal development planning, and serve as the primary evaluation of the current urban development for city planners, environmental advocates, and community leaders to reduce degradation for this environmentally sensitive coastal region.
|
12 |
Major Employers in Small Towns: Modeling the Spatio-temporal Impacts on Land Use and Land Cover Changes at a Regional ScaleGhosh, Sudeshna 25 October 2013 (has links)
No description available.
|
13 |
Comparison of LULC Change of Cities Sharing International Boundaries Using GIS and Remote Sensing (City of Detroit, USA Vs. City of Windsor, Canada)AHSANULLAH, S M January 2021 (has links)
No description available.
|
14 |
Hydrologic Response of Upper Ganga Basin to Changing Land Use and ClimateChawla, Ila January 2013 (has links) (PDF)
Numerous studies indicate that the hydrology of a river basin is influenced by Land Use Land Cover (LULC) and climate. LULC affects the quality and quantity of water resources through its influence on Evapotranspiration (ET) and initiation of surface runoff while climate affects the intensity and spatial distribution of rainfall and temperature which are major drivers of the hydrologic cycle. Literature reports several works on either the effect of changing LULC or climate on the hydrology. However, changes in LULC and climate occur simultaneously in reality. Thus, there is a need to perform an integrated impact assessment of such changes on the hydrological regime at a basin scale. In order to carry out the impact assessment, physically-based hydrologic models are often employed. The present study focuses on assessment of the effect of changing LULC and climate on the hydrology of the Upper Ganga basin (UGB), India, using the Variable Infiltration Capacity (VIC) hydrologic model.
In order to obtain the changes that have occurred in the LULC of the basin over a time period, initially LULC analysis is carried out. For this purpose, high resolution multispectral satellite imageries from Landsat are procured for the years 1973, 1980, 2000 and 2011. The images are pre-processed to project them to a common projection system and are then co-registered. The processed images are used for classification into different land cover classes. This step requires training sites which are collected during the field visit as part of this work. The classified images, thus obtained are used to analyse temporal changes in LULC of the region. The results indicate an increase in crop land and urban area of the region by 47% and 122% respectively from 1973 to 2011. After initial decline in dense forest for the first three decades, an increase in the dense forest is observed between 2000- 2011 (from 11.44% to 14.8%). Scrub forest area and barren land are observed to decline in the study region by 62% and 96% respectively since 1973.
The land cover information along with meteorological data and soil data are used to drive the VIC model to investigate the impact of LULC changes on streamflow and evapotranspiration (ET) components of hydrology in the UGB. For the simulation purpose, the entire basin is divided into three regions (1) upstream (with Bhimgodha as the outlet), (2) midstream (with Ankinghat as the outlet) and (3) downstream (with Allahabad as the outlet). The VIC model is calibrated and validated for all the three regions independently at monthly scale. Model performance is assessed based on the criterion of normalized root mean square error (NRMSE), coefficient of determination (R2) and Nash-Sutcliffe efficiency (NSE). It is observed that the model performed well with reasonable accuracy for upstream and midstream regions. In case of the downstream region, due to lack of observed discharge data, model performance could not be assessed. Hence, the simulations for the downstream region are performed using the calibrated model of the midstream region. The model outputs from the three regions are aggregated appropriately to generate the total hydrologic response of the UGB. Using the calibrated models for different region of the UGB, sensitivity analysis is performed by generating hydrologic scenarios corresponding to different land use (LU) and climate conditions.
In order to investigate the impact of changing LU on hydrological variables, a scenario is generated in which climate is kept constant and LU is varied. Under this scenario, only the land cover related variables are altered in the model keeping the meteorological variables constant. Thus, the effect of LU change is segregated from the effect of climate. The results obtained from these simulations indicated that the change in LU significantly affects peak streamflow depth which is observed to be 77.58% more in August 2011 in comparison with the peak streamflow of August, 1973. Furthermore, ET is found to increase by 46.44% since 1973 across the entire basin.
In order to assess the impact of changing climate on hydrological variables, a scenario is generated in which LU is kept constant and climate is varied from 1971-2005. Under this scenario, land cover related variables are kept constant in the model and meteorological variables are varied for different time periods. The results indicate decline in the simulated discharge for the years 1971, 1980, 1990, 2000 and 2005, which is supported by decline in observed annual rainfall for the respective years. Amongst 1971 and 2005, year 2005 received 26% less rainfall resulting in 35% less discharge. Furthermore, ET is observed to be negligibly affected.
