• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 266
  • 122
  • 22
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 6
  • 3
  • 1
  • 1
  • Tagged with
  • 546
  • 104
  • 54
  • 53
  • 52
  • 52
  • 46
  • 44
  • 40
  • 40
  • 39
  • 38
  • 36
  • 33
  • 33
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Lesser prairie-chicken movement, space use, survival, and response to anthropogenic structures in Kansas and Colorado

Plumb, Reid Thomas January 1900 (has links)
Master of Science / Biology / David A. Haukos / The lesser prairie-chicken (Tympanuchus pallidicinctus) is an endemic North American prairie grouse once widely distributed in the southwestern Great Plains. Recent population declines and continued threats to lesser prairie-chicken populations prompted the U.S. Fish and Wildlife Service to list the species as “threatened” under the protection of the Endangered Species Act of 1973 in May 2014. The northern extent of the species range in Kansas and Colorado supports 2/3 of the remaining range-wide population of lesser prairie-chickens, but has thus far been relatively understudied. Concern for species viability has created a need to fill current knowledge gaps in lesser prairie-chicken ecology, provide more recent demographic information, and develop appropriate conservation actions. I evaluated female survival, movement, space use, and effects of anthropogenic features during the breeding seasons of 2013 and 2014. I captured and radio-tagged 201 females with satellite GPS (N = 114) and VHF (N = 82) transmitters within the three ecoregions of Kansas and Colorado. Mean daily movement varied by region, year, and breeding season period but the amount of space used was consistent between ecoregions and years. On average, females moved 1352 m ± 12 [SE] per day. Females moved the greatest distances during the lekking period of the breeding season with females moving 2074 m ± 36 per day. Females were most sedentary during the brooding period moving only 780 m ± 14 per day. Mean breeding season home range size was estimated to be 340 ha ± 27. The lekking period had the greatest amount of movement as a result of females visiting leks to find mates, copulate, and search for nest locations. Female’s movements were reduced during the brooding period because of physical limitations of the brood mobility. Variation in movement between ecoregions was most likely a product of fragmentation as females moved 10-30% more in northwest Kansas compared to the study sites, which was characterized by northwest Kansas having the greatest degree of fragmentation. Survival varied by ecoregion with females in northwest Kansas having the lowest probability of surviving the 6-month breeding season compared to other ecoregions. Estimated 6-month breeding season survival during 2013 and 2014 was 0.455 (95% CI = 0.38 – 0.53). Survival was lowest during the nesting period, which claimed 59.5% of all observed mortalities. Survival increased from 2013 to 2014 in northwest Kansas as grassland habitats recovered from extreme drought conditions in 2013. Drought was less severe in south-central Kansas and survival rates remained fairly consistent across years. Avian and mammalian predators caused 45.7% and 34.3% of breeding season mortalities, respectively. Other mortalities were either cause by snakes or were unknown (5.7%, 14.3%). Overhead cover may have been limited from drought conditions causing nesting females to be more visible to avian predators during incubation. When pooled across years and ecoregions, rump-mounted GPS transmitters did not adversely affect female survival when compared to commonly used necklace style VHF transmitter (VHF: 0.48 95% CI = 0.39 – 0.58; GPS: 0.50 95% CI = 0.38 – 0.64). Distance to distribution power lines and lek were significant predictors of female space use within their home range with females behaviorally avoiding distribution power lines and using space closer to leks. Space use decreased with increasing oil well density. Females avoided areas that had well densities of 23 wells/250 ha. Observed female locations were further from anthropogenic features but closer to leks on average than at random. Avoidance behavior of anthropogenic features may result in functional habitat loss and reduce the amount of suitable habitat available; compounding previously fragmented landscapes. Anthropogenic features may limit movement by acting as barriers on the landscape and potentially disrupt population connectivity. Furthermore, habitats selected for nesting and brooding may result in potential ecological traps because of reduce breeding success when impacted by increased occurrence and densities of anthropogenic features. Reduced breeding success can have significant negative impacts on population persistence. Average home range size across all ecoregions indicated that female lesser prairie-chickens need at least 340 ha of habitat to fulfill her life-history requirements during the breeding season. Brooding habitats need to be in close proximity (≤ 750 m) to nesting cover to reduce distance traversed by newly hatched broods. Reducing grazing pressure will ensure that sufficient vertical habitat structure is available during the nesting period and increase female survival; especially in times of drought. Mangers should restrict construction of anthropogenic features near or within suitable lesser prairie-chicken habitat with emphasis on distribution power lines. Well densities should not exceed 1 well/60 acres (11 wells/section) for a >10% probability of use. However, because the affect that density of wells has on demographic rates of lesser prairie-chickens has yet to be determined, a conservative approach where well densities in or adjacent to grassland patches should be minimized as much as possible is best.
412

