• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 112
  • 23
  • 21
  • 12
  • 6
  • 6
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 232
  • 52
  • 33
  • 27
  • 26
  • 21
  • 20
  • 16
  • 15
  • 12
  • 12
  • 12
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Optimisation of the selective flotation of galena and sphalerite at Rosh Pinah Mine

Seke, Makunga Daudet 16 May 2005 (has links)
A study was carried out to improve the flotation selectivity between galena and sphalerite during the flotation of a Cu-Pb-Zn sulphide composite ore from the Rosh Pinah Mine (Namibia). Xanthate collectors were found to be unselective for the flotation of the Rosh Pinah composite sample. It was observed that the recovery of sphalerite increased with both the recovery of galena and the concentrate mass pull. In addition, the recovery of sphalerite increased after activation with Cu(II) ions while that of galena decreased when the composite was dry ground in a mild steel mill with mild steel grinding media. However, the recovery of galena was not affected after wet milling in a stainless steel mill. The recovery of Cu(II)-activated sphalerite was independent of the milling environment (wet or dry) and grinding media. The activation of sphalerite by cuprous cyanide complexes, which are present in the recycled water, was clearly shown in this study. Both batch flotation tests and XPS analysis have confirmed that sphalerite was activated by copper(I) from the cuprous cyanide complexes. The recovery of copper(I)-activated sphalerite increased further when the composite was dry milled as compared to wet milling. Batch flotation tests have shown that the use of cyanide alone is not efficient for the depression of sphalerite due to the mineralogical texture of the Rosh Pinah ore. A large quantity of galena locked and/or attached to sphalerite was observed in the lead concentrate. Their prevalence increased with increasing particle size. The use of both cyanide and zinc sulphate improved the depression of sphalerite much better than cyanide alone. A flowsheet has been proposed to improve selectivity between galena and sphalerite in the lead flotation circuit. It includes the regrinding of the lead rougher concentrate prior to the cleaning stage due to poor liberation between galena and sphalerite. / Thesis (PhD (Metallurgical Engineering))--University of Pretoria, 2006. / Materials Science and Metallurgical Engineering / unrestricted
132

Alteration assemblage in the lower units of the Uitkomst Complex, Mpumalanga Province, South Africa