To understand the integrated impact of changing LU and climate on hydrological variables, a scenario is generated in which both climate and LU are altered. Based on the data available, three years (1973, 1980 and 2000) are considered for the simulations. Under this scenario, both land cover and meteorological variables are varied in the model. The results obtained showed that the discharge hydrograph for the year 1980 has significantly higher peak compared to the hydrographs of years 1973 and 2000. This could be due to the fact that the year 1980 received maximum rainfall amongst the three years considered for simulations. Although the basin received higher rainfall in the year 1980 compared to that in 2000, ET from the basin in the year 1980 is found to be 21% less than that of the year 2000. This could be attributed to the change in LU that occurred between the years 1980 and 2000. Amongst the years 1973 and 2000, there is not much difference in the observed rainfall but ET for the year 2000 is observed to be significantly higher than that of year 1973.
It is concluded from the present study that in the UGB, changing LULC contributes significantly to the changes in peak discharge and ET while rainfall pattern considerably influences the runoff pattern of the region. Future work proposed includes assessment of hydrologic response of basin under future LULC and climate scenarios. Also the model efficiency can be assessed by performing hydrologic simulations at different grid sizes.
|
15 |
Prospects of sustainable land management amidst interlocking challenges in the Upper Beshillo Catchments, Northeastern Highlands of EthiopiaAsnake Yimam Yesuph 06 1900 (has links)
Land degradation is a great threat to the Beshlo Catchment in Blue Nile Basisn, not merely as an
environmental issue, but also a social and economic problem. In Gedalas Watershed (one of the micro
catchments of Beshelo), land degradation, mediated by both biophysical and socio-economic drivers, is
among the major environmental sustainability and social-economic development threats in the area.
The threat is manifested in depletion of natural vegetations, water, soil and other natural resources;
disruption of ecosystem functions, processes, integrity, and services. Given its particular vulnerability,
watershed management activities have been in operation since the mid-1970s. Recently, the idea of
Sustainable land management through integrated watershed development program has been initiated
with the objective of reducing land degradation risks and ensuring food security at both the nationwide
and family circle. Despite these investments and efforts, real evidences of success and failures of such
efforts were not satisfactory explored. The objectives of this study were, therefore, to analyze the
existing status and future prospects of sustainable land management and evaluates its implication on
the environmental integrities and the local livelihoods specific to Gedalas watershed. For this effect, the
study investigated the dynamics, deriving forces and implications of LULC, soil erosion and soil fertility
status of the watershed, current status of watershed management practices, pertinent challenges and
opportunities for practicing land management technologies and approaches that might help meet the
sustainability requirements of SLM practices. In addition, the study explored factors that determine the
willingness of farming households to undertake SLM practice. As the study carried in the coupled
human-environment system of rural landscapes, interdisciplinary geographical approaches which
integrats social and natural science methodologies were employed to deal with issues of land
degradation-and-rehabilitation status comprehensively. The general findings of the study show that
though it would be dificult to measure all the composite aspects of land degradation, some of the
parameters considered in this study revealed that land degradation is a perpetuating challenge in the
watershed. It is evidenced from the overall undesirable land use/cover changes i.e transition of 21.25%
of Afro/sub alpine landscapes, 17.59% of the grasslands and 8% of shrub lands to either to cultivated
land or settlement areas over the 1973–2017 period, which have unintended negative socio-ecological
repercussions on the watershed; high annual mean soil loss value (which range from 37t/ha/year average values to 393 t/ha/yr soil loss rates on water courses) that exceed threshold level and a wide
gap between the need for SLM and the actual achievement of SLM practices,including limited adherence
to the idea behind contemporary land management policies and implementation principles and
approaches. The study further revealed the presence of opportunities as well as a myriad of challenges
that need to be tackled in order to achieve sustainable land management goals. The study colcludes
that, though, some encouraging progresses have been observed in the SLM project sites; land
degradation has remained a problem in the watershed. This calls for strenuous efforts to promote and
assist wide scale adoption of SLM practices that address the pervasive land degradation problem and
achieve land degradation neutrality as highlighted in sustainable development goals. / Department of Geography / Ph. D. (Geography)
|
16 |
Land use effects and climate impacts on evapotranspiration and catchment water balance / Einfluss von Landnutzung und Klima auf die Gebietsverdunstung und den Wasserhaushalt von FlusseinzugsgebietenRenner, Maik 13 January 2014 (has links) (PDF)
Evapotranspiration ET is a dominant Earth System process that couples the water and energy cycles at the earth surface.
The pressure of global environmental changes foster the broad scientific aim to understand impacts of climate and land-use on evapotranspiration under transient conditions.
In this work, the spatial scale of river catchments is addressed through data analysis of hydrological and meteorological archives with ET classically derived through water balance closure.