Fruiting strategies of the woody vine Parthenocissus quinquefolia

Pacey, Carol. January 1985 (has links)
Call number: LD2668 .T4 1985 P32 / Master of Science
413

Factors affecting denitrification in headwater prairie streams

Reisinger, Alexander Joseph January 1900 (has links)
Master of Science / Department of Biology / Walter K. Dodds / Human-induced stressors such as increased nitrogen (N) loadings, altered watershed land-use, and biodiversity losses are a few of the numerous threats to aquatic systems. Prairie streams experience natural disturbances, such as flooding and desiccation, which may alter responses to anthropogenic stressors. Denitrification, the dissimilatory reduction of NO3- to N gas (N2O or N2), is the only permanent form of N removal from terrestrial or aquatic ecosystems, and is important in mitigating N pollution to streams and downstream waters. Little is known about the relationships between denitrification and riparian prairie vegetation or large consumers. In the first chapter, I used outdoor mesocosms to determine the impact of a grazing minnow, Campostoma anomalum, on structural and functional responses of prairie streams to a simulated flood, focusing on denitrification. In terrestrial ecosystems, grazing can stimulate denitrification, but this has not been studied in streams. Ammonium (NH4+) enrichments, used to simulate fish excretion, alleviated N limitations on denitrification. Both fish and NH4+ affected algal biomass accrual, but only fish affected algal filament lengths and particulate organic matter. In a second experiment, I examined the impact of woody vegetation expansion, a primary threat to tallgrass prairie, on riparian and benthic denitrification. Expansion of woody vegetation in these grasslands is due primarily to altered fire regimes, which historically inhibited woody vegetation growth. To determine the effect of woody vegetation expansion on benthic and riparian denitrification, woody vegetation was removed from the riparian zone of a grazed and an ungrazed watershed. Both soil and benthic denitrification rates from this removal buffer were compared to rates in grassy or woody riparian zones. Riparian soil denitrification was highly seasonal, with greatest rates occurring during early spring, and rates being low throughout the remainder of the year. Benthic denitrification was also temporally variable but did not exhibit seasonal trends, suggesting benthic denitrification is driven by factors other than water temperature. Removal of woody vegetation stimulated soil and benthic denitrification rates over rates found in naturally vegetated riparian zones. Elevated N loadings will continue to affect aquatic ecosystems, and these effects may be exacerbated by biodiversity losses or changing riparian vegetation.
414

The use of riparian health assessments to assess cumulative anthropogenic effects to wetlands in the Prairie Pothole Region of Saskatchewan

2016 March 1900 (has links)
Wetlands are significant contributors to global biodiversity, supporting disproportionately high numbers of species relative to their area. Riparian areas associated with wetlands provide many services that are both ecologically and economically important, such as groundwater recharge, sediment capture and shoreline stabilization, flood mitigation, nutrient processing, increased water quality, carbon sequestration, and essential habitat for wildlife. Agricultural activity has resulted in the drainage or modification of between 40-70% of wetland basins within the Prairie Pothole Region of the northern Great Plains. The impacts of human activity on the remaining wetlands are difficult to estimate and there is no one optimal indicator or assessment method that is applicable to all regions or situations. Locally developed riparian health assessments, designed to evaluate wetland function under different grazing regimes, are cost-effective with the potential for broader use in wetland environmental assessment, monitoring, and management or restoration activities. In this study I investigated the hypothesis that riparian health assessments can distinguish between wetlands in five categories of land use that represent different levels of anthropogenic modification: ungrazed cultivated cropland, ungrazed native grassland, grazed native grassland, ungrazed tame perennial forage, and grazed tame perennial forage. Noting that current riparian health assessment protocols lack a community composition component other than the presence and distribution of invasive and disturbance species, I also sampled plant species frequency at each of my study sites. I found that wetlands in cultivated croplands had significantly lower riparian health scores than wetlands in both tame and native grasslands. Among tame and native sites, grazing status was more important than upland cover type in determining wetland health, with grazed wetlands receiving significantly lower scores than their ungrazed counterparts. Despite their functional similarity to wetlands within native grasslands, species composition of wetlands within ungrazed tame perennial forage more closely resembled that of wetlands in cultivated uplands. Although grazing negatively affected riparian ground cover and soil stability, it significantly reduced both the overall cover and distribution of invasive plant species along wetland reaches. These results suggest that upland revegetation and restoration of function to degraded wetlands is not necessarily followed by re-establishment of original riparian species composition. If biodiversity is a desired outcome of wetland restoration efforts, additional measures must be taken to enable the establishment and persistence of preferred plant species.
415