Steenkamp, Nicolaas Casper 03 September 2012 (has links)
The Uitkomst Complex is located within the Great Escarpment area close to the town of Badplaas, approximately 300 km due east of Pretoria, in the Mpumalanga Province, South Africa. This complex is believed to represent a layered conduit system related to the 2.06 Ga Bushveld Complex. The succession from the bottom up comprises the Basal Gabbro- (BGAB), Lower Harzburgite- (LHZBG) and Chromitiferous Harzburgite (PCR) Units, collectively referred to as the Basal Units, followed by the Main Harzburgite- (MHZBG), Upper Pyroxenite-(PXT) and Gabbronorite (GN) Units, collectively referred to as the Main Units. The Basal Unit is largely hosted by the Malmani Dolomite Formation, in the Pretoria Group of the Transvaal Supergroup sediments. The Lower Harzburgite Unit contains numerous calc-silicate xenoliths derived from the Malmani Dolomite. The Basal Units host the economically important nickel-bearing sulphide and chromite deposits exploited by the Nkomati Mine. An area of extensive localized talc-chlorite alteration is found in the area delineated for large scale open cast mining. This phenomenon has bearing on the nature and distribution of the sulphide minerals in the Chromitiferous Harzburgite and to a lesser extent the Lower Harzburgite Units. The Basal Unit is comprised of both near pristine areas of mafic minerals and areas of extensive secondary replacement minerals. Of the olivine minerals, only fosterite of magmatic origin is found, the fosterite suffered hydrothermal alteration resulting in replacement of it by serpentine and secondary magnetite. Three different types of diopside are found, the first is a primary magamatic phase, the second is a hybrid “transitional” phase and the third, a skarn phase. Hydrothermal alteration of the matrix diopside led to the formation of actinolite-tremolite pseudomorphs. This secondary tremolite is intergrown with the nickeliferous sulphide grains. Chromite grains are rimmed or replaced by secondary magnetite. Pyrrhotite grains is also rimmed or replaced by secondary magnetite. Talc and chlorite is concentrated in the highly altered rocks, dominating the PCR unit. Primary plagioclase and calcite do not appear to have suffered alteration to the same extent as the other precursor mafic magmatic and hydrothermal minerals. It is suggested that the PCR was the first unit to be emplaced near the contact of the dolomite and shale host rock. The more primitive mafic mineral composition and presence of chromitite attest to this interpretation. The LHZBG and MHZBG units may have been emplaced simultaneously, the LHZBG below and the MHZBG above. Interaction and partial assimilation of the dolomitic country rock led to a disruption of the primary mafic mineralogy, resulting in the preferential formation of diopside at the expense of orthopyroxene and plagioclase. Addition of country rock sulphur resulted in sulphur saturation of the magma and resulted in the observed mineralization. The downward stoping of the LHZBG magma, in a more “passive” pulse-like manner led to the formation of the calc-silicate xenolith lower third of this unit. It is proposed that the interaction with, and assimilation of the dolomitic host rock by the intruding ultramafic magmas of the Basal Units are responsible, firstly, for the segregation of the nickeliferous sulphides from the magma, and secondly for the formation of a carbonate-rich deuteric fluid that affected the primary magmatic mineralogy of the Basal Unit rocks. The fluids released during the assimilation and recrystallization of the dolomites also led to the serpentinization of the xenoliths themselves and probably the surrounding hybrid and mafic- ultramafic host rocks. The CO2-rich fluids migrated up and outward, while the H2O-rich fluids remained confined to the area around the xenoliths and LHZBG unit. The H2O-rich fluid is thought to be responsible for the retrograde metamorphism of the precursor magmatic and metamorphic minerals in the Lower Harzburgite Unit. The formation of an exoscarn within the dolomitic country rocks and a selvage of endoskarn on the contact form an effective solidification front that prevented further contamination of the magma. It is also suggested that these solidification fronts constrained the lateral extent of the conduit. The CO2-enriched deutric fluid was able to migrate up to the PCR unit. Here the fluid was not removed as effectively as in the underlying parts of the developing conduit. This resulted in higher CO2-partial pressures in the PCR unit, and the stabilization of talccarbonate assemblages that extensively replaced the precursor magmatic mineralogy. Intrusion of the magma into the shales, which may have been more susceptible to assimilation and greater stoping, led to a broadening in the lateral extent of the Complex, in the Main units above the trough-like feature occupied by the Basal Units. Late-stage, hydrous dominated fluid migration is inferred to have been constrained to the central part of the conduit. This is demonstrated by the dominance of chlorite in the central part of the Uitkomst Complex in the study area. The Uitkomst Complex was further deformed by later intrusions of dolerite dykes. Weathering of the escarpment led to exposure of the conduit as a valley and oxidation of the surficial exposed rocks. / Thesis (PhD)--University of Pretoria, 2012. / Geology / unrestricted
133

Ore mineralogy and silver distribution at the Rävliden N volcanogenic massive sulphide deposit, Skellefte district, Sweden