Through a synthesis of various catchments with different climatic forcings and hydrological conditions, the core objectives of this thesis are:
- Did environmental changes in the past, such as climatic- or land-use and land cover (LULC) changes, result in detectable non-stationary changes in the hydro-climate time series?
- How can the impacts of climatic- from LULC changes on the hydroclimatology of catchments be separated?
- What are the factors that control the sensitivity of ET and streamflow to external changes?
These research questions are addressed for the climatic scales of long-term annual averages and seasonal conditions which characterise the hydroclimatology of river catchments.
Illustrated by a rich hydro-climatic archive condensed for 27 small to medium sized river catchments in Saxony, a method is proposed to analyse the seasonal features of river flow allowing to detect shifting seasons in snow affected river basins in the last 90 years.
Observations of snow depth at these same times lead to the conclusion, that changes in the annual cycle of air temperature have a large influence on the timing of the freeze-thaw in late winter and early spring. This causes large changes in storage of water in the snow pack, which leads to profound changes of the river regime, particularly affecting the river flow in the following months.
A model-based data analysis, based on the fundamental principles of water and energy conservation for long-term average conditions, is proposed for the prediction of ET and streamflow, as well as the separation of climate related impacts from impacts resulting from changes in basin conditions.
The framework was tested on a large data set of river catchments in the continental US and is shown to be consistent with other methods proposed in the literature. The observed past changes highlight that (i) changes in climate, such as precipitation or evaporative demand, result in changes of the partitioning within the water and energy balance, (ii) the aridity of the climate and to a lesser degree basin conditions determine the sensitivity to external changes, (iii) these controlling factors influence the direction of LULC change impacts, which in some cases can be larger than climate impacts.
This work provides evidence, that changes in climatic and land cover conditions can lead to transient hydrological behaviours and make stationary assumptions invalid. Hence, past changes present the opportunity for model testing and thereby deriving fundamental laws and concepts at the scale of interest, which are not affected by changes in the boundary conditions. / Die Verdunstung ist ein maßgeblicher Prozess innerhalb des Klimasystems der Erde, welche den Wasserkreislauf mit dem Energiehaushalt der Erde verbindet. Eine zentrale wissenschaftliche Herausforderung ist, zu verstehen, wie die regionale Wasserverfügbarkeit durch Änderungen des Klimas oder der physiographischen Eigenschaften der Landoberfläche beeinflusst wird.
Mittels einer integrierten Datenanalyse von vorhandenen langjährigen Archiven hydroklimatischer Zeitreihen werden die folgenden wissenschaftlichen Fragestellungen dieser Dissertation diskutiert:
- Haben beobachtete Änderungen der Landoberfläche und des Klimas zu nachweisbaren, instationären hydroklimatischen Änderungen geführt?
- Lassen sich die hydroklimatischen Auswirkungen von Klimaänderungen und Änderungen der Landoberfläche voneinander unterscheiden?
- Welche Faktoren beeinflussen die Sensitivität von Abfluss und Verdunstung auf Veränderungen der klimatischen und physiographischen Randbedingungen?
Hierbei fokussiert sich die Arbeit auf Änderungen im langjährige Mittel und im Jahresgang von hydroklimatischen Variablen auf der räumlichen Skala von Flusseinzugsgebieten. Zur Untersuchung des hydrologischen Regimes wurde ein harmonischer Filter angewandt, der es erlaubt, die Eintrittszeit des Jahresgangs (Phase) zu quantifizieren. Diese klimatologische Kenngröße wurde für eine Vielzahl von Einzugsgebieten in Sachsen untersucht, wobei sich vor allem für die Gebiete in den Kammlagen des Erzgebirges signifikante Veränderungen ergaben. Es konnte gezeigt werden, dass die signifikante Phasenverschiebung der Temperatur seit Ende der 1980er Jahre zu einer verfrühten Schneeschmelze und dadurch zu einem Rückgang des Abflusses bis in die Sommermonate hinein geführt hat.
Desweiteren wurde eine modellbasierte Datenanalyse entwickelt, welche auf Massen- und Energieerhalt von Einzugsgebieten im langjährigen Mittel beruht. Das entwickelte Konzept erlaubt es, Auswirkungen von Klimaänderungen von anderen Effekten, welche z.B. durch Landnutzungsänderungen bedingt sind, abzugrenzen und zu quantifizieren.