Landscape-scale effects of oil and gas development on grassland passerines in southern Alberta

Daniel, Jody 19 January 2016 (has links)
Agriculture and, more recently, oil and gas development have contributed to extensive degradation and loss of temperate grasslands. I investigated the landscape-scale effects of oil and gas development, and roads, on grassland birds in southern Alberta using abundance, clutch size and nesting success data collected from 2010-2014. I estimated: (i) the distance at which there are effects of edge, and effects of shallow gas well density, using piecewise regressions; (ii) the locations and extent of habitat affected by infrastructure for obligate grassland species– Baird’s Sparrow (Ammodramus bairdii), Chestnut-collared Longspur (Calcarius ornatus) and Sprague’s Pipit (Anthus spragueii); and generalist species – Clay-colored Sparrows (Spizella pallida), Horned Lark (Eremophila alpestris), Savannah Sparrow (Passerculus sandwichensis), Vesper Sparrow (Pooecetes gramineus) and Western Meadowlark (Sturnella neglecta), and (iii) the total area affected by wells and roads. My findings suggest that the effects of roads, overall, extended to further distances than edge effects associated with natural gas wells, obligate species had more habitat affected by infrastructure than generalist species and shallow gas wells affected more habitat than did oil wells, due to their greater density on the landscape. Additionally, obligates, on average, were negatively affected by proximity to edge where as generalists were more productivity closer to edge. Reducing fragmentation caused by roads, minimizing the spread of non-native vegetation and management of cattle around gas wells could improve habitat quality for these focal species. / February 2016
416

Genomic differentiation of big bluestem (Andropogon gerardii) along the Great Plains’ environmental gradient

Gray, Miranda M. January 1900 (has links)
Master of Science / Department of Plant Pathology / Eduard D. Akhunov / Loretta C. Johnson / Big bluestem (Andropogon gerardii Vitman) is an ecologically dominant grass of the North American grasslands with precipitation-dependent productivity. However, climatic predictions for big bluestem’s dominant range in the Great Plains include increased periods of drought. The main objectives of this research were to determine the extent of neutral and non-neutral genetic differentiation and diversity among putative big bluestem ecotypes using amplified fragment length polymorphism (AFLP) markers. This is the first study of both neutral and non-neutral genetic diversity of big bluestem which also includes source populations of well-described ecotypes studied in reciprocal common gardens. A total of 378 plants were genotyped from 11 source prairies, originating from one of three ecoregions (Central Kansas, Eastern Kansas, and Illinois). Using two AFLP primer sets, 387 polymorphic markers (error rate 9.18%) were found. Un-rooted neighbor joining tree and principle-component analyses showed continuous genetic differentiation between Kansas and Illinois putative ecotypes, with genetic overlap occurring between Kansas ecotypes. Analysis of molecular variance showed high diversity within-prairie sites (80%) relative to across-prairies (11%), and across- ecoregions (9%) (p<0.001). Within-prairie genetic diversity levels were similar among ecoregions (84-92%), with the highest genetic variation maintained in Illinois prairies (92%). Population structure analyses supported K=6 genetic clusters across the environmental gradient, with Kansas prairies belonging to three main genetic groups, and Illinois prairies having largely divergent allele frequencies from Kansas prairies. Interestingly, BAYESCAN analysis of the three putative ecotypes identified eight F[subscript]ST-outlier AFLP loci under potential diversifying selection. Frequency patterns of loci under diversifying selection were further linked to geo-environmental descriptors including precipitation, temperature severity, diurnal temperature variation, prairie location, and elevation. The observed allele frequency divergence between Kansas and Illinois ecotypes suggests tallgrass restorations should consider possible maladaptation of non-local ecotypes and genetic swamping. However, high within-prairie genetic variation may help individual big bluestem populations withstand climatic variability.
417

Ecological implications of grass bud bank and tiller dynamics in mixed-grass prairie