Johansson, Simon January 2017 (has links)
The Rävliden North deposit (Rävliden N) is a volcanogenic massive sulphide (VMS) deposit in the western part of the Skellefte district, northern Sweden. The district is one of Sweden’s major metallogenic provinces with a significant amount of VMS deposits. The Rävliden N deposit, discovered in 2011, contains copper, zinc, lead, silver and subordinate gold and occurs close to the largest VMS deposit in the district, the Kristineberg deposit, which has been mined for more than 70 years. The purpose of this master thesis is to study the composition, mineralogy and paragenetic relationships in different types of sulphide mineralization from the Rävliden N deposit. Emphasis is placed on characterizing the distribution and paragenetic relationships of silver-bearing minerals. The methods include core logging, sampling and mineralogical studies through light optical microscopy (LOM), scanning electron microscopy (SEM) and quantitative evaluation of mineralogy by scanning electron microscopy (QEMSCAN). Lastly, electron microprobe analysis (EMPA) was used to determine the chemical composition of silver-bearing minerals and sulphides. Mineralization types studied include 1: the main massive to semi-massive sulphide mineralization, 2: stratigraphically underlying stringer mineralization and 3: local, vein- and/or fault-hosted silver-rich mineralization in the stratigraphic hanging wall. The massive to semi-massive sulphide mineralization is dominated by sphalerite with lesser galena and pyrrhotite. In contrast, the stringer mineralization is dominated by chalcopyrite and pyrrhotite. The major minerals show evidence of a coeval formation and textural as well as structural evidence suggest that ductile deformation has affected the mineralization types. Notable evidence includes ball-ore textures, accumulation of minerals in pressure shadows and brittle fracturing of competent arsenopyrite and pyrite porphyroblasts and infilling by more incompetent sulphide minerals. The silver-bearing minerals identified are commonly spatially associated with galena and the major species is freibergite ((Ag,Cu,Fe)12(Sb,As)4S13), which also occur as inclusions in chalcopyrite mainly in the stringer mineralization. The stringer mineralization also contains notable amounts of hessite (Ag2Te). Notably, galena, pyrrhotite, freibergite and other sulphosalt minerals are commonly accumulated in pressure shadows near host rock fragments in the massive to semi-massive sulphide mineralization. The only gold-bearing mineral identified in this study is electrum (Au, Ag) in the stringer mineralization. The hanging wall mineralization locally comprises faulted and/or sheared massive sulphide mineralization which is compositionally similar to the main massive to semi-massive sulphide mineralization, besides a significantly higher content of freibergite. However, parts of the hanging wall mineralization are entirely dominated by sulphides and sulphosalts of silver, such as pyrargyrite (Ag3SbS3), pyrostilpnite (Ag3SbS3), argentopyrite (AgFe2S4), sternbergite (AgFe2S3) and stephanite (Ag5SbS4). These occur in structurally late settings, which along with consideration of their temperature stabilities suggest a late origin. Since the silver-bearing minerals in the massive to semi-massive sulphide mineralization and the two varieties of hanging wall mineralization contains the same metals, the mineralization in the hanging wall may have formed by late-stage remobilization of ore components from the underlying Rävliden N deposit. This negates the need for multiple mineralization events to explain the local silver-enriched zones in the hanging wall. The paragenetically late mineralization types contains high content of Ag-bearing minerals in relation to base metal sulphides. This suggests that remobilisation processes were important for locally upgrading the Ag-content.
134

A novel semi-passive process for sulphate removal and elemental sulphur recovery centred on a hybrid linear flow channel reactor