Die Ergebnisse einer Sensitivitätsanalyse dieses Konzeptes sowie die Anwendung auf einen umfangreichen hydroklimatischen Datensatz der USA zeigen: (i) Veränderungen im Wasser- oder Energiedargebot beeinflussen auch die Aufteilung der Wasser- und Energieflüsse. (ii) Die Aridität des Klimas und nachgeordnet die physiographischen Faktoren bestimmen die Sensitivität von Verdunstung und Abfluss. (iii) Beide Faktoren beeinflussen die Stärke und Richtung der Auswirkungen von physiographischen Änderungen. (iv) Anthropogene Veränderungen der Landoberfläche führten zum Teil zu stärkeren Auswirkungen als klimatisch bedingte Änderungen.
Zusammenfassend zeigt sich, dass Änderungen von Landnutzung und Klima zu Verschiebungen im Wasserhaushalt führen können und damit auch die Annahme von Stationarität verletzen. Hydroklimatische Veränderungen bieten aber auch eine Gelegenheit zum Testen von Theorien und Modellen, um somit die grundlegenden Zusammenhänge zu erkennen, welche nicht durch Änderungen der Randbedingungen hinfällig werden.
|
17 |
Land use effects and climate impacts on evapotranspiration and catchment water balanceRenner, Maik 13 January 2014 (has links)
Evapotranspiration ET is a dominant Earth System process that couples the water and energy cycles at the earth surface.
The pressure of global environmental changes foster the broad scientific aim to understand impacts of climate and land-use on evapotranspiration under transient conditions.
In this work, the spatial scale of river catchments is addressed through data analysis of hydrological and meteorological archives with ET classically derived through water balance closure.
Through a synthesis of various catchments with different climatic forcings and hydrological conditions, the core objectives of this thesis are:
- Did environmental changes in the past, such as climatic- or land-use and land cover (LULC) changes, result in detectable non-stationary changes in the hydro-climate time series?
- How can the impacts of climatic- from LULC changes on the hydroclimatology of catchments be separated?
- What are the factors that control the sensitivity of ET and streamflow to external changes?
These research questions are addressed for the climatic scales of long-term annual averages and seasonal conditions which characterise the hydroclimatology of river catchments.
Illustrated by a rich hydro-climatic archive condensed for 27 small to medium sized river catchments in Saxony, a method is proposed to analyse the seasonal features of river flow allowing to detect shifting seasons in snow affected river basins in the last 90 years.
Observations of snow depth at these same times lead to the conclusion, that changes in the annual cycle of air temperature have a large influence on the timing of the freeze-thaw in late winter and early spring. This causes large changes in storage of water in the snow pack, which leads to profound changes of the river regime, particularly affecting the river flow in the following months.
A model-based data analysis, based on the fundamental principles of water and energy conservation for long-term average conditions, is proposed for the prediction of ET and streamflow, as well as the separation of climate related impacts from impacts resulting from changes in basin conditions.
The framework was tested on a large data set of river catchments in the continental US and is shown to be consistent with other methods proposed in the literature. The observed past changes highlight that (i) changes in climate, such as precipitation or evaporative demand, result in changes of the partitioning within the water and energy balance, (ii) the aridity of the climate and to a lesser degree basin conditions determine the sensitivity to external changes, (iii) these controlling factors influence the direction of LULC change impacts, which in some cases can be larger than climate impacts.
This work provides evidence, that changes in climatic and land cover conditions can lead to transient hydrological behaviours and make stationary assumptions invalid. Hence, past changes present the opportunity for model testing and thereby deriving fundamental laws and concepts at the scale of interest, which are not affected by changes in the boundary conditions.:Kurzfassung