Ott, Jacqueline P January 1900 (has links)
Doctor of Philosophy / Department of Biology / David C. Hartnett / Perennial grass populations propagate vegetatively via the belowground bud bank. Climate, photosynthetic pathway, and growth form impact bud production, longevity, and dormancy; leading to alterations in bud bank and tiller dynamics. Previous research in mesic C₄-dominated tallgrass prairie revealed that a C₄ grass had greater bud longevity and differing bud bank dynamics than a C₃ species. This study examined the bud bank dynamics of rhizomatous and caespitose grasses in a more arid C₃ dominated prairie to gain insights into how bud banks differ among grass species, growth forms, and environments, and the relationship between bud bank characteristics and grass architecture and growth patterns. The bud bank and tiller dynamics of four perennial grasses in the C₃-dominated northern mixed grass prairie were examined over 15 months. The C₃ caespitose and rhizomatous grasses produced similar numbers of buds per tiller and their bud longevity was [greater than or equal to] 2 years. Tiller longevity drove the turnover within the bud bank of the dominant C₃ caespitose grasses Hesperostipa comata and Nassella viridula. Their polycyclic tillers (tillers that lived for more than one year) created multi-aged bud banks. The rhizomatous C₃ grass Pascopyrum smithii also had a multi-aged bud bank because buds were able to live longer than its annual tillers. Differences between caespitose and rhizomatous C₃ grass bud banks were driven by differences in tiller and rhizome production and spatial distribution. Responses to water availability fluctuations are likely buffered by the maintenance of polycyclic tillers in the caespitose grasses and flexible timing of annual tiller recruitment in the rhizomatous grass. The C₄ rhizomatous grass Andropogon gerardii had similar phenology to populations in its tallgrass prairie range center. Despite declines in bud production per tiller and lowered flowering probability in mixed-grass prairie, A. gerardii maintained a multi-aged bud bank and a positive population growth rate via vegetative reproduction at both the center and edge of its range. Bud bank dynamics of different growth forms and photosynthetic pathways, as they offer insight into the control of grass population dynamics and production, will enhance understanding of the mechanisms by which management practices and environmental change can alter perennial grasslands.
418

Apparent survival, dispersal, and abundance of black-tailed prairie dogs

Goldberg, Amanda R. January 1900 (has links)
Master of Science / Department of Biology / Jack F. Cully, Jr. / Black-tailed prairie dogs (Cynomys ludovicianus) are a species of management and conservation concern. Prairie dogs have lost both habitat and occupied area due to plague, which is caused by the bacterium Yersinia pestis, pest control, and habitat conversion to agricultural land. Our goals were to estimate survival rates and dispersal rates, and to compare methods for estimating abundance of black-tailed prairie dogs for both management and conservation. We trapped black-tailed prairie dogs at four small National Parks from April 2009 through August 2011. Prairie dogs were trapped and marked for two trapping sessions per year in order to estimate seasonal rates of apparent survival. Apparent survival rates were estimated using the package RMark in R to construct models for program MARK. We found estimates to vary according to field site, sex, year, and season (summer or winter). Possible reasons for the differences in survivorship among sites could be presence of disease, quality of forage, predation, or frequency of dispersal. Visual counts were also conducted each trapping session beginning in April of 2010 to estimate abundance. Mark-recapture, mark-resight, and visual counts were compared to determine which method would be the most effective for estimating abundance of prairie dogs. We found mark-resight to produce the most precise estimates of abundance. While it costs more money to conduct a mark-resight estimate than visual counts because of repeated sessions, they produced significantly different results from one another 75% of the time, which was especially apparent on sites that had some form of visual barriers such as tall vegetation and uneven ground. However, if further information is needed in terms of sex ratios, age ratios, or the exact number of prairie dogs, then mark-recapture is the only method that can be used. Land managers need to address the level of accuracy needed, topography, and vegetation height before choosing which sampling method is best for the prairie dog towns in question. Finally, we looked at rates of intercolony and intracolony dispersal by placing 149 VHF collars and 6 GPS collars on prairie dogs at three colonies. Intracolony dispersal was also monitored through visual observation and trapping records over the three years of the study. We found 23 intracolony and eight intercolony dispersal events. Combined, these three studies offer insight not only into monitoring of prairie dog populations but also potential influence by plague both within and among colonies of prairie dogs.
419

Composition and structure of fescue prairie respond to burning and environmental conditions more than to grazing or burning and grazing in the short-term