Marais, Tynan S 12 February 2021 (has links)
South Africa (SA) currently faces a major pollution problem from mining impacted water, including acid rock drainage (ARD), as a consequence of the mining activities upon which the economy has been largely built. The environmental impact of ARD has been further exacerbated by the country's water scarce status. Increasingly scarce freshwater reserves require the preservation and strategic management of the country's existing water resources to ensure sustainable water security. In SA, the primary focus on remediation of ARDcontaminated water has been based on established active technologies. However, these approaches are costly, lead to secondary challenges and are not always appropriate for the remediation of lower volume discharges. Mostly overlooked, ARD discharges from diffuse sources, associated with the SA coal mining industry, have a marked impact on the environment, similar to those originating from underground mine basins. This is due to the large number of deposits and their broad geographic distribution across largely rural areas of SA. Semi-passive ARD treatment systems present an attractive alternative treatment approach for diffuse sources, with lower capital and operational costs than active systems as well as better process control and predictability than traditional passive systems. These semi-passive systems typically target sulphate salinity through biological sulphate reduction catalysed by sulphate reducing bacteria (SRB). These anaerobic bacteria reduce sulphate, in the presence of a suitable electron donor, to sulphide and bicarbonate. However, the hydrogen sulphide product generated is highly toxic, unstable, easily re-oxidised and poses a significant threat to the environment and human health, so requires appropriate management. An attractive strategy is the reduction of sulphate to sulphide, followed by its partial oxidation to elemental sulphur, which is stable and has potential as a value-added product. A promising approach to achieve partial oxidation is the use of sulphide oxidising bacteria (SOB) in a floating sulphur biofilm (FSB). These biofilms develop naturally on the surfaces of sulphide rich wastewater streams. Its application in wastewater treatment and the feasibility of obtaining high partial oxidation rates in a linear flow channel reactor (LFCR) has been described. The use of a floating sulphur biofilm overcomes many of the drawbacks associated with conventional sulphide oxidation technologies that are costly and require precise operational control to maintain oxygen limiting conditions for partial oxidation. In the current study a hybrid LFCR, incorporating a FSB with biological sulphate reduction in a single reactor unit, was developed. The integration of the two biological processes in a single LFCR unit was successfully demonstrated as a ‘proof of concept'. The success of this system relies greatly on the development of discrete anaerobic and microaerobic zones, in the bulk liquid and at the airliquid interface, that facilitate sulphate reduction and partial sulphide oxidation, respectively. In the LFCR these environments are established as a result of the hydrodynamic properties associated with its design. Key elements of the hybrid LFCR system include the presence of a sulphate-reducing microbial community immobilised onto carbon fibres and the rapid development of a floating sulphur biofilm at the air-liquid interface. The floating sulphur biofilm consists of a complex network of bacterial cells and deposits of elemental sulphur held together by an extracellular polysaccharide matrix. During the Initial stages of FSB development, a thin transparent biofilm layer is formed by heterotrophic microorganisms. This serves as ‘scaffolding' for the subsequent attachment and colonisation of SOB. As the biofilm forms at the air-liquid interface it impedes oxygen mass transfer into the bulk volume and creates a suitable pH-redox microenvironment for partial sulphide oxidation. Under these conditions the sulphide generated in the bulk volume is oxidised at the surface. The biofilm gradually thickens as sulphur is deposited. The produced sulphur, localised within the biofilm, serves as an effective mechanism for recovering elemental sulphur while the resulting water stream is safe for discharge into the environment. The results from the initial demonstration achieved near complete reduction of the sulphate (96%) at a sulphate feed concentration of 1 g/L with effective management of the generated sulphide (95-100% removal) and recovery of a portion of the sulphur through harvesting the elemental sulphur-rich biofilm. The colonisation of the carbon microfibres by SRB ensured high biomass retention within the LFCR. This facilitated high volumetric sulphate reduction rates under the experimental conditions. Despite the lack of active mixing, at a 4-day hydraulic residence time, the system achieved volumetric sulphate reduction rates similar to that previously shown in a continuous stirred-tank reactor. The outcome of the demonstration at laboratory scale generated interest to evaluate the technology at pilot scale. This interest necessitated further development of the process with a particular focus on evaluating key challenges that would be experienced at a larger scale. A comprehensive kinetic analysis on the performance of the hybrid LFCR was conducted as a function of operational parameters, including the effect of hydraulic residence time, temperature and sulphate loading on system performance. Concurrently, the study compared the utilisation of lactate and acetate as carbon source and electron donor as well as the effect of reactor configuration on system performance. Comparative assessment of the performance between the original 2 L LFCR and an 8 L LFCR variant that reflected the pilot scale design with respect to aspect ratio was conducted. Pseudo-steady state kinetics was assessed based on carbon source utilisation, volumetric sulphate reduction, sulphide removal efficiency and elemental sulphur recovery. Additionally, the hybrid LFCR provided a unique synergistic environment for studying the co-existence of the sulphate reducing (SRB) and sulphide oxidising (SOB) microbial communities. The investigation into the microbial ecology was performed using 16S rRNA amplicon sequencing. This enabled the community structure and the relative abundance of key microbial genera to be resolved. These results were used to examine the link between process kinetics and the community dynamics as a function of hydraulic residence time. Results from this study showed that both temperature and volumetric sulphate loading rate, the latter mediated through both sulphate concentration in the feed and dilution rate, significantly influenced the kinetics of biological sulphate reduction. Partial sulphide oxidation was highly dependent on the availability and rate of sulphide production. Volumetric sulphate reduction rates (VSRR) increased linearly as hydraulic residence time (HRT) decreased. The optimal residence time was determined to be 2 days, as this supported the highest volumetric sulphate reduction rate (0.21 mmol/L.h) and conversion (98%) with effective sulphide removal (82%) in the 2 L lactate-fed LFCR. Lactate as a sole carbon source proved effective for achieving high sulphate reduction rates. Its utilisation within the process was highly dependent on the dominant metabolic pathway. The operation at high dilution rates resulted in a decrease in sulphate conversion and subsequent increase in lactate metabolism toward fermentation. This was attributed to the competitive interaction between SRB and fermentative bacteria under varying availability of lactate and concentrations of sulphate and sulphide. Acetate as a sole carbon source supported a different microbial community to lactate. The lower growth rate associated with acetate utilising SRB required longer start-up period and was highly sensitive to operational perturbations, especially the introduction of oxygen. However, biomass accumulation over long continuous operation led to an increase in performance and system stability. Microbial ecology analysis revealed that a similar community structure developed between the 2 L and 8 L lactate-fed LFCR configurations. This, in conjunction with the kinetic data analysis, confirmed that the difference in aspect ratio and scale had minimal impact on process stability and that system performance can be reproduced. The choice of carbon source selected for distinctly different, highly diverse microbial communities. This was determined using principle co-ordinate analysis (PCoA) which highlighted the variation in microbial communities as a function of diversity and relative abundance. The SRB genera Desulfarculus, Desulfovibrio and Desulfomicrobium were detected across both carbon sources. However, Desulfocurvus was found in the lactate-fed system and Desulfobacter in acetate-fed system. Other genera that predominated within the system belonged to the classes Bacteroidetes, Firmicutes and Synergistetes. The presence of Veillonella, a lactate fermenter known for competing with SRB, was detected in the lactate-fed systems. Its relative abundance corresponded well with the lactate fermentation and oxidation performance, where an apparent shift in the dominant metabolic pathway was observed at high dilution rates. Furthermore, the data also revealed preferential attachment of selective SRB onto carbon microfibers, particularly among the Desulfarculus and Desulfocurvus genera. The microbial ecology of the floating sulphur biofilm was consistent across both carbon sources. Key sulphur oxidising genera detected were Paracoccus, Halothiobacillus and Arcobacter. The most dominant genera present in the FSB were Rhizobium, well-known nitrogen fixing bacteria, and Pannonibacter. Both genera are members of the class Alphaproteobacteria, a well-known phylogenetic grouping in which the complete sulphur-oxidising, sox, enzyme system is highly conserved. An aspect often not considered in the operation of these industrial bioprocess systems is the microbial community dynamics within the system. This is particularly evident within biomass accumulating systems where the proliferation of non-SRB over time can compromise the performance and efficiency of the process. Therefore, the selection and development of robust microbial inoculums is critical for overcoming the challenges associated with scaling up, particularly with regards to start-up period, and long-term viability of sulphate reducing bioreactor systems. In the current study, long-term operation demonstrated the robustness of the hybrid LFCR process to maintain relatively stable system performance. Additionally, this study showed that process performance can be recovered through re-establishing suitable operational conditions that favor biological sulphate reduction. The ability of the system to recover after being exposed to multiple perturbations, as explored in this study, confirms the resilience and long-term viability of the hybrid process. A key feature of the hybrid process was the ability to recover the FSB intermittently without compromising biological sulphate reduction. The current research successfully demonstrated the concept of the hybrid LFCR and characterised sulphate reduction and sulphide oxidation performance across a range of operating conditions. This, in conjunction with a clearer understanding of the complex microbial ecology, illustrated that the hybrid LFCR has potential as part of a semi-passive approach for the remediation of low volume sulphate-rich waste streams, critical for treatment of diffuse ARD sources.
135