Abstract
List of Manuscripts
Symbols and abbreviations
List of Symbols
List of abbreviations
1 Introduction
1.1 Motivation and relevance
1.1.1 Scientific importance of evapotranspiration
1.1.2 Pressure of human driven changes
1.1.3 Practical importance of evapotranspiration
1.2 Scope
1.2.1 Focus on the catchment scale
1.2.2 Changes in the hydroclimatology of river catchments
1.2.3 Hydro-climate data analysis
1.3 Objectives and research questions
1.3.1 Shifting seasons in hydrology
1.3.2 Long-term annual average changes of evapotranspiration and streamflow
1.3.3 Methodological requirements
1.4 Structure of the thesis
2 Long term variability of the annual hydrological regime
2.1 Introduction
2.1.1 Motivation
2.1.2 Seasonal changes in hydrologic records
2.1.3 Regional climate in Saxony
2.1.4 Objective and structure
2.2 Methods
2.2.1 Annual periodic signal extraction
2.2.2 The runoff ratio and its annual phase
2.2.3 Descriptive circular statistics
2.2.4 Detection of nonstationarities, trends and change points
2.3 Data
2.4.1 Estimation and variability of the timing of the runoff ratio
2.4.2 Temporal variability of the timing
2.4.3 Does temperature explain trends in seasonality of runoff ratio?
2.4.4 Trend analysis in snow dominated basins
2.4.5 Uncertainty and significance of the results
2.5 Conclusions
2.A Preparation of basin input data
2.A.1 Precipitation
2.A.2 Temperature and snow depth data
3 Evaluation of water-energy balance frameworks
3.1 Introduction
3.2 Theory
3.2.1 Coupled water and energy balance
3.2.2 The ecohydrologic framework for change attribution
3.2.3 Applying the climate change hypothesis to predict changes in basin evapo
transpiration and streamflow
3.2.4 Derivation of climatic sensitivity using the CCUW hypothesis
3.2.5 The Budyko hypothesis and derived sensitivities
3.3 Sensitivity analysis
3.3.1 Mapping of the Budyko functions into UW space
3.3.2 Mapping CCUW into Budyko space
3.3.3 Climatic sensitivity of basin evapotranspiration and streamflow
3.3.4 Climate-vegetation feedback effects
3.4 Application: three case studies
3.4.1 Mississippi River Basin (MRB)
3.4.2 Headwaters of the Yellow River Basin (HYRB)
3.4.3 Murray-Darling River Basin (MDB)
3.5 Conclusions
3.5.1 Potentials and limitations
3.5.2 Insights on the catchment parameter
3.5.3 Validation
3.5.4 Perspectives
3.A Derivation of the climate change direction
4 Climate sensitivity of streamflow over the continental United States
4.1 Introduction
4.1.1 Motivation
4.1.2 Hydro-climate of the continental US
4.1.3 Aims and research questions
4.2 Methods
4.2.1 Ecohydrological concept to separate impacts of climate and basin changes
4.2.2 Streamflow change prediction based on a coupled water-energy balance
framework
4.2.3 Streamflow change prediction based on the Budyko hypothesis
4.2.4 Statistical classification of potential climate and basin change impacts
4.3 Data
4.4 Results and discussion
4.4.1 Hydro-climate conditions in the US
4.4.2 Climate sensitivity of streamflow
4.4.3 Assessment of observed and predicted changes in streamflow
4.4.4 Uncertainty discussion
4.5 Conclusions
4.A Mathematical derivations for the Mezentsev function
5 Summary and conclusions
5.1 Shifting seasons in hydrology
5.1.1 Major findings
5.1.2 Socio-economic and political relevance
5.1.3 Limitations and possible directions for further research
5.2 Long-term annual changes in ET and streamflow
5.2.1 Major findings
5.2.2 Socio-economic and political relevance
5.2.3 Limitations and further research
5.3 General conclusions and outlook
5.3.1 Regional and temporal limits and validity
5.3.2 Hydrological records carry signals of climate and land use change
5.3.3 Statistical significance of past changes
5.3.4 Improvements in assessing ET
5.3.5 Remote sensing
5.3.6 Learning from the past to predict the future?
Bibliography
Danksagung
Erklärung / Die Verdunstung ist ein maßgeblicher Prozess innerhalb des Klimasystems der Erde, welche den Wasserkreislauf mit dem Energiehaushalt der Erde verbindet. Eine zentrale wissenschaftliche Herausforderung ist, zu verstehen, wie die regionale Wasserverfügbarkeit durch Änderungen des Klimas oder der physiographischen Eigenschaften der Landoberfläche beeinflusst wird.
Mittels einer integrierten Datenanalyse von vorhandenen langjährigen Archiven hydroklimatischer Zeitreihen werden die folgenden wissenschaftlichen Fragestellungen dieser Dissertation diskutiert:
- Haben beobachtete Änderungen der Landoberfläche und des Klimas zu nachweisbaren, instationären hydroklimatischen Änderungen geführt?
- Lassen sich die hydroklimatischen Auswirkungen von Klimaänderungen und Änderungen der Landoberfläche voneinander unterscheiden?
- Welche Faktoren beeinflussen die Sensitivität von Abfluss und Verdunstung auf Veränderungen der klimatischen und physiographischen Randbedingungen?