Mori, Nadia 13 April 2009
Burning and grazing are key processes in the natural disturbance regime of the Fescue Prairie. Burning, grazing and their interacting effects on plant species diversity (H¡¯), species richness, and heterogeneity in species composition were studied at two spatial scales for two years in a remnant Fescue Prairie near Saskatoon, Saskatchewan. Cattle distribution in relation to plant communities was also studied. At the plot scale (100 m2), burning increased H¡¯ (P<0.01) (x=1.75) compared to unburned treatments (x=1.54) (S.E.¡À0.058). Burning, grazing, and burning + grazing had no significant effect (P>0.10) on species richness; richness varied between years (P=0.04), averaging 14.2 species m-2 in year one versus 15.8 species m-2 in year two (S.E.¡À 0.65). Spatial heterogeneity (P>0.25; x=46%; S.E.¡À3.0) and temporal heterogeneity in species composition (P>0.21; x=42%; S.E.¡À3.8) were not affected by burning, grazing, or their interaction. Burning + grazing increased tiller densities in <i>Elymus lanceolatus</i> (68%) and those of <i>Festuca hallii</i> (11%) (P<0.001) compared to the control. Burning decreased total aboveground net primary production (ANPP) (P<0.001) (x=305 g m-2) compared to unburned treatments (x=500 g m-2; S.E.¡À30.8). Grazing and burning + grazing had no effect on total ANPP or graminoid ANPP (P¡Ý0.36). At the scale of Kernen Prairie (130 ha), H¡¯ increased between 1996 (P<0.05) (x=1.10) and 2005 (x=1.40; S.E.¡À0.094). Species richness increased from 5.2 species 0.25 m-2 in 1996, to 6.8 species 0.25 m-2 in 2005 (S.E.¡À0.505). Heterogeneity in plant species composition tended to increase after prescribed burning was started in 1986 and after grazing began in 2006. Cattle preferred <i>Bromus inermis-</i> and <i>Poa pratensis-</i>dominated plant communities, areas with intermediate amounts of total aboveground standing crop of plants, and areas in which shrub densities exceeded 16 stems 0.25 m-2. In the short term, burning and environmental conditions had greater effects on species diversity, richness, and heterogeneity in species composition than grazing or the interaction of burning and grazing. Different responses may be expected with different combinations of timing, frequency, and intensity of burning and grazing at different sites under ever changing environmental conditions.
420

Mallard duckling survival and habitat selection in the Canadian prairie pothole region

Bloom, Pauline Marion 10 May 2010
Like life-history theory, wildlife management decisions are typically predicated on trade-offs between benefits associated with investing resources to achieve higher reproductive or survival rates versus costs or risks of achieving those goals. On the Canadian prairies, most waterfowl conservation resources are directed to policies and programs that seek to increase duck nesting success. Limited attention has focused on post-hatching life-cycle stages, yet, despite considerable recent work on duckling survival rates, many uncertainties remain concerning how abiotic and biotic factors affect duckling survival rates. The role of upland habitat characteristics may be important but has received limited attention. I evaluated hypothesized sources of variation in duckling survival for 617 mallard (Anas platyrhynchos) broods on 27 Canadian prairie-parkland sites, with emphasis on assessing effects of managed and remnant natural upland habitats. I contrasted suites of a priori and post hoc exploratory models that incorporated effects of landscape, weather, female and brood-related variables to explain variation in duckling survival rates. Survival was lower for ducklings that used areas with high proportions of semi-permanent wetlands, as well as for broods that travelled farther overland. Exploratory analyses revealed further that survival of ducklings was negatively related to the amount of managed hayland. In contrast, duckling survival was positively associated with the amount managed grassland. There was no evidence of trade-offs between benefits of managing habitat to enhance duck nesting success versus costs in terms of lower subsequent duckling survival.<p> I also addressed unresolved questions about how birds balance costs and benefits of selecting habitats by determining the survival consequences of habitat choices made during brood-rearing. In theory, fitness should be higher in preferred habitats, but this assumption is rarely tested. Fitness consequences (i.e., duckling survival) of habitat selection patterns were determined at landscape and local scales using logistic regression and information-theoretic model selection techniques. Best-approximating landscape-level models indicated that mallard females selected brood-rearing areas with a high proportion of wetland and perennial upland habitats, but duckling survival was not related to habitat selection patterns at this scale. At finer spatial scales, females selected brood-rearing areas with high proportions of wetland habitats, but, contrary to expectation, duckling survival was lower when females raised their broods in these areas. Females avoided areas with abundant perennial cover and wetlands with little vegetative cover and, consistent with prediction, duckling survival was higher when females selected areas with low perennial cover. Thus, females did not consistently select brood-rearing habitats that conferred the highest fitness benefits. Rather, the relationship between habitat selection and duckling survival depended on spatial scale and habitats considered.

Page generated in 0.042 seconds