Modern unhairing technologies for effective control of H2S release from Beamhouse operations

Gabagnou, Catherine, Fennen, Jens, Herta, Daniel 25 June 2019 (has links)
Content: The toxicity and unpleasant smell of hydrogen sulphide (H2S) gas is an issue for the leather industry that has been contained rather than eliminated in tannery practice. Completely eliminating H2S from tanneries while maintaining practical and economically feasible processing is still a big challenge to be addressed. Significant progress has, though, been made by introducing robust and reliable low sulphide unhairing systems based on selective soaking and specific enzymatic liming auxiliaries. These systems allow the reduction of sodium sulphide offers from the typical 2.5% to 1% of pelt weight. These lower levels reduce the amount of hydrogen sulphide gas released into the environment from the liming float, as well as the amount of sulphide that is carried over in the hide to subsequent processing steps. Overall, the H2S problem is not eliminated, but significantly reduced with this technology. In a further evolution of the technology, organic thio compounds can be used to fully or partially replace the already low levels of sulphide required, and thus allow to operate with offers well below 1%, or even completely without inorganic sulphide. Due to their reductive power, the organic thio compounds react with keratin in a similar way as inorganic sulphides, but they are oxidized much faster, which is advantageous for the effluent load. Alternatively to, or in combination with organic thio compounds, H2S scavengers can be used to reduce or eliminate hyrogen sulphide released from liming floats. Different types of scavengers are available, but the selection is limited for technical and economic reasons. The paper on hand shows how the release of hydrogen sulphide from beamhouse operations can be effectively controlled by a combination of technologies involving more effective unhairing with lower amounts of reductive agents, replacement of inorganic sulphide by organic thio compound and the use of H2S scavengers. Take-Away: - The release of toxic H2S from Beamhouse operations can be effectively controlled using modern unhairing technologies allowing to use no or low sulphide. - These modern unhairing systems are based on a combination of selective soaking, unhairing assisted by enzymes with specific activity and the use of organic thio compounds.
136

A Novel Preservation-cum-Unhairing Process for Sustainable Leather Manufacturing: An Unconventional Approach in Leather Making