Hierbei fokussiert sich die Arbeit auf Änderungen im langjährige Mittel und im Jahresgang von hydroklimatischen Variablen auf der räumlichen Skala von Flusseinzugsgebieten. Zur Untersuchung des hydrologischen Regimes wurde ein harmonischer Filter angewandt, der es erlaubt, die Eintrittszeit des Jahresgangs (Phase) zu quantifizieren. Diese klimatologische Kenngröße wurde für eine Vielzahl von Einzugsgebieten in Sachsen untersucht, wobei sich vor allem für die Gebiete in den Kammlagen des Erzgebirges signifikante Veränderungen ergaben. Es konnte gezeigt werden, dass die signifikante Phasenverschiebung der Temperatur seit Ende der 1980er Jahre zu einer verfrühten Schneeschmelze und dadurch zu einem Rückgang des Abflusses bis in die Sommermonate hinein geführt hat.
Desweiteren wurde eine modellbasierte Datenanalyse entwickelt, welche auf Massen- und Energieerhalt von Einzugsgebieten im langjährigen Mittel beruht. Das entwickelte Konzept erlaubt es, Auswirkungen von Klimaänderungen von anderen Effekten, welche z.B. durch Landnutzungsänderungen bedingt sind, abzugrenzen und zu quantifizieren.
Die Ergebnisse einer Sensitivitätsanalyse dieses Konzeptes sowie die Anwendung auf einen umfangreichen hydroklimatischen Datensatz der USA zeigen: (i) Veränderungen im Wasser- oder Energiedargebot beeinflussen auch die Aufteilung der Wasser- und Energieflüsse. (ii) Die Aridität des Klimas und nachgeordnet die physiographischen Faktoren bestimmen die Sensitivität von Verdunstung und Abfluss. (iii) Beide Faktoren beeinflussen die Stärke und Richtung der Auswirkungen von physiographischen Änderungen. (iv) Anthropogene Veränderungen der Landoberfläche führten zum Teil zu stärkeren Auswirkungen als klimatisch bedingte Änderungen.
Zusammenfassend zeigt sich, dass Änderungen von Landnutzung und Klima zu Verschiebungen im Wasserhaushalt führen können und damit auch die Annahme von Stationarität verletzen. Hydroklimatische Veränderungen bieten aber auch eine Gelegenheit zum Testen von Theorien und Modellen, um somit die grundlegenden Zusammenhänge zu erkennen, welche nicht durch Änderungen der Randbedingungen hinfällig werden.:Kurzfassung
Abstract
List of Manuscripts
Symbols and abbreviations
List of Symbols
List of abbreviations
1 Introduction
1.1 Motivation and relevance
1.1.1 Scientific importance of evapotranspiration
1.1.2 Pressure of human driven changes
1.1.3 Practical importance of evapotranspiration
1.2 Scope
1.2.1 Focus on the catchment scale
1.2.2 Changes in the hydroclimatology of river catchments
1.2.3 Hydro-climate data analysis
1.3 Objectives and research questions
1.3.1 Shifting seasons in hydrology
1.3.2 Long-term annual average changes of evapotranspiration and streamflow
1.3.3 Methodological requirements
1.4 Structure of the thesis
2 Long term variability of the annual hydrological regime
2.1 Introduction
2.1.1 Motivation
2.1.2 Seasonal changes in hydrologic records
2.1.3 Regional climate in Saxony
2.1.4 Objective and structure
2.2 Methods
2.2.1 Annual periodic signal extraction
2.2.2 The runoff ratio and its annual phase
2.2.3 Descriptive circular statistics
2.2.4 Detection of nonstationarities, trends and change points
2.3 Data
2.4.1 Estimation and variability of the timing of the runoff ratio
2.4.2 Temporal variability of the timing
2.4.3 Does temperature explain trends in seasonality of runoff ratio?
2.4.4 Trend analysis in snow dominated basins
2.4.5 Uncertainty and significance of the results
2.5 Conclusions
2.A Preparation of basin input data
2.A.1 Precipitation
2.A.2 Temperature and snow depth data
3 Evaluation of water-energy balance frameworks
3.1 Introduction
3.2 Theory
3.2.1 Coupled water and energy balance
3.2.2 The ecohydrologic framework for change attribution
3.2.3 Applying the climate change hypothesis to predict changes in basin evapo
transpiration and streamflow
3.2.4 Derivation of climatic sensitivity using the CCUW hypothesis
3.2.5 The Budyko hypothesis and derived sensitivities
3.3 Sensitivity analysis
3.3.1 Mapping of the Budyko functions into UW space
3.3.2 Mapping CCUW into Budyko space
3.3.3 Climatic sensitivity of basin evapotranspiration and streamflow
3.3.4 Climate-vegetation feedback effects
3.4 Application: three case studies
3.4.1 Mississippi River Basin (MRB)
3.4.2 Headwaters of the Yellow River Basin (HYRB)
3.4.3 Murray-Darling River Basin (MDB)
3.5 Conclusions
3.5.1 Potentials and limitations
3.5.2 Insights on the catchment parameter
3.5.3 Validation
3.5.4 Perspectives
3.A Derivation of the climate change direction
4 Climate sensitivity of streamflow over the continental United States
4.1 Introduction
4.1.1 Motivation
4.1.2 Hydro-climate of the continental US
4.1.3 Aims and research questions
4.2 Methods
4.2.1 Ecohydrological concept to separate impacts of climate and basin changes
4.2.2 Streamflow change prediction based on a coupled water-energy balance
framework
4.2.3 Streamflow change prediction based on the Budyko hypothesis
4.2.4 Statistical classification of potential climate and basin change impacts
4.3 Data
4.4 Results and discussion
4.4.1 Hydro-climate conditions in the US
4.4.2 Climate sensitivity of streamflow
4.4.3 Assessment of observed and predicted changes in streamflow
4.4.4 Uncertainty discussion
4.5 Conclusions
4.A Mathematical derivations for the Mezentsev function
5 Summary and conclusions
5.1 Shifting seasons in hydrology
5.1.1 Major findings
5.1.2 Socio-economic and political relevance
5.1.3 Limitations and possible directions for further research
5.2 Long-term annual changes in ET and streamflow
5.2.1 Major findings
5.2.2 Socio-economic and political relevance
5.2.3 Limitations and further research
5.3 General conclusions and outlook
5.3.1 Regional and temporal limits and validity
5.3.2 Hydrological records carry signals of climate and land use change
5.3.3 Statistical significance of past changes
5.3.4 Improvements in assessing ET
5.3.5 Remote sensing
5.3.6 Learning from the past to predict the future?
Bibliography
Danksagung
Erklärung
|
18 |
The aCDOM spatial and temporal distribution analysis in Funil reservoir / Análise da distribuição espaço-temporal do aCDOM no reservatório de FunilMartins, Sarah Cristina Araújo [UNESP] 03 August 2017 (has links)
Submitted by SARAH CRISTINA ARAUJO MARTINS null (sarahca.martins@gmail.com) on 2017-08-27T12:54:53Z
No. of bitstreams: 1
Dissertacao_MartinsSarah.pdf: 3974138 bytes, checksum: 73a1c2c28d4a0cbbde72b9e8a49211ce (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-08-29T17:18:44Z (GMT) No. of bitstreams: 1
martins_sca_me_prud.pdf: 3974138 bytes, checksum: 73a1c2c28d4a0cbbde72b9e8a49211ce (MD5) / Made available in DSpace on 2017-08-29T17:18:44Z (GMT). No. of bitstreams: 1
martins_sca_me_prud.pdf: 3974138 bytes, checksum: 73a1c2c28d4a0cbbde72b9e8a49211ce (MD5)
Previous issue date: 2017-08-03 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / A matéria orgânica dissolvida (DOM) é a componente da água que pode ser usada como indicativo de sua qualidade, pois possui duas fontes: uma alóctone, relacionada com descargas de material terrestre, estando vinculada aos ácidos húmicos, e outra autóctone, associada às descargas fluviais ou produção própria do corpo hídrico estudado, estando relacionada aos ácidos fúlvicos. A matéria orgânica dissolvida colorida (CDOM) é a fração colorida da DOM, que pode ser usada como proxy para a observação desta última em águas interiores. O reservatório hidrelétrico de Funil (FHR) foi o corpo hídrico escolhido como área de estudo deste trabalho. Neste contexto, o objetivo geral desta pesquisa foi identificar e avaliar as mudanças no coeficiente de absorção da CDOM (aCDOM) na superfície da água ao longo do tempo (1995 – 2010), bem como entender a sua relação com mudanças no uso e cobertura da terra (LULC) na bacia de contribuição do FHR. Para alcançar tal objetivo foram realizados: (i) o mapeamento