Raghava Rao, Jonnalagadda, Sathish, Murali, Aravindhan, Rathinam, Palanisamy, Thanikaivelan 28 June 2019 (has links)
Content: Preservation (or) curing is an important unit process for transportation and storage of raw hides/skins without any deterioration. Popular preservation process is mostly achieved by reducing the moisture content of hides/skins using common salt (NaCl). Usage of salt in preservation process leads to generation of large amount of contaminated salt, total dissolved solids (TDS) and consume huge amount of water for subsequent rehydration step. On the other hand, lime-sodium sulphide based reductive process is commonly employed for the removal of hair from hides/skins. This process leads to generation of lime sludge and possible evolution of toxic hydrogen sulphide gas thereby making the working atmosphere more unpleasant. Several alternative techniques for preservation as well as unhairing process have been developed individually to replace salt and sulfide, respectively. However, a single compound performing dual functions such as preservation and unhairing action in neutral pH conditions has not explored so far. In the present work, a novel formulation has been developed, which possess the both preservation and unhairing potential, and applied on the hides/skins for storage up to 6 months at ambient conditions without dehydration. Low level of sulphide was used during alkaline fiber opening for complete removal of hair. The strength and organoleptic properties are on par with salted skins/hides. The developed process completely eliminates the use of salt and 75% sulphide and also reduces the time and water required for soaking process. The developed system reduces 85% of pollution load discharged from soaking and unhairing processes. Take-Away: One pot system for salt free preservation and low sulfide dehairing for sustainable leather manufacture.
137

Economic evaluation of Gold-Sulphides Mineralization within the North Leader Congleomate at N0:5 Shaft of Blyvoorvitzicht Gold Mine South Africa

Mahlaule, Ntiyiso Ally 12 February 2016 (has links)
Department of Mining and Environmental Geology / MESMEG
138

Is mercury mobilized from acid sulfate soils? : Interpreting the mercury record from lake- and marine sediments in Persöfjärden and adjacent sea bay

Markström, Jimmy January 2020 (has links)
Acid sulfate (AS) soils are characterized by a large pool of sulfates which may provide significant amounts of acidity and heavy metals – commonly nickel (Ni), Cobolt (Co), Zinc (Zn) and Arsenic (As) - to surrounding surface waters. The occurrence of AS soils is widespread, covering 17 million ha globally, and they are known for threatening freshwaters in Australia, North America as well as in many tropical regions. Mobilization of mercury (Hg) from AS soils is however poorly studied and could potentially be an environmental problem of concern due to its toxicity and capacity of bioaccumulating in food webs. In this study I investigated whether Hg is mobilized from AS soils by conducting chemical analyses on sediment samples from a 1,6 m deep lake core and a transect of surficial sediment samples in an adjacent sea bay. Here, I used zircon (Zr) and zinc (Zn) as proxies for silicate sources and sulfide soil sources, respectively. I found that Zn and Hg concentrations normalized to the organic matter content (LOI) showed a significant correlation in the lake core; hence, Hg in the sediment co-varied with my sulfide proxy and showed no correlation to my silicate proxy, and I then conclude that a considerable fraction of mercury in the studied sediment has a likely origin from AS soils.
139

Geochemical exploration for base metal sulphide deposits in an arid environment (eastern Namaqua Metamorphic Province), South Africa

Ghavami-Riabi, Reza 19 June 2007 (has links)
The massive sulphide deposits at Areachap and Kantienpan Cu-Zn Mine are hosted by a ~1600 Ma old volcano sedimentary succession known as the Areachap Group, in the eastern part of Namaqua Metamorphic Province, South Africa. The deposits were affected by a complex deformation and metamorphic history and represent examples of upper amphibolite to granulite grade metamorphosed volcanic-hosted massive sulphide (VHMS) deposits. The host rocks of both ore deposits are peraluminous-gneisses and the dominant sulphide minerals in the ore zone are pyrite, pyrrhotite sphalerite, and chalcopyrite and trace amounts of galena. Other ore related minerals include barite and anhydrite. The metamorphic minerals in the alteration zones at the Areachap and Kantienpan VHMS deposits are characterized by the presence of plagioclase, almandine and pyrope, enstatite and clinoenstatite, cummingtonite and gedrite, cordierite, sillimanite, and retrograde chlorite and chamosite. Lithogeochemical methods are widely used in exploration geochemistry to identify the primary alteration zones related to VHMS mineralization, as these zones are often exposed, while the massive sulphide ore body itself may be concealed. Especially in areas that were not affected by high grade metamorphism and intensive deformation. Some of these methods include the variation in the relative abundance of major element concentrations throughout the rock successions, mineral chemistry of silicates and spinel minerals near the ore zone, and normative compositions of the rock successions. However, the application of these methods is limited by complex geology in regional metamorphic terranes, such as the Namaqua Metamorphic Province. Therefore, in addition, three of the more advanced lithogeochemical approaches, known as the Isocon method, the Box Plot and Pearce Elemental Ratios, are combined here and adapted for application in such regions. Based on the mineral chemistry, it is evident that plagioclase is more Ca-rich adjacent to the ore zone, pyroxene has the highest relative Mg* ratio (Mg* ratio =100 x cationic ratio of Mg / (Mg + Fe + Ca)), the almandine and pyrope components of garnet are high and the spessartine and grossular components are low. In addition, the Mg-rich variety of mica (phlogopite) is more common near the ore zone and the peraluminous nature of the footwall zone is revealed by the presence of gahnite. Cordierite and retrograde chlorites show the highest Mg#’s (Mg# = Mg/ (Mg + Fe)) in the ore zone. In addition to the above, Pearce Element Ratio analyses of cordierite, pyroxene and garnet may be used to define proximity to sulphide mineralization. Geochemically, the ore zone and alteration zones at Areachap and Kantienpan VHMS ore deposits display a high peraluminous ratio (Al2O3 / (Na2O+K2O+CaO)) confirming the peraluminous nature of these zones as indicated by the mineral chemistry discussed above. The intervals identified in sampled borehole core with low CaO and Na2O and with high MgO and K2O contents represent the alteration zone in the original footwall rocks of the deposit. Isocon studies have shown that the alteration zones at the Areachap and Kantienpan deposits are enriched in Mg, Fe (total), S, Zn, Si, Co and F and depleted in Na, Ca, Sr, Ni, V and La. Elements that behaved relatively immobile include Zr, Ti, P, Mn, Al, Y, and U. The box plot, alteration index versus the chlorite-carbonate-pyrite index, was originally proposed to illustrate the combined effects of hydrothermal and diagenetic alteration and is based on characteristic primary mineral reactions in regions not affected by regional metamorphism. It is demonstrated here that these primary mineral reactions are preserved in a unique set of metamorphic minerals, and that the box plot can be modified for high-grade metamorphic rock types. When samples with very high Mg contents (MgO>>K2O, AI>90% and CCPI>98%) are plotted in the box plot they may be classified as representative of anomalous areas that are highly prospective. Samples with high Mg contents (MgO>K2O, AI>64% and CCPI>93%) may be considered representative of areas that may be classified as of moderate priority in an exploration programme. The findings of the mineral chemical and geochemical investigations of the footwall alteration at the Kantienpan, Areachap and Prieska Cu-Zn ore bodies are used to define various statistical factors. The applicability of these factors in lithogeochemical exploration is demonstrated by calculating the respective factor scores for a regional lithogeochemical data set. It is demonstrated how these factors could be used to identify samples collected from localities that are highly prospective for the discovery of concealed VHMS style mineralization. Based on the statistical analyses of the regional data set, the altered rocks may be distinguished from the metapelitic rocks by their high scores for the alteration factor and low scores for the peraluminous factor. The peraluminous rocks may be separated from the hornblende-gneisses by their high scores for the peraluminous factor, and from the amphibolites by their very low ortho-amphibolite factor scores and high peraluminous factor scores. The variation, of trace elements in the surface calcrete layer that conceals the mineralization in the studied areas, displays the geochemical signature of mineralization, but the concentrations of Cu, Zn and Pb are much lower at and near surface and increase down depth within the profiles. The absolute concentrations and peak to background ratios of the elements of interest at the surface therefore depend on the thickness of the underlying calcrete layer in the area. Two methods, a total analysis (x-ray fluorescence, XRF) and partial extraction (NH4EDTA solution), were applied in to evaluate results, which would be successful and commercially viable in a general exploration programme, using regolith samples. The results of the two methods above were then compared to another patented partial extraction method (mobile metal ion, MMI) on a data set previously reported on by Rossouw (2003). At Kantienpan, where the sand cover is very shallow to absent, dispersion appears to be more related to the secondary redistributions of gossaniferous clasts, than to dispersion of mobile metal ions on the surface of sand particles. The XRF method shows a wider dispersion halo here than methods based on partial extraction. Whereas, at Areachap, where a relatively thick sand (approximately one metre) covers the calcrete layer, partial extraction (based on a NH4EDTA solution extraction) results in a larger, recognizable, dispersion halo than that detected by XRF. The MMI results show a larger span for Zn, followed by NH4EDTA and finally XRF. For Cu, the NH4EDTA method exhibits the largest span followed by XRF and then MMI. The anomalous Cu, Zn and Pb contents extracted by partial extraction methods from the wind blown sand deposits indicate that these elements were derived from the ore minerals related to the massive sulphide deposits. However, Mn and Fe contents analysed by XRF also show high values that could not be only related to derivation from massive sulphide ores. Some of the high concentrations of these elements in the sand cover is ascribed to the weathering of other iron-rich rock forming minerals. / Thesis (PhD (Geology))--University of Pretoria, 2006. / Geology / unrestricted
140