histórico de LULC (1995 – 2010, com 5 anos de intervalo) para detecção de mudanças; (ii) o estudo de um conjunto de modelos bio-ópticos baseados na literatura, bem como de um novo modelo empírico desenvolvido para estimar aCDOM via reflectância simulada (Rrs_simulated) para o sensor Thematic Mapper (TM); (iii) a distribuição espaço-temporal do aCDOM por meio da aplicação de um modelo bio-óptico em imagens TM/Landsat-5 de 1995 a 2010, e (iv) a análise das fontes possíveis de CDOM/DOM , assim como do comportamento/distribuição do aCDOM no FHR ao longo do tempo. Assim, o primeiro estudo desenvolvido nesta pesquisa foi o da parametrização do algoritmo maquinas de vetores de suporte (SVM) de acordo com as características da área de estudo para classificação supervisionada de LULC na bacia de contribuição do FHR. A detecção de mudança da classificação obtida para LULC demonstrou que a parametrização proposta para o SVM tornou o algoritmo capaz de diferenciar classes grandes e contínuas, classes estreitas e alongadas, além de áreas não contínuas e pequenas localizadas dentro de outra classe maior. A classificação obtida para o SVM apresentou boa avaliação estatística, com acurácia geral entre 86% e 96% para toda a série temporal, acurácia do produtor de 90%, acurácia do usuário maior do que 86% e índice Kappa entre 86% e 91%. Ainda, foi observado que o LULC desenvolvido na área de estudo se manteve relativamente estável ao longo da série histórica analisada. O segundo estudo realizado proporcionou o desenvolvimento de um modelo empírico em um comprimento de onda (485 nm) e uma razão de bandas (B4/B1) alternativos para estimativa de aCDOM via Rra_simulated para o TM/Landsat-5 (RMSE = 7%, Nash = 0.91). Este modelo também pôde identificar mesmo pequenas variações nos valores de reflectância via dados orbitais, assim como pode diferenciar variações sutis no aCDOM. Ainda, foram identificados dois padrões de comportamento da CDOM para o FHR: um associado ao LULC e à ocorrência de chuva/lixiviação, bem como outro relacionado à Clorofila-a (Chl-a) em situações de floração de algas. Os referidos estudos que compõe esta pesquisa foram padronizados como artigos científicos para a confecção deste documento. O primeiro estudo, sobre a parametrização do SVM, foi publicado na revista Modelling Earth Systems Environment – Springer (DOI 10.1007/s40808-016-0190-y). O segundo estudo, sobre a distribuição histórica do aCDOM está na etapa de revisão para futura submissão. / The dissolved organic matter (DOM) is a water compound related to water quality, since it has two sources: one allochthonous, related to terrestrial discharges that can be linked to humic acids, and another autochthonous, associated with river input and itself production, so related to or fulvic acids. The colored dissolved organic carbon (CDOM) is the colored fraction of DOM that could be used as a proxy for its occurrence in inland waters. The Funil hydroelectric reservoir (FHR) was chosen as the study site for this work. In this context, the general aim of this research was to identify and to evaluate the changes in CDOM absorption coefficient (aCDOM) at the water surface over time (1995 – 2010), and to understand its relationship with land cover land use (LULC) changes in FHR watershed. For match this goal, (i) a LULC historical mapping (1995 – 2010, with 5 years of interval) was made to change detection, (ii) a bio-optical model set and a new model were studied in order to estimate aCDOM from simulated reflectance (Rrs_simulated) for Thematic Mapper (TM) sensor, (iii) a aCDOM spatial and temporal distribution was obtained by applying a bio-optical model in TM/Landsat-5 imagery from 1995 to 2010, and (iv) the possible CDOM/DOM sources in FHR were found, as well aCDOM historical behavior/distribution over time was analysed. Thus, the first study was the support vector machine algorithm (SVM) parameterization according to study area characteristics to LULC supervised classification in FHR watershed. The obtained LULC change detection analysis demonstrates that the proposed SVM parameterization made the algorithm able to differentiate large and continuous classes, lengthy and thin areas, and non-continuous small areas located inside wide classes. The obtained classification had great statistics with overall accuracy among 86% and 98% over the time series, the producer accuracy of 90%, the user accuracy higher than 86%, and the Kappa statistics ranged from 86% to 91%. In addition, no significant changes in LULC were identified in the study site over all time series. The second study provides a bio-optical model at alternatives wavelength (485 nm) and a band ratio (B4/B1) for aCDOM estimation using simulated Rrs for TM/Landsat-5 (RMSE = 7%, Nash = 0.91). This model could identify even small variations in reflectance values from orbital data, as well as differentiate even slight alterations in aCDOM. Two significantly different aCDOM behaviors were also identified for FHR: one associated with LULC and rainfall/runoff occurrence, and other correlated to Chlorophyll-a high concentrations (Chl-a) in algal blooms situations. The referred studies that compose this research ware standardized as academic articles in this document. The first study, about SVM parameterization, was published yet in Modeling Earth Systems Environment – Springer (DOI 10.1007/s40808-016-0190-y). The second study, about aCDOM historical distribution is in the revision step to future submission.
|
19 |
Water Quality of the Upper Little Miami River Watershed in Ohio: Impacts of Natural and Anthropogenic Processes.Huff, David Allan 05 May 2015 (has links)
No description available.
|
Page generated in 0.0162 seconds