Evaluation of Odomin and potential factors reducing the hydrogen sulphide levels in sewage systems / Utvärdering av Odomin och troliga faktorer som reducerar svavelvätenivåerna i avloppssystem

Wannerberg, Karin January 2014 (has links)
Xylem Inc. develops pumps and integrated solutions for sewages systems. A new concept has been designed to reduce the levels of hydrogen sulphide, H2S, in wastewater. H2S is a toxic, stinking gas that smells at levels above 0.002-0.2 ppm. Recommended exposure level is 15 ppm for 15 minutes. The gas is soluble in water and arises with both increasing temperatures and long retention times. Levels of H2S normally differ between 0-1000 ppm, depending on the time of year. The new concept, a pre-chamber installed upstream a pump station, is called Odomin. Inside Odomin H2S is oxidized to sulphuric acid, H2SO4, on moist surfaces. A plate is used to splash thewastewater onto the moist surfaces surrounding the plate. This master thesis aims to find the reduction rate, in terms of H2S, between Odomin 65 and the pump sump and to evaluate three factors that have possibility to improve the performance of Odomin 65. The investigated factors are 1) a sacrificial anode made from carbon steel 2) a reduced area of the inlet which increases the splash effect and 3) an increased inner area to increase themoist surfaces inside Odomin. The evaluation is made with 23 factorial design. The analysis indicates that no factor affect the daily mean value with a significance at 5%. The sacrificial anode is the one factor showing a reduction by the levels of H2S in the pump sump for both mean and extreme values. The general reduction rate is 5.33 and this can be increased with 55% by using the splash. The tests were affected by several influences that impact the trustworthiness of the results. Therefore this analysis needs additional investigations in order to be verified. / Xylem Inc. utvecklar pumpar och lösningar för avloppssystem. De har utvecklat ett nytt koncept för att reducera halten av svavelväte, H2S, i avloppsvattnet. H2S är en giftig, illaluktande gas med kännbar lukt vid 0.002-0.2 ppm. Rekommenderat är att utsättas för högst 15 ppm under 15 minuter. Gasen är löslig i vatten och nivåerna ökar med både höga temperaturer och långa uppehållstider i ledningarna. Normalt sätt kan nivåerna av H2S variera mellan 0-1000 ppm, beroende på årstid. Det nya konceptet som kallas Odomin är en för-kammare som installeras uppströms till en pumpstation. I Odomin oxideras H2S till svavelsyra, H2SO4, på våta ytor. Genom att avloppsvattnet kaskaderar på en platta kan gasen komma i kontakt med våta ytor kring plattan. Examensarbetet syftar till att hitta reduktionstalet mellan Odomin 65 och pumpsumpen samt utvärdera 3 faktorer som kan förbättra effekten av Odomin. De undersökta faktorerna är 1) en offeranod av kolstål 2) en minskad inloppsarea för att öka kaskadet och 3) en ökad inre area, för att öka andelen våta ytor, i Odomin. De 3 faktorerna utvärderas med faktorförsök (factorial design). Utvärderingen ger indikationen att ingen av de tre faktorerna påverkar det dagliga medelvärdet på en 5 % signifikansnivå. Offeranoden är den faktor som tenderar minska både medelvärdet och extremvärdet i pump sumpen. Reduktionen av H2S mellan Odomin 65 och pump sumpen är 5.33 och analysen visar att en ökad kaskadeffekt kan öka reduktionen med 55 %. Testerna influeras av flera yttre faktorer vilket påverkar resultatens trovärdighet. Denna analys bör därför repeteras för att resultaten ska kunna verifieras.

Page generated in 0.0249 seconds